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ABSTRACT Characters, as a kind of symbols carrying rich semantic information, are composed of strokes
arranged in a certain structure and are of great significance in our daily life. In this paper, we are concerned
with the problem of scene character recognition, and study the problem from the perspective of feature
representation. We propose a novel pooling method termed deep contextual stroke pooling (DCSP) for scene
character recognition. The proposed DCSP discovers the most prominent stroke information by using stroke
detectors and captures the spatial context of discriminative strokes by learning contextual factor. Specifically,
we first utilize the convolutional summingmap in one convolutional layer to select discriminative strokes and
use the convolutional activation features of discriminative strokes to train stroke detectors. Then, we propose
the contextual factor to represent the co-occurrence probability of the stroke and its location. Finally,
in the response regions, we incorporate the contextual factor into the detector scores and obtain the deep
contextual confidence vectors of scene characters. Extensive experiments are conducted on three databases,
i.e., ICDAR2003, Chars74k, and SVHN, and the experimental results demonstrate that our method achieves
higher accuracies than the state-of-the-art methods.

INDEX TERMS Scene character recognition, deep contextual stroke pooling, contextual factor.

I. INTRODUCTION
Automatically understanding text information contained in
scene images is a fundamental issue for a number of
vision applications, such as image and video retrieval [1]–[3],
human-computer interaction [4]–[6], web content analy-
sis [7], [8] and so on. Scene text understanding system
usually contains two stages: text detection and text recogni-
tion. Text detection stage is established to segment the text
components from the input scene images. As the prerequi-
site and basis for successful text recognition, many detec-
tion approaches [9]–[11] have been proposed and achieved
promising results in recent years. Even though the text com-
ponents are completely and accurately detected, recognizing
them is still an open problem due to the interferences of com-
plex background, non-uniform illumination, noise, blur, vari-
ous fonts, etc. Hence, more and more researchers focus on the
text recognition stage. For example, Shi et al. [12] built part-
based tree-structures and utilized a conditional random field

model for scene text recognition. Wang et al. [13] utilized
convolutional neural networks (CNNs) to recognize scene
texts and achieved impressive accuracy using both the origi-
nal training images and those synthetic ones. Yao et al. [14]
proposed strokelets to capture the underlying substructures of
characters and constructed a scene text recognition algorithm
based on strokelets. Typically, scene text recognition employs
a two-stage pipeline, i.e., scene character recognition and
scene text recognition by combining language models [12],
[15], [16]. Since the scene character recognition is the pri-
mary determinant to the following scene text recognition,
we focus on the scene character recognition in this paper.

The existing scene character recognition methods can be
divided into two main categories: the optical character recog-
nition (OCR) based methods and the object recognition based
methods. The OCR based methods [17], [18] first perform
scene text binarization and then rely on the highly developed
OCR engines to recognize the scene characters. However,
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FIGURE 1. The flowchart of the proposed DCSP method.

binarizing scene text block is a challenging task due to differ-
ent lighting conditions, heavy occlusion and low resolutions.
The object recognition based methods [12], [13] skip the
binarization step and treat each kind of character as a special
object. Therefore, the scene character recognition problem
is translated into a multi-class object classification task. The
challenges of accurately recognizing scene characters lie in
arbitrary fonts, noises, deformations, complex backgrounds
and so on. Therefore, a powerful and effective feature repre-
sentation strategy is indispensable for scene character recog-
nition. Mishra et al. [16] utilized the histograms of oriented
gradients (HOG) features to describe scene character images.
Zhang et al. [19] utilized the histograms of sparse codes
(HSC) features to express the scene characters. Weinman
et al. [20] tied together several important information sources,
i.e., similarity, language properties and lexical decision, in the
stage of scene character recognition. Although these methods
achieve promising results, the spatial context among local
regions, which plays a profound role in scene character rep-
resentation, is largely ignored.

In order to overcome the above-mentioned limitation,
Gao et al. [22] proposed a spatiality embedded dictionary
(SED) to model co-occurrence of several local strokes which
introduces precise spatial information during feature repre-
sentation stage. Lee et al. [23] incorporated the pixel-wise
low-level image features and automatically mined discrimi-
native features in subregions, so that the resulting features are
able to effectively model distinctive spatial structures of each
individual character. Gao et al. [24] proposed stroke banks
to consider the spatial context in the stage of scene character
representation. Shi et al. [25] extended [24] to discriminative
multi-scale stroke detector-based representation (DMSDR)
which utilizes strokes of various scales for recognizing scene
characters. Tian et al. [26] proposed the co-occurrence his-
togram of oriented gradient (Co-HOG) features and con-
volutional Co-HOG (ConvCo-HOG) features for accurate

representing scene characters. Compared with traditional
HOG features which count orientation frequency of each
single pixel, the Co-HOG features could learn more spa-
tial contextual information by capturing spatial distribution
of neighboring orientation pairs. Additionally, the ConvCo-
HOG features exhaustively extract Co-HOG features from
every possible patch regions within a character image for
more spatial information.

In recent years, many researchers resort to extract-
ing features from convolutional neural network (CNN).
Wang et al. [27] regarded the output of the last fully-
connected layer of CNN as the final image representations.
Jaderberg et al. [28] trained a CNN model for scene char-
acter recognition and reported impressive accuracy by using
the fully-connected layer based features. Wang et al. [30]
proposed to encode the multi-order co-occurrence activations
(MCA) on the convolutional map, and then combined MCA
with Fisher vector.

In this paper, we propose a novel pooling method named
deep contextual stroke pooling (DCSP) for scene character
recognition. The flowchart is shown in Figure 1. We first
train a CNN for scene character recognition and then select
discriminative strokes from convolutional summing map
(CSM) in one convolutional layer. The CSM in the convolu-
tional layer could describe the important features and spatial
structural information which is especially meaningful for
character recognition. In addition, we extract convolutional
activation features from discriminative strokes and utilize
the obtained convolutional activation features to train stroke
detectors. Then, we learn the contextual factor to represent
the co-occurrence probability of the stroke and its location.
Finally, in the response regions, we incorporate the contextual
factor into the detector scores and obtain the deep contextual
confidence vectors of scene characters. Experimental results
demonstrate the effectiveness of the proposed methods. The
major advantages of the proposed method lie in: (1) we
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FIGURE 2. The architecture of the CNN model for scene character recognition.

select discriminative strokes from the CSM and utilize con-
volutional activation features to train the stroke detectors;
(2) we propose the contextual factor, which are learned from a
Gaussian mixture model (GMM) for each stroke, to explicitly
consider the spatial context of strokes.

The rest of this paper is organized as follows. We introduce
the proposed deep contextual stroke pooling (DCSP) method
for scene character recognition in Section 2. Section 3 pro-
vides comprehensive analysis of the proposed DCSP method
on three databases, i.e., ICDAR2003, Chars74k and SVHN,
and the experimental results demonstrate that our method
outperforms the other state-of-the-art methods. Finally,
we conclude the paper in Section 4.

II. APPROACH
In this section, we first introduce the convolutional summing
map (CSM) of the CNN which is utilized to select discrimi-
native strokes, train stroke detectors and learn contextual fac-
tors. Afterwards, we detail the procedure of deep contextual
stroke pooling for scene character images.

A. CONVOLUTIONAL SUMMING MAP
In the convolutional layer of a CNN, the filters traverse
the image in a sliding-window manner to generate convo-
lutional maps. The convolutional maps can be regarded as
a tensor with the size of W × H × M , which possesses M
convolutional maps with width W and height H . Typically,
the top-left (bottom-right) activation response in a convolu-
tional map is generated by the top-left (bottom-right) part of
the input image. Each activation response in a convolutional
map describes a local part of the input image and the high
responses indicate the salient parts. Hence, we utilize the con-
volutional maps for selecting discriminative strokes, training
stroke detectors and learning contextual factors.

In this paper, we train a CNN for scene character recogni-
tion and the network architecture is shown in Figure 2. In the
CNN, the size of the input image is 64 × 64. First, the input
image is convolved with 64 filters of size 3 × 3, resulting in
a convolutional map of size 62 × 62 and 64 convolutional

maps. The 64 convolutional maps are convolved with 128 fil-
ters of size 7 × 7. Then, max pooling is implemented by a
2 × 2 pixel window, with stride 2. The 128 convolutional
maps are further convolved with 256 filters of size 11× 11.
The sequence continues by performing max pooling and
convolving with 1024 filters of size 9 × 9. Subsequently,
the two fully-connected (FC) layers are 512 and 256 dimen-
sional vectors, respectively. The last FC layer is followed by
a softmax unit which converts the activations into character
probabilities. To learn the parameters (weights and bias),
we train the network using the backpropagation gradient-
descent procedure [29] with a mini-batch size of 48. The
procedure is terminated at 80 epochs. For the first 60 epochs,
the learning rate is set to 0.001. While for the remaining
20 epochs, the learning rate is set to 0.0001.

The convolutional maps in the convolutional layer could
describe the spatial structural information of characters.
To further capture the completed spatial structural informa-
tion, we add all the convolutional maps of one convolutional
layer to obtain the convolutional summing map (CSM). Let
Cl(i, j) denote the activation response of CSM at position (i, j)
in the l-th convolutional layer:

Cl(i, j) =
M∑
m=1

cml (i, j), (1)

where cml (i, j) denotes the activation response of the m-th
convolutional map at position (i, j) in the l-th convolutional
layer and M is the number of the convolutional maps in the
l-th convolutional layer. The shallow convolutional layers
usually contain structural and textural local featureswhich are
the key cues for scene character recognition. Hence, we uti-
lize the CSM in the 2-th convolutional layer for selecting
discriminative strokes, training stroke detectors and learning
contextual factors.

B. SELECTING DISCRIMINATIVE STROKES
Each category of scene characters possess different stroke
structures. To capture the main structural information of char-
acters, we label key points for all the character images in the
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FIGURE 3. Some samples that labelled key points.

TABLE 1. The number of the labelled key points for 62 character
categories.

training set. We first normalize character images into size
64× 64, where 64 and 64 are the height and width of an
image, respectively. Then, key points for a-z, A-Z, 0-9 are
labelled manually, and some examples are shown in Figure 3.
The number of labelled key points for 62 character categories
are listed in Table 1.

To discover the most discriminative strokes, we utilize the
CSM to build the relationship between the original image
and the corresponding convolutional activations. Based on
the labelled key points of category i (i ∈ {1, 2, · · · , n}, and
n is the number of character categories) and the CSM in
the 2-th convolutional layer, the discriminative strokes that
only belong to category i can be selected. When a desired
discriminative stroke of one training image is selected man-
ually, the corresponding discriminative strokes can be auto-
matically extracted from all the training images in category i.
The above procedure is listed as follows:

(1) We arbitrarily choose one training image in category i.
As shown in Figure 4 (a), we first delimit the blue rectangle
manually which contains the main structural information of

FIGURE 4. The procedure of discriminative stroke selection.

the character, and there are at least two key points in the blue
rectangle. Then, we extend the blue rectangle into the yellow
rectangle by using α, where α is a positive number to adjust
the scale of extension. Finally, the yellow rectangle is mapped
to the green rectangle in the CSM to obtain one discriminative
stroke. The discriminative stroke is denoted as Strokeij which
represents the j-th stroke in category i.

(2) For the remaining training images in category i, we first
calculate the minimal rectangle HS

ij ×W
S
ij (the blue rectangle

in Figure 4(b)) which contains the same key points as Strokeij
and extend it into the size of ˜HS

ij ×
˜W S
ij (the yellow rectan-

gle in Figure 4(b)). Here, ˜HS
ij = αHS

ij and ˜W S
ij = αW S

ij .
Then, the yellow rectangle is mapped to the green rectangle
in Figure 4(b) to obtain the corresponding discriminative
stroke. The stroke number in each category is determined by
the unique structural information of the characters.

C. TRAINING STROKE DETECTORS
To discover the important feature information of each stroke,
we train a stroke detector and find the optimal separating
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hyperplane. The stroke detector is trained by the discrimina-
tive strokes in the CSM. More formally, let Sij represent the
j-th stroke detector in category i. The procedure is listed as
follows:

(1) Collecting positive and negative stroke regions.We first
locate the minimal rectangle according to the key points
in one image from the i-th category and utilize the exten-
sion value α to obtain a patch region. The patch region
is mapped to the CSM to obtain corresponding discrimi-
native stroke which is treated as the positive stroke region
for training the stroke detector. We crop the negative stroke
regions, with the same size and position as the positive
one, from the random training images in other character
categories. Repeating the above steps, we can collect the
positive and negative stroke regions for training the stroke
detector Sij.

(2) Extracting convolutional activation features. The pro-
cedure is shown in Figure 5. First, the response values in
the same position of all the convolutional maps are concate-
nated into a feature vector. Then, we aggregate all feature
vectors in the stroke region using average pooling, resulting
in the convolutional activation feature to represent the stroke
region.

FIGURE 5. The procedure of extracting convolutional activation features
for stroke regions. It’s composed of (a) concatenating the response values
in the same position of the convolutional maps, (b) performing average
pooling to obtain (c) the convolutional activation feature.

(3) Training stroke detectors. We feed the convolutional
activation features of stroke regions into SVM classifier with
the linear kernel to train the stroke detector Sij. Let S represent
the stroke detector set for all the character categories and it
can be formulated as:

S = (S11, S12, · · · , S1j, · · · , S21, S22, · · · , S2j,

· · · , Sn1, Sn2, · · · , Snj, · · · ). (2)

The traditional methods [24], [25] utilize the trained stroke
detectors to generate the detector scores by employing the
sliding window strategy in the response region. Then, they
aggregate these scores using max pooling. However, the max
pooling does not explicitly consider the spatial context, which
is insufficient to generate rich and robust feature represen-
tations. Moreover, they only select the maximum score in
the response region while ignores the other important feature
information.

FIGURE 6. The procedure of delimiting a response region in the CSM.

D. DEEP CONTEXTUAL STROKE POOLING
To overcome the above-mentioned limitations, we propose
the DCSP for scene character recognition. Firstly, we propose
the contextual factor, which learns a GMM for each stroke,
to explicitly consider the spatial context of strokes. Specif-
ically, we extract the position information lij of the positive
stroke regions in the CSM for Strokeij, where lij is the set of
upper left coordinates for the j-th stroke in category i. Then,
we utilize the position information lij to learn a GMM for
Strokeij. The GMM is composed of several Gaussian func-
tions and reflects a statistical relationship between Strokeij
and the position lij. The bigger the probability of Strokeij
appearing in the position lij is, the greater the relevance
between them is. Hence, the relationship between the stroke
and its position is formulated as:

P(lij|Strokeij) =
K∑
k=1

Bijkηijk (lij, µijk , 6ijk ), (3)

where P(lij|Strokeij) represents the probability of Strokeij
appearing in the position lij, K is the number of Gaussian
components, andBijk is the weight of the k-th Gaussian. Here,
ηijk is a Gaussian probability density function:

ηijk (lij, µijk , 6ijk ) =
1

(2π )
d
2 |6ijk |

1
2

×exp[−
1
2
(lij − µijk )T6ijk

−1(lij − µijk )], (4)

where d is the dimensionality of lij, and µijk and 6ijk
are the mean vector and the covariance matrix of the
k-th Gaussian component, respectively. Since P(lij|Strokeij)
reflects the spatial co-occurrence relationship between lij
and Strokeij, we define it as the contextual factor γij,
i.e., γij = P(lij|Strokeij).

In the pooling stage, we incorporate the contextual factor
into the detector scores and obtain the deep contextual confi-
dence vectors. The pipeline of representing the deep contex-
tual confidence vectors consists of two main components.

(1) Delimitating a response region in the CSM for Strokeij.
To adjust the stroke location changes for various environ-
ments, we first obtain the union set (the orange rectangle) of
all positive stroke regions (the green rectangles) for Strokeij
as shown in Figure 6(a). Then we extend it by a extension
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FIGURE 7. Some examples from (a) ICDAR2003, (b) Chars74k and (c) SVHN databases.

value β as shown in Figure 6(b). Finally, the response region
is delimited as ˜HR

ij×
˜WR
ij , where

˜HR
ij and

˜WR
ij are the height and

width of the response region, respectively. Here, ˜HR
ij = βHij

and ˜WR
ij = βWij.

(2) Incorporating the contextual factor. In the response
region, we use a sub-window to densely sample the local
activation response region a (a ∈ {1, 2, · · · , h}, and h is
the number of activation response regions). Then, the stroke
detector Sij is applied to classify all the h activation response
regions, and the detector scores are:

Oij = (Oij1,Oij2, · · · ,Oijh), (5)

where Oij is a set of detector scores, and Oijh is the detector
score for the h-th activation response region. To obtain the
most prominent stroke information, we retain the top [T · h]
detector scores and set the remaining ones to 0. Here, T
(0 ≤ T ≤ 1) is the ratio of preserved detector scores, and
[·] represents the rounding operation. To consider the spatial
context, we calculate the contextual factor for each activation
response region:

γij = (γij1, γij2, · · · , γijh), (6)

where γijh represents the contextual factor for the h-th activa-
tion response region. It indicates the probability that Strokeij
appears in lijh. We also preserve the top [T · h] contextual
factors and set the remaining ones to 0, so as to obtain the
most prominent spatial context. The final deep contextual
confidence vector C is obtained for each scene character
image:

C = (C11,C12, · · · ,C1j, · · · ,C21,C22, · · · ,

C2j, · · · ,Cn1,Cn2, · · · ,Cnj, · · · ), (7)

whereCij = γij·Oij =
∑h

a=1 γijaOija, andCij is the contextual
confidence score for Strokeij.

Given a scene character image, we first transmit the scene
character image into the CNN and calculate the deep con-
textual confidence vector using Equation (7). Then, the deep
contextual confidence vectors of all training images are used
to train multi-class SVMs. In the test stage, we use the same

response region of each stroke as the training stage, and
then employ Equation (7) to calculate the deep contextual
confidence vectors. Finally, those deep contextual confidence
vectors of all test images are fed into the multi-class SVMs
to obtain class labels.

III. EXPERIMENTAL RESULTS
A. DATABASE AND EXPERIMENTAL SETTINGS
We evaluate the effectiveness of the proposed DCSP on
three public databases, i.e., ICDAR2003 [31], Chars74k [32]
and SVHN [33] databases. The ICDAR2003 database is
a typical scene character recognition database. It contains
6,185 training and 5,430 test images distributed in 62 classes
of characters, i.e., lower English letters a-z, upper English
letters A-Z and digits 0–9. These images undergo extensive
variances such as nonuniform illumination, distortions and
complex backgrounds. Figure 7(a) shows some images from
the ICDAR2003 database. The Chars74k database contains
62 character classes (a-z, A-Z, 0-9). The characters in this
database are cropped from the images of advertisement signs,
products from stores, and vary in color, size, font, back-
ground, etc. Some images from the Chars74k database are
shown in Figure 7(b). In the experiment, we randomly select
30 images in each class, among which 15 images are used for
training and the remaining are used for test as in [25] and [32].
The SVHN database is a collection of street view images
with text of various deformations, distortions, lighting con-
ditions and complex backgrounds. The database consists of
over 600,000 labelled characters comprising full numbers and
cropped digits. The training database contains 73,257 digits
and 531,131 additional less difficult training images. The test
database consists of 26,032 digits. Some characters from the
SVHN database are listed in Figure 7(c). Similar to [25],
we only report results by using 700 training images per class
and ignoring the 531,131 additional less difficult training
images in the experiments.

All of the images are scaled to 64 × 64. The extension
values α and β are both empirically set to 1.5. To verify
the effectiveness, the proposed method are compared with
other leading methods as well as the baseline algorithms,
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FIGURE 8. Performance under different number of discriminative strokes per character. (a), (b) and (c) are for the ICDAR2003,
Chars74k and SVHN database, respectively.

i.e., average pooling (AP), max pooling (MP) and contextual
stroke pooling (CSP). The AP (MP) means that we employ
the CSM in the convolutional layer for selecting discrimina-
tive strokes, training stroke detectors and learning contextual
factors, and utilize the average (max) pooling strategy to
obtain the final representation. While the CSP means that
we select discriminative strokes, train stroke detectors and
learn contextual factors on the original character images,
and utilize the proposed pooling strategy to obtain the final
representation.

B. INFLUENCE OF PARAMETER VARIANCES
Before presenting the results, we first evaluate the perfor-
mance of the proposed DCSP with respect to the index of
convolutional layers l, the discriminative stroke number τ in
each character class, the number of Gaussian components K
in each GMM, and the ratio T of the preserved detector scores
and contextual factors in each response region.

(1) In a CNN, the shallow convolutional layers usually
contain structural and textural local features while the deep
convolutional layers usually contain high-level semantic
information. In the scene character recognition task, to dis-
cover the most prominent feature and stroke information,
we select the CSM in the shallow convolutional layers for
selecting discriminative strokes, training stroke detectors and
learning contextual factors. We evaluate the performance of
the proposed method when using CSM in different shallow
convolutional layers. The results are listed in Table 2. From
Table 2, on the three databases, the experimental results
indicate that the proposed method achieves the highest results
when utilizing the CSM in the 2-th convolutional layer.

(2) Discriminative stroke number τ in each character class
is an importance parameter as it determines the number of
stroke detectors and effects the dimensionality of the final
deep contextual confidence vector. We study the impact of
the discriminative stroke number τ in each character class on
the ICDAR2003, Chars74K and SVHN databases. As shown

TABLE 2. Performance of the CSM in different convolutional layers on the
ICDAR2003, Chars74K and SVHN databases.

in Figure 8, we find that the recognition rate improves with
the increasing number of discriminative strokes in a range,
and then the improvement stops when coming to a certain
point. The results mean that when τ is too small, there is few
discriminant information in the final representation, yet when
τ is too large, the dimensionality of the final representation
is too high which may result in the dimensionality curse.
Therefore, the proper τ can not only preserve the discrimi-
native information, but also make the final deep contextual
confidence vectors possess the appropriate dimensionality.
As for the ICDAR2003, Chars74K and SVHN databases, τ is
ultimately set to 15, 12 and 15, respectively, where the highest
accuracy is achieved.

(3) To build the optimal GMM for the spatial context
of strokes, we study the effect of the number of Gaussian
components K in each GMM. The paper mainly reports the
results on the ICDAR2003 database, and our experiments
show that the conclusions can be generalized to the Chars74k
and SVHNdatabases as well. Figure 9 shows the performance
when K = 1, 2, 3, 4. As can be seen, large number of Gaus-
sian components in each GMM leads to better performance.
However, when K goes larger than 3, the performance starts
to drop. Hence, K is set to 3.

(4) To capture the most prominent information of dis-
criminative strokes, we discuss the impact of the ratio T
which is the preserved detector scores and contextual fac-
tors in each response region, on one baseline method (AP)
and the proposed DCSP. As shown in Figure 10, as for the
ICDAR2003 database, both the AP and the proposed DCSP
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FIGURE 9. Influence of the number of Gaussian components K in each
GMM on the ICDAR2003 database.

FIGURE 10. Performance under different ratio T of the preserved detector
scores and contextual factors in each response region on the ICDAR2003
database.

method achieve the highest accuracy when T is equal to 0.7.
The experimental result can be generalized to the Chars74k
and SVHN databases.

C. ICDAR2003 dATABASE
We compare the proposed DCSP with other competing meth-
ods and the baseline algorithms on the ICDAR2003 database.
The recognition results are listed in Table 3. With the optimal
parameters, i.e., τ = 15, K = 3 and T = 0.7, the proposed
achieves the highest accuracy of 85.6%. Furthermore,the
following three points can be drawn through analyzing the
experimental results.

First, the DCSP reduces to the AP when all contextual
factors are set to 1/h, where h refers to the same meaning as
in Equation (6). The accuracy of DCSP is about 11% higher
than that of AP. Intrinsically, the DCSP learns the pooling

TABLE 3. Recognition results of different algorithms on the ICDAR2003
database.

weights using contextual factors, while the pooling weights
of AP are equal.

Second, when ignoring contextual factors and only pre-
serving the maximum detector scores in the response region,
the proposed DCSP degenerates to the traditional MP
method. Since the proposed DCSP explicitly considers the
spatial context of strokes using contextual factors, it outper-
forms MP by 6.2%.

Third, comparing the results of DCSP and CSP, the former
is 1.5% higher than the latter one. It is because the proposed
DCSP utilizes the CSM in the convolutional layer which
could capture more most prominent stroke and feature infor-
mation and remove the less important ones, while the CSP
select discriminative strokes, train stroke detectors and learn
contextual factors on original character images.

D. CHARS74K DATABASE
We evaluate the proposed DCSP on the Chars74K. From
Table 4, the experimental results indicate that when utiliz-
ing the optimal parameters, the proposed DCSP achieves
the highest accuracy of 76.1%. The proposed DCSP out-
performs CNN_Softmax by more than 2%. It is because
the proposed DCSP utilizes the CSM, stroke detectors and
contextual factors to integrate the most prominent feature
and stroke information into the deep contextual confidence
vector. Compared with AP and MP, our method achieves
superior performance due to preserving the spatial context
of strokes and the most prominent stroke information in the
pooling stage. The proposedDCSP obtains higher results than
CSP because the proposed DCSP utilizes the CSM in the
convolutional layer which could capture more meaningful
information and remove the less important ones, while the
CSP selects discriminative strokes, trains stroke detectors and
learns contextual factors on original character images.

E. SVHN DATABASE
We compare the proposed DCSP with other competing meth-
ods and the baseline algorithms on the SVHN database.
Table 5 lists the performance of different algorithms. From
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TABLE 4. Recognition results of different algorithms on the Chars74K
database.

TABLE 5. Recognition results of different algorithms on the SVHN
database.

the Table 5, we can see that the proposed DCSP obtains the
best recognition accuracy when using the optimal parameters.
With 73,257 training samples, ConvNet/Smaller training [35]
utilizes CNN to classify digits of real-world house numbers
and achieves a recognition accuracy of 91.6%.With 700 train-
ing samples per class, i.e., 7,000 training images in total,
the proposed DCSP could correctly recognize 93.4% of the
test images. The superiorities of our method lie in: (1) the
convolutional activation features extracted from the second
convolutional layer possess stronger discriminative ability;
(2) the proposed DCSP can capture more most prominent
stroke and feature information and remove the less important
ones by using contextual factors. Once again, we prove the
effectiveness of our method on this challenging database.

IV. CONCLUSION
In this paper, we have introduced a novel feature pooling
method named DCSP for recognizing characters in natu-
ral scenes. The proposed DCSP utilizes the discriminative
strokes selected from CSM to train stroke detectors, and uses
the contextual factor to reflect the spatial context informa-
tion of discriminative strokes. Based on detector scores and
the contextual factor, the most representative convolutional
activation features can be selected from the response regions,
which could improve the discrimination and robustness of

the final deep contextual confidence vectors. The proposed
DCSP has been validated on three well-known databases,
i.e., ICDAR2003, Chars74k and SVHN, and the experimental
results outperform other previous methods in scene character
recognition.
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