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ABSTRACT Human action recognition is one of the fundamental challenges in robotics systems. In this
paper, we propose one lightweight action recognition architecture based on deep neural networks just
using RGB data. The proposed architecture consists of convolution neural network (CNN), long short-
term memory (LSTM) units, and temporal-wise attention model. First, the CNN is used to extract spatial
features to distinguish objects from the background with both local and semantic characteristics. Second, two
kinds of LSTM networks are performed on the spatial feature maps of different CNN layers (pooling layer
and fully-connected layer) to extract temporal motion features. Then, one temporal-wise attention model is
designed after the LSTM to learn which parts in which frames aremore important. Lastly, a joint optimization
module is designed to explore intrinsic relations between two kinds of LSTM features. Experimental results
demonstrate the efficiency of the proposed method.

INDEX TERMS Artificial intelligent, human action recognition, attention model, deep neural networks,
robotic system.

I. INTRODUCTION
Human action recognition is one important task in robotics
systems, especially for intelligent services. For example,
in smart homes or smart factories, the robotics systems could
assist human or collaborate with human, based on the recog-
nition of action [1]. Combined with cyber-physical systems,
action recognition can be used for other applications, such
as health-care [2]. Also it can be applied in social activity
analysis using cloud computing techniques [3]–[5]. How-
ever, with background clutter and occlusions in real world,
human action recognition is still far from practical applica-
tions [6]–[8], especially in complex dynamic systems.

For video action recognition, previous approaches always
take similar ideas with that of image recognition. But dif-
ferent from still images, human actions consist of ever-
changing motions with different target objects, and different
objects have various appearances in different scenes. So, it’s
indispensable to explore diverse spatio-temporal features
for action recognition. To extract spatio-temporal features,
Histogram of 3D Oriented Gradients (HOG3D) [9] and His-
togram of Optical Flow (HOF) [10] have been proposed. The
features will be further encoded or pooled in a hierarchic
architecture, and input to Support Vector Machine (SVM)
classifier. To make full use of motion information, one
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method based on dense-point trajectories has been proposed
by computing optical flow of video frames [11]. The Motion
Boundary Histograms (MBH) method has achieved good
performance by extracting gradient features on horizontal and
vertical components of optical flow separately [12].

In recent years, deep neural networks (DNNs) have
obtained great achievement in many areas such as object
detection, recognition, and image classification, due to
its ability of automatically learning features from large
datasets [13]–[16]. Spatial features of images can be extracted
by convolution layers in Convolution Neural Network
(CNN), which contains orientation-sensitive filters [17].
By extending the connectivity of the network in time dimen-
sion, CNN is also used to learn spatio-temporal features for
large scale video classification [18]. As a typical recurrent
neural network (RNN) architecture, Long Short Term Mem-
ory (LSTM) has the ability to preserve sequence information
over time and capture long-term dependencies [19], so that
it can extract temporal features. LSTM has been applied in
many sequential modeling tasks such as machine translation,
speech recognition, and visual descriptions [20]. With the
aid of attention model, LSTM has achieved encouraging
performance in machine translation [21] and image cap-
tion [22]. LSTMhas potential ability in doing prediction tasks
for videos, however, it does not take the spatial correlation
into consideration. In some references, the original LSTM is
referred to fully connected LSTM (FC-LSTM). Shi et al. [23]
extended the FC-LSTM to convolution LSTM (ConvLSTM)
to extract spatial and temporal information in a same LSTM
unit. Modeling spatial and temporal features together will be
beneficial for accurate recognition.

It is a natural way to detect the appearance of one object
using CNN, and detect the motion using LSTM, according
to human visual recognition mechanism. So, in this paper,
we propose a new lightweight architecture for action recog-
nition in videos based on DNN with only RGB data. Optical
flow is not used, since its computation is too complicated for
real-time applications. The proposed architecture consists of
CNN, LSTM, attention model, and joint optimization. First,
we extract two kinds of CNN features, i.e. spatial features
and semantic features, produced by the convolution layer
and fully connected layer, respectively. Correspondingly, for
temporal feature extraction, two kinds of LSTM are built after
convolution layer and fully connected layer of CNN, named
as ConvLSTM and FC-LSTM, respectively. Two different
attention models are designed for LSTM to provide insights
into where the neural network is looking, find important parts
of video, avoid the background noise’s effect, and benefit
the recognition. Each LSTM produces a vector to represent
temporal feature of videos. There exist intrinsic relations
between these two features, so we design a joint optimization
module (JOM) to explore them.

The main contributions of this work can be summarized as
follows. (1) We propose a feature extractor which consists
of two kinds of LSTM after different layers of CNN to
extract both spatial and semantic features in temporal domain.

(2) We design a temporal-wise attention model after LSTM
to learn temporal focus of actions. (3) We design a joint
optimization module to train the network to be more robust.

II. RELATED WORKS
There exist a number of works for action recognition in
videos, such as methods using hand-craft features (Harris3D,
HOG3D, HOF, etc.) to generate spatio-temporal descriptors
around the detected local interest points, and then using SVM
for classification. Since the proposed method is based on
deep neural network (DNN), in this section, we will only
review related works based on DNN but not hand-craft-based
methods.

A. 3D CONVOLUTION NETWORKS ON FRAMES
3D convolution networks [24], [25] have been employed on
video frames to learn implicit motion features. The frames are
from short video clips, the time of which is a few seconds.
And the prediction results on clips are averaged at video
level. The network performs just marginally better than single
frame baseline [25], which indicates that the motion features
have not been learned sufficiently.

B. CNN ON FRAMES AND OPTICAL FLOW
There are two pathways in human visual cortex, the ventral
and dorsal streams, which performs object and motion recog-
nition, respectively. According to this mechanism, a two-
stream deep Convolution Network (ConvNet) is proposed
for action recognition [26], which incorporates spatial and
temporal networks. Spatial ConvNet works on a single frame,
while temporal ConvNet works on multi-frame optical flow.
Different fusion methods [27] of spatial and temporal convo-
lution networks have been proposed to take advantage of the
spatio-temporal information. But only up to 10 consecutive
frames are used as a group for inference. As a result, only a
small part of the full video’s information is exploited. This
will affect the recognition accuracy.

C. CNN/RNN ON FRAMES
A deep fusion framework of CNN and RNN is proposed
in [28], and four fusion models are evaluated for recognizing
human actions. In the first model, the last convolution layer of
the VGG-16 network is connected with LSTM, followed by
a soft-max layer. In the second model, the full connect layer
output is fed to the LSTM, followed by a soft-max layer. In the
third model, the outputs of LSTM in previous two models are
merged and passed through a soft-max layer. In the fourth
model, the outputs of convolution layer and full connected
layer are fed into sequence-to-sequence LSTM, and then
the results are fed into sequence-to-one LSTM. Experiments
show that the fourth model has higher recognition ability.

D. CNN/RNN ON FRAMES AND OPTICAL FLOW
For accurate video classification or action recognition, it’s
important to learn a global description of the video’s temporal
evolution. Temporal feature pooling and LSTM are present
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FIGURE 1. Flowgraph of the proposed method.

in [29] to utilize more frames (up to 120) for global infor-
mation. By working on the last convolution layer across the
video’s frames, feature pooling model generates vector for
video-level prediction. Employing LSTM on both frames and
optical flow obtains good performance.

E. ATTENTION MODEL FOR VIDEO
According to the research in visual cognition, human always
focus sequentially on different parts of the scene to extract
relevant information, instead of on an entire scene at once.
Therefore, employing attention mechanism will help to
improve the performance in related learning tasks.

Recurrent soft attention model has been developed for
action recognition [30]. LSTM is used to predict the probabil-
ity of location and class label at next time step. And then, soft
attention mechanism takes expectation over the feature slices
at different regions to compute the expected value of the input
at the next time-step. But since all the features are required
to perform dynamic pooling, the method is computationally
expensive.

A hierarchical attention network has been proposed in [31]
for action recognition in video, which incorporates static
spatial information, short-term motion information and long-
term video temporal structures. First, two-stream ConvNets
are used to extract appearance and motion features from
frame images and corresponding optical flow images, respec-
tively. Secondly, a hierarchical LSTM with two layers are
used to model the video temporal structure. And then, atten-
tion weights are computed by using the appearance and
motion features.

III. PROPOSED METHOD
In this section, we introduce the proposed method in detail.

The purpose of this work is to propose one DNN-based
method for action recognition in video just using RGB data.
The main idea is to use CNN to extract spatial features of
each frame, use two kinds of LSTM with attention model
to explore the temporal features between frames in video,
and use joint optimization layer to fuse the two kinds of
output temporal features to further extract relations. Accord-
ing to video labels, the entire network is trained for action
recognition.

In CNN networks, the output results of the convolution
layer and the fully connected layer are different. The con-
volution layer outputs spatial information, while the fully

connected layer outputs semantic information. Both kinds
of information are important for object recognition—spatial
information (shapes, outlines, etc.) and semantic information
(location invariance, rotation invariance, etc.). So both of
them are used, and these two kinds of output results on video
frames are processed with different LSTMs for temporal
feature extraction. In the proposed method, convolu-
tional LSTM (Conv-LSTM) and fully-connected LSTM
(FC-LSTM) are performed on the output of convolution layer
and fully connected layer of CNN, respectively. Attention
model is relevant to human visual mechanism, since human
always focus on moving objects instead of the whole pic-
ture or static background. Attention model adds a dimension
of interpret-ability, and contributes to reduce the effect of
background, so it will be benefit for recognition.

The framework of the proposed method is depicted in
Figure 1. There are four primary components—spatial fea-
tures extractor by CNN, Conv-LSTM with temporal-wise
attention, FC-LSTM with temporal-wise attention, and joint
optimization module.

A. SPATIAL FEATURES EXTRACTION BY CNN
Residual learning structure is adopted in CNN for spatial
feature extraction [32]. The layers in this network structure
are formulated to learning residual functions with reference
to their input, as depicted in Fig. 2. The network parameters
are derived by training on ImageNet dataset.

FIGURE 2. Residual mapping structure.

To get spatial features, each video frame is fed into CNN,
and two feature maps will be produced after the pooling layer
and FC layer. Specifically, for the t th frame, the last pooling
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layer outputs feature map f tconv and the fully connected layer
outputs f tfc. The dimension of f tconv and f

t
fc is K×K×C andD,

respectively, where K × K is the shape of feature vector,
C and D are filter numbers. At each time step, we can extract
two feature vectors with dimension of K × K × C and D.
So, for the video with time length of T , feature maps can be
present in the form of matrices as follows.

Fconv = [f 1conv, . . . , f
t
conv, . . . , f

T
conv] ∈ RK×K×C×T (1)

Ffc = [f 1fc, f
2
fc, . . . , f

T
fc ] ∈ RD×T (2)

B. FULLY-CONNECTED LSTM (FC-LSTM) WITH
TEMPORAL-WISE ATTENTION
We designed LSTM with temporal-wise attention to explore
the temporal features in video. LSTM is one kind of recurrent
neural networks, which can preserve sequence information
over time and capture long-term dependencies. One advan-
tage of LSTM is that the gradient does not tend to vanishwhen
trained with back propagation through time.

FIGURE 3. LSTM unit.

One unit of LSTM is depicted in Fig. 3. x(t), c(t), h(t)

and y(t) stand for input vector, cell state, hidden state and
output at the t th state, respectively. The output y(t) depends
on hidden state h(t), while h(t) depends on not only the cell
state c(t) but also its previous state. Cell state c(t) is influenced
by the input and memory information. i(t), g(t), f (t), and o(t)

modulate the input and memory information, which stand for
input gate, inputmodulation gate, forget gate, and output gate,
respectively.

LSTM is implemented as follows:

i(t) = σg(wxix(t) + whih(t−1) + bi) (3)

f (t) = σg(wxf x(t) + whf h(t−1) + bf ) (4)

o(t) = σg(wxox(t) + whoh(t−1) + bo) (5)

g(t) = tanh(wxgx(t) + whgh(t−1) + bg) (6)

c(t) = f (t) � c(t−1) + i(t) � g(t) (7)

h(t) = o(t) � σh(c(t)) (8)

where h(t−1) is the previous hidden state. wx and wh are
weights of input vector and hidden state, respectively. bi, bf ,
bo and bg stand for the bias terms. σ (·) means a sigmoid
function and � indicated the Hadamard product. The cell
state and output are computed step by step to capture long-
term dependencies.

FIGURE 4. Unfolded LSTM with its attention model.

After LSTM, one temporal attention model is designed to
decide which frames are important in videos for action recog-
nition. The attention model is used to learn the representation
of informative frames to produce a feature vector, which is
computed as follows.

First, the output gate of LSTM o(t) pass through a fully
connected layer and a tanh activation function to produce a
mid-result u(t), which is computed as follows,

u(t) = tanh(Wuo(t) + bu) (9)

where Wu and bu are parameters in a fully connected layer,
standing for weight and bias, respectively.

Secondly, we predict a SoftMax over L frames to produce
a normalized importance weight α(t). The focus softmax is
defined as follows,

α(t) = p(Ft = t | u(t)) =
exp(Wt

T u(t))
L∑
l=1

exp(Wl
T )u(t)

, t ∈ 1 . . . L,

(10)

whereW T
t stands for the weight mapping to the t th element of

the focus softmax, and L for the number of the frames. α(t) is
the probability with which the corresponding frame is thought
to be important in this network, and it tells the network which
time steps are needed to focus on.

Thirdly, a feature vector s is computed as the expected
value of LSTM output feature at time-step t by taking expec-
tation of all time steps’ feature vector. And it is computed as
follows,

s = Ep(Ft=t|u(t))(o
(t)) =

L∑
t=1

α(t)o(t) (11)

Fig. 4 shows the unfolded LSTM and attention model.
Different from previous attention models which mainly focus
on regions in each frame, our attention model is built after
LSTM to figure out which frame is important. The attention
model is trained using back propagation to produce dynami-
cal attention weight throughout the video sequence.

C. CONVOLUTION LSTM WITH
TEMPORAL-WISE ATTENTION
The spatial information is not encoded by the input-to-
state or state-to-state transition in FC-LSTM. So we adopt a
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Convolution LSTMnetwork [23] to overcome this deficiency,
with the state-to-state transitions in FC-LSTM to be replaced
by convolution operations. ConvLSTM is computed as
follow.

i(t) = σg(wxi ∗ x(t) + whi ∗ h(t−1) + bi) (12)

f (t) = σg(wxf ∗ x(t) + whf ∗ h(t−1) + bf ) (13)

o(t) = σg(wxo ∗ x(t) + who ∗ h(t−1) + bo) (14)

g(t) = tanh(wxg ∗ x(t) + whg ∗ h(t−1) + bg) (15)

c(t) = f (t) � c(t−1) + i(t) � g(t) (16)

h(t) = o(t) � σh(c(t)) (17)

where * and � denote the convolution operator and
Hadamard product, respectively. The input x(t), cell out-
put c(t) , hidden state h(t), and gates i(t), f (t), o(t) of ConvL-
STM are 3D tensors (rows×columns×channels), while those
in FC-LSTM are 1D tensors (channels only).

We designed one attention model after ConvLSTM. The
output gate of ConvLSTM, o(t) is a 3D tensor, supposed to
be K × K × D without loss of generality. And our attention
model is computed as follows.

u(t) = Relu(Wk ∗ o(t) + bk ) (18)

α(t) = p(Ft = t | u(t)) =
exp(Wt

T u(t))
L∑
l=1

exp(Wl
T )u(t)

, t ∈ 1 . . . L,

(19)

s(t) = Ep(Ft=t|u(t))(o
(t)) =

L∑
t=1

α(t)o(t) (20)

where Relu() stands for a rectified linear units activation
function. Attention kernel weight Wk with size 1× 1 is used
to capture spatial information of feature vector. Wk and o(t)

have the same channel number of D. Zero-padding is needed
in convolution operator of attention map to make sure the
attention map size not be reduced.W T

t and bk are parameters
to learn, standing for weight and bias, respectively. Eq. (9)
is different from Eq. (18) in that, the later one uses the
convolution operator while the former uses the Hadamard
product. Especially, our attention model in ConvLSTM not
only focus on which frames are relevant to the video class,
but also on the important regions in a frame. In other words,
the attention model in ConvLSTM is both temporary and
spatial.

D. JOINT OPTIMIZATION MODULE
We designed one joint optimization module for training
ConvLSTM and FC-LSTM feature vectors together, in the
purpose of fully exploring semantic, temporary and spatial
features of video. Each feature vector, produced by these
two LSTM networks with their attention model, contains dis-
criminative characteristics, and there are intrinsic relations.
General methods for action recognition always train two
independent classifiers for each kind of feature vector, but this
will miss the relations. So we jointly process two vectors by

one classifier to explore their intrinsic relations. With twice
the amount of vector data, the classifier will be trained more
robustly for recognition.

We use cross-entropy as the cost function, and the object
function is defined as follows,

8 = argmax
2∑

n=1

C∑
i=1

yn,i log (ŷi) (21)

where yn,i stands for the predicted label vector, log ŷi for the
class probability of true label vector, C for the number of
action categories, and n denotes the number of tasks.

FIGURE 5. Joint optimization module.

The joint optimization module is depicted in Fig. 5. Before
ConvLSTM feature passing through the joint optimization
layer, max pooling is needed to sample the vector to the same
size as FC-LSTM feature.

Our joint optimization module includes a fully con-
nected (FC) layer and a SoftMax layer. Between FC and
SoftMax layer, a dropout operation is used to prevent the
model from over-fitting.

The JOM treats each feature vector as a separate classi-
fication task with the same label, and generates two class
scores. During training, losses of two tasks are summed up
as the final loss. In test process, we multiply two class scores
produced by SoftMax function as the final score for the
prediction.

IV. EXPERIMENT AND ANALYSIS
To evaluate the proposed method, experiments for video
action recognition have been present in this section. First,
we will give the descriptions of the datasets we have used.
Following, experiment setting will be introduced, as well as
the experimental results and analysis.

A. DATASETS
Three public datasets have been used in our experiment, i.e.
UCF-11 [33], UCF Sports [34] and UCF-101 [35]. The action
categories are listed in Table 1.

UCF-11 dataset contains 11 action categories with a total
of 1600 videos, collected from YouTube. 955 and 645 videos
are used for training and testing, respectively.

UCF Sports dataset contains 150 video sequence
in 10 action categories, collected from television channels
including BBC and ESPN. 75% of the videos in the dataset
are used for training and 25% for testing.

UCF-101 dataset contains 13320 video clips in 101 cat-
egories, collected from YouTube. The dataset provides
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TABLE 1. Information of Datasets used in our experiments.

TABLE 2. Accuracy on UCF-11. (a) Convolution with VGG-16 Net.
(b) Convolution with ResNet-152.

three train-test splits, and we use the first split which has
9537 videos for training and 3783 videos for testing.

B. IMPLEMENTATION DETAILS
Video sequences have different number of frames. The
most favorable time range of LSTM is a group of
40 frames [29], [30], which proves to be a good compro-
mise between performance and complexity. In our experi-
ments, 40 frames in each video are sampled equally to the
recognition architecture. Data augmentation is also made by
symmetric extension for training. Experiments are imple-
mented based on Tensorflow and the code is available at
https://github.com/Qingyang-Xu/DTA.

Adaptive Moment Estimation (Adam) is used for opti-
mization of the proposed network, with the learn rate fixed
to be 10−3 and the batch size fixed to be 60. In our
FC-LSTM model, we use a two-layers LSTM structure, and
the convolution kernel size of ConvLSTM is set to be 3×3 to
capture fined feature information of videos.

C. RESULTS AND DISCUSSIONS
Firstly, the proposed method is evaluated on UCF-11, UCF
Sports, and UCF-101 dataset to illustrate the efficiency of two

TABLE 3. Accuracy on UCF Sports. (a) Convolution with VGG-16 Net.
(b) Convolution with ResNet-152.

TABLE 4. Accuracy on UCF-101.

kinds of LSTM and attentionmodal, and the results have been
listed in Table 2, Table 3, and Table 4, respectively.

From the results, we can see that, the proposed method
consistently performs better than methods using FC-LSTM
and ConvLSTM separately. ConvLSTM performs better than
FC-LSTM with an improvement of 1%∼5% percent, which
proves the importance of the spatial features. And the pro-
posed method performs better than ConvLSTM. This demon-
strates that it’s important and necessary to use both semantic
and spatial information in temporal domain. In this way,
more useful feature information can be explored for action
recognition.

Experimental results also show that the attention module
helps to improve the recognition accuracy. Especially the
performance improvement is obvious on UCF Sports and
UCF-101 dataset. The temporal attention module is very
useful and performs much better than that without attention.
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FIGURE 6. Visual attention of ConvLSTM in spatial and temporal. Top-row: Original video frames;
Mid-row: ConvLSTM attention results in each frame; Bottom-row: ConvLSTM attention results on temporal frames.

FIGURE 7. Examples of failed predictions using the proposed method.

TABLE 5. Comparison with other methods on UCF-11.

For the convolution layers, we take both VGG-16 Net and
ResNet-152 for testing, and ResNet-152 performs slightly
better. This demonstrates that LSTM training is more impor-
tant for videos. Due to the long training time, VGG-16 Net
has not been used for UCF-101 dataset.

TABLE 6. Comparison with other methods on UCF Sports.

The performance of the proposed method has also been
compared with other methods, including Incremental Activ-
ity [36], Hybrid Features [33], Spatio-temporal Features [39],
Dense Trajectories [37], Two Stream LSTM [28], Soft
attention [30], Two Stream ConvNet [26], 3D Fusion of
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FIGURE 8. Examples of successful predictions using the proposed method.

TABLE 7. Comparison with other methods on UCF-101.

Two-Stream ConvNet [27] and Two-Stream I3D [44]. From
Table 5 and 6, we can see that, the proposed method achieved
better performance on UCF-11 and UCF Sports than the
others methods. From Table 7, we can see that for UCF-101
dataset, methods based on two-stream networks perform
better when using both RGB and optical flow data, while
the proposed method just used RGB data. One problem of
computing optical flow is the extra burden for both software
and hardware, which makes it difficult in real-time appli-
cations. The proposed method performs better than Single
Frame CNN Model [26] and competitively with Two-Stream
I3D [44] when using RGB data only.

Visualization of the learned attention region is provided
in Fig. 6. Original video frames are given in Fig. 6(a). Corre-
sponding attention region in each frame is shown in Fig. 6(b).
Attention weighted frames in temporal domain are shown
in Fig. 6(c). From Fig. 6(b), we can see that, the regions
around legs in a frame are brighter, which means more

important. In Fig. 6(c), several frames with bigger range
movement are brighter than others, meaning that they are
paid more attention than other frames. The temporal-wise
attention model encourages the model to focus on specific
parts of specific frames during training, which will be more
discriminative for classification.

Fig. 7 and Fig. 8 give failed and successful predictions for
some test sequences, respectively. From Fig. 7, we can see
these actions are very similar with the wrong classes in terms
of both the appearance and motion patterns.

Since only RGB data is used, the computational complex-
ity of the proposed method is low, and the test time for one
video sequence is about 0.17 seconds.

V. CONCLUSION
In this paper, we propose a new lightweight architecture for
video action recognition, which consists of CNN, LSTM and
attention model. This architecture is designed according to
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human visual mechanism in the purpose of obtaining strong
representational power for prediction just using RGB data,
without optical flow data which needs additional computa-
tions. We use a convolution model to extract two kinds of
features (semantic, spatial) for each frame, and followed by
two kinds of LSTMs (FC-LSTM, ConvLSTM) with their
temporal-wise attention model. We also designed a JOM
to optimize the classifier and explore the intrinsic relations
between feature vectors. The proposed recognition archi-
tecture has been tested on three widely used dataset, and
achieved state-of-the-art performance compared with exist-
ing methods. In the future work, we will try to modify this
network in pooling or fusion layers.
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