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ABSTRACT Many learning algorithms use hypothesis spaces which are trained from samples, but little
theoretical work has been devoted to the study of these algorithms. In this paper, we show that mathematical
analysis for the kernel-based coefficient least squares for regression with lq-regularizer, 1 ≤ q ≤ 2, which is
essentially different from that for algorithms with hypothesis spaces independent of the sample or depending
only on the sample size. The error analysis was carried out under the assumption that the samples are drawn
from a non-identical sequence of probability measures and satisfy the β-mixing condition. We use the drift
error analysis and the independent-blocks technique to deal with the non-identical and dependent setting,
respectively.When the sequence ofmarginal distributions converges exponentially fast in the dual of a Hölder
space and the sampling process satisfies polynomially β-mixing, we obtain the capacity dependent error
bounds of the algorithm. As a byproduct, we derive a significantly faster learning rate that can be arbitrarily
close to the best rate O(m−1) for the independent and identical samples.

INDEX TERMS Coefficient-based regularized regression, drift error, learning rate, mixing sequence,
uniform concentration inequality.

I. INTRODUCTION
Learning theory aims at finding some relationship between
inputs and outputs from observed samples. In this paper we
consider the least squares regression problem which is one of
the central problems in learning theory and has a variety of
applications. It can be formulated as follows.

Let X be a compact metric space and Y = R. Let ρ be
a Borel probability measure on Z = X × Y . For a function
f : X → Y , the least squares error is defined by

E(f ) =
∫
Z
(f (x)− y)2dρ.

For every x ∈ X , let ρ(·|x) be the conditional probability
measure induced by ρ on Y . Denote by L2ρX (X ) the space
of the square integrable functions with respect to ρX on X
with the norm ‖f (·)‖ρX = (

∫
X |f (·)|

2dρX )
1
2 , where ρX is

the marginal distribution of ρ on X . It is well known the
regression function fρ defined by

fρ(x) =
∫
Y
ydρ(y|x),

minimizes the error E(f ) over all f ∈ L2ρX (X ). That is, it is
the best one to describe the relation between inputs x ∈ X

and outputs y ∈ Y in the sense of the least squares error.
In regression learning, ρ is unknown and what we have in
hand is a set of random samples z = {zi}mi=1 = {(xi, yi)}

m
i=1 ∈

Zm which are drawn independently and identically according
to ρ. The task is to find a good approximation fz of the
regression function, which is derived from some learning
algorithm, see [1], [2] and the references therein. To mea-
sure the approximation ability of fz, we estimate the excess
generalization error

‖fz − fρ‖2ρX = E(fz)− E(fρ).

In the designation of the learning algorithm, we replace the
generalization error E(f ) by the empirical error

Ez(f ) =
1
m

m∑
i=1

(f (xi)− yi)2.

We expect to find a good approximation of fρ by minimizing
Ez in a suitable way.
There is a family of popular learning algorithmswhich take

the form of the regularization schemes in a reproducing kernel
Hilbert space (RKHS) associated with a Mercer kernel. Such
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a kernel K is a continuous, symmetric, and positive semi-
definite function on X×X . LetHK be the closure of the linear
span of the set of functions {Kx := K (x, ·) : x ∈ X} with the
inner product〈 n∑

i=1

αiKxi ,
m∑
j=1

βjKyj
〉
K
:=

n∑
i=1

m∑
j=1

αiβjK (xi, yj).

The well-known reproducing property inHK takes the form:

f (x) = 〈f , Kx〉K , for all f ∈ HK , x ∈ X . (1)

The least squares regularization scheme with the norm square
regularizer is given by

fz,λ = arg min
f ∈HK

{
1
m

m∑
i=1

(yi − f (xi))2 + λ‖f ‖2K

}
, (2)

where λ > 0 is the regularization parameter which may
depend on the sample size m with limm→∞ λ(m) = 0. The
efficiency of this kind of kernel scheme has been studied in a
lot of literatures, see [3]–[5] and the references therein.

Now we consider a different learning scheme, see [6].
In this scheme the data dependent hypothesis space is given
by

HK , z =

{
f (x) =

m∑
i=1

αiK (x, xi) :

α = (α1, · · · , αm) ∈ Rm,m ∈ N
}
. (3)

We adopt the coefficient-based regularization with
lq-penalization (1 ≤ q ≤ 2) to find the empirical target
function

fz,η = arg min
f ∈HK , z

{
1
m

m∑
i=1

(f (xi)− yi)2 + η�z(f )

}
, (4)

where

�z(f ) = inf
{ m∑
i=1

|αi|
q
: f =

m∑
i=1

αiKxi

}
, η = η(m) > 0.

(5)

The above algorithm (1.2) can also be rewritten as

fz,η =
m∑
i=1

αziKxi ,

where

(αzi )
m
i=1 = arg min

α∈Rm

{
1
m

m∑
k=1

( m∑
i=1

αiK (xi, xk )− yk

)2

+ η

m∑
i=1

|αi|
q
}
, 1 ≤ q ≤ 2. (6)

The application of coefficient-based regularization scheme
was first introduced by Vapnik to design linear programming
support vector machines, see [7]. In recent years, there has
been tremendous interests in studying the error performance

of the algorithm (4), see [8]–[18]. Among others, the con-
vergence rates of the algorithm (4) have been obtained in
the case of independent samples, see [8], [9], [14]–[18].
However, usually this independent assumption cannot be
strictly justified in real-world problems. For example, many
machine learning applications such as market prediction, sys-
tem diagnosis, and speech recognition are inherently tempo-
ral in nature, and consequently not independent processes,
see [19]. Up to now only relatively few results were obtained
in the case of dependent samples, see [10], [11], [20]–[22].
Modha and Masry [21] established the minimum complex-
ity regression estimation with m-dependent observations and
strongly mixing (α-mixing) observations. Sun and Guo [10],
Sun and Wu [20], and Chu and Sun [22] carried out the error
analysis of the algorithm (2) and (4) with the strongly and uni-
formly mixing (φ-mixing) samples respectively. Motivated
by their work, we consider the followingβ-mixing sequences.
In general, the α-mixing is quite easy to establish but has
few consequences. The φ-mixing has many nice properties,
but few stochastic processes are φ-mixing. The β-mixing is
neither too weak nor too strong, which is just right. For the
details of these mixing conditions and their comparisons, one
can refer to [23] and the references therein.
Definition 1: Let z = {zt }t≥1 be a sequence of random

variables. For any i, j ∈ N∪ {+∞}, σ ji denotes the σ -algebra
generated by the random variables {zt = (xt , yt )}

j
t=i. Then

for any k ∈ N, the β-mixing coefficients of the stochastic
process z are defined as

β(k) = sup
j≥1

E sup
A∈σ∞j+k

|P(A|σ j1)− P(A)|. (7)

z is said to be β-mixing, if β(k)→ 0 as k →∞. Specifically,
it is said to be polynomially β-mixing, if there exists some
β0 > 0 and γ > 0 such that, for all k ≥ 1,

β(k) ≤ β0k−γ . (8)
Moreover, identity is a rather restrictive assumption in some
real data analysis. Pan and Xiao [8], Smale and Zhou [24],
and Guo and Shi [25] considered the non-identical sampling
setting for online, classification and least squares regression
learning algorithms, respectively. Following their framework,
we assume that there is a sequence of Borel probability
measures {ρ(i)}i=1,2,··· on Z . The i-th sample zi = (xi, yi)
is drawn according to ρ(i) on Z . Let ρ(i)X be the marginal
distribution of ρ(i). For every x ∈ X , the conditional distri-
bution of {ρ(i)}i=1,2,··· at x is ρ(·|x), independent of i. It is
known from Riesz representation theorem, every probability
measure determines a bounded linear functional onCs(X ) via
F(f ) =

∫
X fdµ for every f ∈ Cs(X ). We make the following

assumption about the sequence {ρ(i)X }.
Definition 2: We say that the sequence {ρ(i)X } converges to

ρX exponentially in (Cs(X ))∗, if there exist C > 0 and 0 <
α < 1, such that

‖ρ
(i)
X − ρX‖(Cs(X ))∗ ≤ Cα

i, ∀i ∈ N. (9)
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Recall that the Hölder space Cs(X ) with 0 ≤ s ≤ 1, consists
of all continuous functions on X with the following norm :

‖f ‖Cs(X ) := ‖f ‖∞ + |f |Cs(X ),

where |f |Cs(X ) := sup
x 6=y∈X

|f (x)− f (y)|
(d(x, y))s

.

By the definition of the dual space (Cs(X ))∗, the condition (9)
is equivalent to∣∣∣∣ ∫

X
f (x)dρ(i)X −

∫
X
f (x)dρX

∣∣∣∣ ≤ Cαi(‖f ‖∞ + |f |Cs(X )),

∀f ∈ Cs(X ), i ∈ N. (10)

To let the readers have a better understanding of the decay
condition (9), we cite two examples of sequences of proba-
bility distributions satisfying (9) from [24].

The first one is generated by iterations of a stochastic linear
operator acting on an initial probability measure.
Example 3: Let ν be a strictly positive probability distri-

bution on X and ψ ∈ C(X ×X ) be strictly positive satisfying∫
X ψ(x, u)dν(u) = 1 for each x ∈ X . Define the sequence
{ρ

(t)
X } by

ρ
(t+1)
X (0) =

∫
0

{∫
X
(ψ(x, u))dρ(t)X (x)

}
dν(u),

where t ∈ N, and 0 ⊆ X is a Borel set. Then {ρ(t)X } converges
exponentially to some strictly positive probability distribution
ρX on X .
The second one is induced by dynamical systems.
Example 4: Let X = [− 1

2 ,
1
2 ] and for each t ∈ N,

the probability distribution ρ(t)X on X has support [−2−t , 2−t ]
and uniform density 2t−1 on its support. Then with δ0 being
the Dirac distribution at the origin, for each 0 < s ≤ 1,
we have∣∣∣∣ ∫

X
f (x)dρ(t)X −

∫
X
f (x)dδ0

∣∣∣∣
≤ 2t−1

∫ 2−t

−2−t
|f (x)− f (0)|dx ≤ (2−s)t‖f ‖Cs(X ).

The rest part of the paper is organized as follows.
In Section II, we will state the learning rates and the error
decomposition of the algorithm (4). In the forthcoming
Section III−V, we will derive the upper bound of the approx-
imation error, the hypothesis error, the drift error and the
sample error. The result will be proved in Section VI. Finally,
we concludes this paper in Section VII.

II. MAIN RESULT AND ERROR DECOMPOSITION
Our principal goal is to derive the upper bound of the error
‖fz, η − fρ‖2ρX under some mild assumptions of fρ and HK .
So we first formulate these assumptions.

Let LK : L2ρX (X ) → L2ρX (X ) be the integral operator
defined by

(LK f )(x) =
∫
X
K (x, t)f (t)dρX (t), x ∈ X .

Since X is compact and K is continuous, LK is a compact
operator. Its fractional power operator LrK : L

2
ρX
(X ) →

L2ρX (X ), r > 0 is defined by

LrK (f ) =
∞∑
i=1

µri 〈f , ei〉L2ρX
ei, f ∈ L2ρX (X ),

where {µi} are the eigenvalues of the operator LK and {ei} are
the corresponding eigenfunctions which form an orthonormal
basis of L2ρX (X ), see [8]. For r > 0, the function fρ is said
to satisfy the regularity condition of order r provided that
L−rK fρ ∈ L2ρX .

WhenK ∈ C2s(X×X ),K satisfies the following condition,
see [15].
Definition 5: We say that the kernel K satisfies the kernel

condition of order s, if for some κs > 0

|K (x, x)− 2K (x, x ′)+ K (x ′, x ′)| ≤ κ2s |x − x
′
|
2s,

∀x, x ′ ∈ X . (11)
We also need the following capacity assumption of the unit

ball

B1 =
{
f ∈ HK : ‖f ‖K ≤ 1

}
. (12)

of HK measured by the l2 empirical covering number,
see [16].
Capacity Assumption: There exists an exponent p, with

0 < p < 2 and a constant cp > 0 such that

N2(B1, ε) ≤ cpε−p, ∀ε > 0, (13)

where cp is a constant independent of ε.
To estimate |fρ(x)|Cs(X ) and

∣∣ ∫
Y y

2dρ(y|x)
∣∣
Cs(X ) appearing

in the proof, we require the Lipschitz s continuity of condi-
tional distribution sequence {ρ(y|x) : x ∈ X}.
Definition 6:We say that the sequence {ρ(y|x) : x ∈ X} is

Lipschitz s in (Cs(Y ))∗ if there exists a constant Cρ ≥ 0 such
that

‖ρ(y|x)− ρ(y|u)‖(Cs(X ))∗ ≤ Cρ |x − u|s, ∀x, u ∈ X . (14)

Throughout this paper, we assume |y| ≤ M almost surely,
it is easy to see |fρ(x)| ≤ M for any x ∈ X . Thus we use
the following truncation function to improve learning rates,
see [12]–[14].
Definition 6: Fix M > 0, the truncation function πM :

X → [−M ,M ] is defined as

πM (x) =


M , if x > M ,
x, if |x| ≤ M ,
−M , if x < −M .

(15)

For a function f : X → R and M > 0, we define πM (f ),
the truncation at levelM of f , as πM (f )(x) = πM (f (x)) for all
x ∈ X .
We also assume all the constants in this paper are indepen-

dent of δ, m, λ or η.
Now we give our main result of the algorithm (4) by

choosing the appropriate parameters λ and η according to m.

18806 VOLUME 6, 2018



Q. Guo et al.: Convergence Rate for lq-Coefficient Regularized Regression

Theorem 7: Assume the random samples zi = (xi, yi), i ≥
1 satisfy the polynomially β-mixing condition, the marginal
distribution ρX and conditional distribution ρ(y|x) satisfy (9)
and (14), respectively, and the sequence {ρ(i)X } converges to ρX
exponentially in (Cs(X ))∗. Suppose K satisfies (11), L−rK fρ ∈
L2ρX with r > 0 and the capacity assumption (13) with 0 <

p < 2 holds. If we take m ≥
{
8

1
ζ ,
(
4β0
δ

) 1
(γ+1)(1−ζ )−1

}
with

ζ ∈
(
0, γ

γ+1

)
, then for any 0 < δ < 1, with confidence

1− δ, we have

‖πM (fz,η)− fρ‖2ρX ≤ D̃
(
1
m

)θ (r)
log

(
8
δ

)
, (16)

where θ (r) is defined by

θ (r) =


2r min

{
2q

2qr+3q+4r ,
2(ζ−p)
4r−p , ζ

}
, 0 < r < 1

2 ;

min
{

q
1+2q ,

2(ζ−p)
2−p , ζ

}
, r ≥ 1/2.

We will use error decomposition to analyze the excess gener-
alization error. For regularization schemes with sample inde-
pendent hypothesis spaces such as RKHSs one decompose
the total error into the sum of the sample error involving on
the sample z and the approximation error which depends on
the approximation ability of the hypothesis spaceHK [4]. For
coefficient regularization algorithms, we need a new error
decomposition technique, that is, an extra hypothesis error
should be introduced. Moreover, in our non-identical setting,
the main difficulty is that the measures {ρ(i)X } vary and an
essential error is caused by the change of these marginal
distributions. To describe this error, we introduce

Em(f ) =
1
m

m∑
i=1

∫
Z
(f (u)− y)2dρ(i)(u, y). (17)

Let

fλ := arg min
f ∈HK
{‖f − fρ‖2ρX + λ‖f ‖

2
K }. (18)

Then we have the following error decomposition:

E(πM (fz,η))− E(fρ) ≤ E(πM (fz,η))− E(fρ)+ η�z(fz,η)

= P(z, η, λ)+ S(z, η, λ)
+H(z, η, λ)+D(λ), (19)

where

P(z, η, λ) = {E(πM (fz,η))− Em(πM (fz,η))}

+ {Em(fλ)− E(fλ)},
S(z, η, λ) = {Em(πM (fz,η))− Ez(πM (fz,η))}

+ {Ez(fλ)− Em(fλ)},
H(z, η, λ) = {Ez(πM (fz,η))+ η�z(fz,η)}

− {Ez(fλ)+ λ‖fλ‖2K },
D(λ) = ‖fλ − fρ‖2ρX + λ‖fλ‖

2
K . (20)

The first term P(z, η, λ) of the right hand side is called the
drift error caused by the drift of non-identical measure ρ(i)

from ρ, and the second term S(z, η, λ) is called the sample
error which is caused by drawing the sample from each ρ(i).
The third term H(z, η, λ) is known as the hypothesis error.
The last term D(λ) is known as the approximation error.

III. ESTIMATES FOR THE APPROXIMATION AND
HYPOTHESIS ERROR
The estimate of approximation error relies on the following
proposition from [26], see page 273.
Proposition 8: IfA is a positive element of aC∗-algebraA,

sp(A) is the spectral set of A, and denote by C(sp(A)) the C∗-
algebra of all continuous complex-valued functions on sp(A),
the mapping f 7→ f (A) is a ∗ isomorphism from C(sp(A))
onto a C∗-subalgebra B of A, then f (A) is self-adjoint and
sp(f (A)) = {f (t) : t ∈ sp(A)}.
To estimate D(λ), we firstly establish two lemmas.
Lemma 9: Under the assumption L−rK fρ ∈ L2ρX with

r > 0, there holds

‖fλ − fρ‖2ρX ≤ C1λ
min{2r,2}. (21)

Proof: It has been proved in [27] that fλ = (λI +
LK )−1LK fρ , therefore

fλ − fρ = −λ(λI + LK )−1LrKL
−r
K fρ

= −

∞∑
i=1

〈L−rK fρ, ei〉ρXλ(λI + LK )
−1LrK ei.

Since LK is a positive compact operator, by Proposition 8,

‖fλ − fρ‖2ρX =
∞∑
i=1

λ2λ2ri

(λ+ λi)2
〈L−rK fρ, ei〉2ρX .

When 0 < r < 1,

‖fλ − fρ‖2ρX = λ
2r
∞∑
i=1

λ2−2r

(λ+ λi)2−2r

×
λ2ri

(λ+ λi)2r
〈L−rK fρ, ei〉2ρX

≤ λ2r‖L−rK fρ‖2ρX ,

when r ≥ 1, it is known from [4] that supi≥1 λi = ‖LK‖ ≤
κ2,

‖fλ − fρ‖2ρX =
∞∑
i=1

λ2i

(λ+ λi)2
λ2r−2i λ2〈L−rK fρ, ei〉2ρX

≤ λ2
∞∑
i=1

λ2r−2i 〈L−rK fρ, ei〉2ρX

≤ λ2κ2(2r−2)‖L−rK fρ‖2ρX ,

which implies

‖fλ − fρ‖2ρX ≤ C1λ
min{2r,2}.

This completes the proof of Lemma 9.
Lemma 10: Under the assumption L−rK fρ ∈ L2ρX with r >

0, there holds

‖fλ‖2K ≤ C2λ
min{2r−1,0}.

VOLUME 6, 2018 18807



Q. Guo et al.: Convergence Rate for lq-Coefficient Regularized Regression

Proof: By Proposition 8,

fλ =
∞∑
i=1

λ1+ri

λ+ λi
〈L−rK fρ, ei〉ρX ei.

Using the fact {
√
λiei : i ∈ 3} forms an orthonormal basis

of HK , see [28], we get

‖fλ‖2K =
∞∑
i=1

λ1+2ri

(λ+ λi)2
〈L−rK fρ, ei〉2ρX .

When 0 < r < 1
2 ,

‖fλ‖2K =
∞∑
i=1

λ1+2ri

(λ+ λi)
1+2r ·

1

(λ+ λi)
1−2r 〈L

−r
K fρ, ei〉2ρX

≤ λ2r−1‖L−rK fρ‖2ρX ,

when r ≥ 1
2 , fρ ∈ HK , thus

‖fλ‖K =
∥∥(λI + LK )−1LK fρ∥∥K ≤ ‖fρ‖K ,

which implies

‖fλ‖2K ≤ C2λ
min{2r−1,0}.

This proves Lemma 10.
Lemma 9 and Lemma 10 imply the following upper bound

for the approximation error.
Proposition 11: Under the assumption L−rK fρ ∈ L2ρX with

r > 0, there holds

D(λ) ≤ C3λ
min{2r,1}. (22)

For the hypothesis error, we directly invoke the following
result on the upper estimate of H(z, η, λ) in [12] .
Proposition 12: Under the assumptions of Theorem 7,

there holds

H(z, η, λ) ≤
mηMq

(mλ)q
. (23)

IV. ESTIMATES FOR THE DRIFT ERROR
Now we provide the upper bound for P(z, η, λ) in the follow-
ing proposition.
Proposition 13: Under the assumptions of Theorem 7,

there holds{(
E(πM (fz,η))− E(fλ)

)
−
(
Em(πM (fz,η))− Em(fλ)

)}
≤
C4

m

(
m1− 1

q η
−

1
q + m1− 1

q η
−

1
q

√
D(λ)
λ
+
D(λ)
λ

)
. (24)

Proof: By the definitions of E(f ) and Em(f ), we have{(
E(πM (fz,η))− E(fλ)

)
−
(
Em(πM (fz,η))− Em(fλ)

)}
≤

1
m

m∑
i=1

∣∣∣∣ ∫
Z

[(
πM (fz,η)(u)− y

)2
−
(
fλ(u)− y

)2]
d
(
ρ(u, y)− ρ(i)(u, y)

)∣∣∣∣
=

1
m

m∑
i=1

∣∣∣∣ ∫
X

(
πM (fz,η)(u)− fλ(u)

)(
πM (fz,η)(u)

+ fλ(u)− 2fρ(u)
)
d
(
ρX (u)− ρ

(i)
X (u)

)∣∣∣∣. (25)
By condition (10),{(

E(πM (fz,η))− E(fλ)
)
−
(
Em(πM (fz,η))− Em(fλ)

)}
≤

1
m

m∑
i=1

Cαi
∥∥∥∥(πM (fz,η)(u)− fλ(u)

)(
πM (fz,η)(u)

+ fλ(u)− 2fρ(u)
)∥∥∥∥

Cs(X )
. (26)

It is known from [8] that

‖fg‖Cs(X ) ≤ ‖f ‖C(X )‖g‖Cs(X ) + ‖f ‖Cs(X )‖g‖C(X ), (27)

therefore,∥∥∥∥(πM (fz,η)(u)− fλ(u)
)(
πM (fz,η)(u)+ fλ(u)− 2fρ(u)

)∥∥∥∥
Cs(X )

≤ (3M + κ‖fλ‖K ){2|fz,η|Cs(X ) + 2|fλ|Cs(X )
+ 2|fρ |Cs(X ) + 4M + 2κ‖fλ‖K }. (28)

Next we estimate |fρ |Cs(X ), |fz,η|Cs(X ) and |fλ|Cs(X ), respec-
tively.

By (14), we have

|fρ(x)|Cs(X ) ≤ Cρ(2M )1−s. (29)

By (1), for any f ∈ HK .

|f (x)− f (x ′)| = |〈f ,Kx − Kx ′〉|

≤ ‖f ‖K
√
K (x, x)− 2K (x, x ′)+ K (x ′, x ′).

It follows from (11) that

|f |Cs(X ) = sup
x,x ′∈X

|f (x)− f (x ′)|
|x − x ′|

≤ κs‖f ‖K . (30)

It has been proved in [12] that

‖fλ‖K ≤

√
D(λ)
λ
, (31)

‖fz,η‖K ≤ κm
1− 1

q

(
M2

η

) 1
q

. (32)

Plugging (31) and (32) into (30), we obtain

|fλ|Cs(X ) ≤ κs

√
D(λ)
λ
, (33)

|fz,η|Cs(X ) ≤ κsκm
1− 1

q

(
M2

η

) 1
q

. (34)
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Plugging (29), (33) and (34) into (28), we have∥∥∥∥(πM (fz,η)(u)− fλ(u)
)

(
πM (fz,η)(u)+ fλ(u)− 2fρ(u)

)∥∥∥∥
Cs(X )

≤ C4

(
m1− 1

q η
−

1
q + m1− 1

q η
−

1
q

√
D(λ)
λ
+
D(λ)
λ

)
, (35)

then combining with (26), we have[(
E(πM (fz,η))− E(fλ)

)
−
(
Em(πM (fz,η))− Em(fλ)

)]
≤
C5Cα
1− α

1
m

(
m1− 1

q η
−

1
q + m1− 1

q η
−

1
q

√
D(λ)
λ
+
D(λ)
λ

)
.

We complete the proof of Proposition 13.

V. ESTIMATES FOR THE SAMPLE ERROR
To estimate the sample error, we use the blocking technique
in [25] and [29] to deal with the original weakly depen-
dent sequence. Given any integer pair (am, bm) with bm =
[m/2am], we divide the sequence into 2bm blocks of length
am and a remainder block of length m − 2bmam. For 1 ≤
k ≤ 2bm, we denote Q

am
k the marginal distribution of block

(z(k−1)am+1, z(k−1)am+2, · · ·, zkam ) and take (z
′

1, · · ·, z
′

2bmam
) to

be a random sequence with product distribution
∏2bm

k=1 Q
am
k .

Define

Z1 = (z1, · · ·, zam , z2am+1, · · ·, z3am ,

· · · , z2(bm−1)am+1, · · ·, z2(bm−1)am ),

Z2 = (zam+1, · · ·, z2am , z3am+1, · · ·, z4am ,

· · · , z(2bm−1)am+1, · · ·, z2bmam );

and correspondingly

Z ′1 = (z′1, · · ·, z
′
am , z

′

2am+1, · · ·, z
′

3am ,

· · · , z′2(bm−1)am+1, · · ·, z
′

2(bm−1)am ),

Z ′2 = (z′am+1, · · ·, z
′

2am , z
′

3am+1, · · ·, z
′

4am ,

· · · , z′(2bm−1)am+1, · · ·, z
′

2bmam ).

The sample error can be written as

S(z, η, λ) = {Em(πM (fz,η))− Em(fρ)}
− {Ez(πM (fz,η))− Ez(fρ)}
+ {Ez(fλ)− Ez(fρ)}
− {Em(fλ))− Em(fρ)}

:= S1(z, η)+ S2(z, λ).

Wefirstly estimate the bound of S2(z, λ). To do this, we recall
the following lemma from [25].
Lemma 14: If g is a measurable function on Z satisfying∥∥g(z) − ∫Z gdρ(i)∥∥∞ ≤ M , for any δ > 0, with confidence

1−δ, the quantity 1
m

∑m
i=1

(
g(zi)−

∫
Z gdρ

(i)
)
can be bounded

by

b−1m

{
8
3
M log

(
2

δ − 2bmβ(am)

)

+

√√√√ 2
am

2ambm∑
i=1

∫
Z
g2dρ(i) log

(
2

δ − 2bmβ(am)

)
+M

}
.

We obtain the following result on the upper estimate of
S2(z, λ) by using Lemma 14.
Proposition 15: Under the assumptions of Theorem 7, for

any 0 < δ < 1, with confidence 1− δ/2,

S2(z, λ) ≤ C6

{
b−1m

(
1+

D(λ)
λ

)
+ D(λ)

}
t, (36)

where t = log
(

4
δ−4bmβ(am)

)
.

Proof: For any z = (u, y) ∈ Z , define g(z) = (y −
fλ(u))2 − (y− fρ(u))2, then∥∥∥∥g(z)− ∫

Z
gdρ(i)

∥∥∥∥
∞

≤ 2
(
3M + κ

√
D(λ)
λ

)2

:= 2Bλ,

and ∫
Z
g2dρ(i) ≤ Bλ

∫
Z
gdρ(i).

By applying Lemma 14, with confidence 1−δ/2, there holds

1
m

m∑
i=1

(
g(zi)−

∫
Z
gdρ(i)

)

≤

(
19t
3
+ 2

)
Bλb−1m +

1
2ambm

2ambm∑
i=1

∫
Z
gdρ(i)

≤

(
19t
3
+ 2

)
Bλb−1m + 2

(
Em(fλ)− Em(fρ)

)
. (37)

Then we estimate Em(fλ)− Em(fρ). Note that

Em(fλ)− Em(fρ) ≤
(
Em(fλ)− E(fλ)

+ E(fρ)− Em(fρ)
)
+ D(λ). (38)

By (10), we have

Em(fλ)− E(fλ)+ E(fρ)− Em(fρ)

≤
1
m

m∑
i=1

∣∣∣∣ ∫
X

(
fλ(u)− fρ(u)

)2d(ρX (u)− ρ(i)X (u)
)∣∣∣∣

≤
1
m

m∑
i=1

Cαi
∥∥∥∥(fλ(u)− fρ(u))2∥∥∥∥

Cs(X )
. (39)

By (27) and (29),∥∥∥∥(fλ(u)− fρ(u))2∥∥∥∥
Cs(X )

≤ 2
(
M + κ

√
D(λ)
λ

)(
M + κ

√
D(λ)
λ

+ κs

√
D(λ)
λ
+ Cρ(2M )1−s

)
, (40)

VOLUME 6, 2018 18809



Q. Guo et al.: Convergence Rate for lq-Coefficient Regularized Regression

which implies

Em(fλ)−E(fλ)+E(fρ)−Em(fρ)≤
CC7α

m(1−α)

(
1+

D(λ)
λ

)
.

(41)

By substituting (38) and (41) into (37), we complete the proof
of Proposition 15.
Next we estimate S1(z, η). To deal with the β-mixing
sequences, we invoke the following lemma from [25].
Lemma 16: Let G be a class of measurable functions on Z

such that for each g ∈ G ,
∥∥g− ∫Z gd (i)∥∥∞ ≤ M , then

Prob
{
sup
g∈G

1
m

m∑
i=1

(
g(zi)−

∫
Z
g(z)dρ(i)

)
> ε +

M
bm

}
≤

∏
1

+

∏
2

+2bmβ(am),

where ∏
1

= Prob
{
sup
g∈G

1
bm

bm∑
j=1

(
2bm
m

(2j−1)am∑
i=2(j−1)am+1(

g(z′i)−
∫
Z
g(z)dρ(i)

))
≥ ε

}
,

∏
2

= Prob
{
sup
g∈G

1
bm

bm∑
j=1

(
2bm
m

2jam∑
i=(2j−1)am+1(

g(z′i)−
∫
Z
g(z)dρ(i)

))
≥ ε

}
.

The concentration estimation for S1(z, η) relies on the fol-
lowing uniform concentration inequality for non-identical
sampling.
Proposition 17: Assume {Xi}ni=1 is a random sequence in

the measurable space
(
Xn,

∏n
i=1 Qi

)
. Let F be a set of mea-

surable functions on X and B > 0 be a constant such that
each f ∈ F satisfies ‖f ‖∞ ≤ B. Suppose there exists a
nonnegative functional w on F and some positive constants
(1i)ni=1 such that

Ef 2(Xi) ≤ w(f )+1i,∀f ∈ F . (42)

Also assume for some a > 0 and p ∈ (0, 2),

logN2(F , ε) ≤ aε−p, ∀ε > 0.

Then for any x > 0 and any D > 0, with probability at least
1− e−x there holds

1
n

n∑
i=1

Ef (Xi)−
1
n

n∑
i=1

f (Xi) ≤ D−1w(f )+ c′pη̃

+
(D+ 18B+ 2)x

n
, ∀f ∈ F ,

where c′p is a constant depending only on p and

η̃ := max
{
D

2−p
2+p ,B

2−p
2+p + 1

}(
a
n

) 2
p+2

+
1
n

n∑
i=1

1i.

Nowwe provide the upper bound for S1(z, η) in the following
proposition.
Proposition 18: Under the assumptions of Theorem 7, for

any 0 < δ < 1, with confidence 1− δ/2,

{Em(πM (fz,η))− Em(fρ)} − {Ez(πM (fz,η))− Ez(fρ)}

≤
1
2
{E(πM (fz,η))− E(fρ)} + Cp,8,ρηR +

(192M2
+ 2)t

bm
,

(43)

where

ηR :=

(
Rpη
bm

) 2
2+p

+
α

1− α
1
m

max{Rη, 1} (44)

and t = log
(

4
δ−4bmβ(am)

)
.

Proof: We apply Proposition 17 to the function set

G̃ =

{
G(t1, · · ·, tam ) =

2bm
m

am∑
k=1

g(tk ) : g ∈ G

}
defined on Zam , where

G =

{
g(z) = g(u, y) = (y− πM (f )(u))2

− (y− fρ(u))2 : f ∈ BR

}
.

Define the functional w on G̃ as

w(G) :=
∫
Zam

G2(t1, · · ·, tam )dρ(t1)dρ(t2) · · · dρ(tam )

=
4a2mb

2
m

m2

∫
Z
g2dρ.

Then

EG2(z′(k−1)am+1, z
′

(k−1)am+2, · · ·, z
′
kam )

≤
4b2mam
m2

kam∑
i=(k−1)am+1

∫
Z
g2dρ(i)

≤ w(G)+
4b2mam
m2

kam∑
i=(k−1)am+1

∣∣∣∣ ∫
Z
g2d(ρ(i) − ρ)

∣∣∣∣.
From (10), we know that∣∣∣∣ ∫

Z
g2d(ρ(i) − ρ)

∣∣∣∣
≤ Cαi

∥∥∥∥(fρ(u)− π (f )(u))2∫
Y
(2y− π (f )(u)− fρ(u))2dρ(y|u)

∥∥∥∥
Cs(X )

.

By (14) and (27), we have∥∥∥∥(fρ(u)− π (f )(u))2 ∫
Y
(2y− π (f )(u)

− fρ(u))2dρ(y|u)

∥∥∥∥
Cs(X )

≤ (68M2Cρ(2M )1−s + 96M3κs + 160M4)(1+ R).
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Thus (42) is satisfied with

1k ≤
4b2mam
m2 Cρ,8max{R, 1}

am∑
i=1

α(k−1)am+i.

In addition given d ∈ N and w = {Etj =

(t j1, · · ·, t
j
am )}

d
j=1 ⊂ (Zam )d , for any G1 =

2bm
m

∑am
k=1 g1(tk )

and G2 =
2bm
m

∑am
k=1 g2(tk ) in G̃ , we find

d22,w(G1,G2) =
1
d

d∑
j=1

(
G1(Etj)− G2(Etj)

)2
=

1
d

d∑
j=1

(
2bm
m

am∑
k=1

(
g1(t

j
k )− g2(t

j
k )
))2

≤
1
dam

d∑
j=1

am∑
k=1

(
g1(t

j
k )− g2(t

j
k )
)2

= d22,w(g1, g2),

which implies N2(G̃ , ε) ≤ N2(G , ε).

By (1.2),

|g1(z)− g2(z)| ≤ 4M |f1(u)− f2(u)|,

which implies

N2(G , ε) ≤ N2(BR,
ε

4M
).

Thus from (2.12), we have

logN2(G , ε) ≤ cp(4M )pRPε−p.

Observe that ‖G‖∞ ≤ ‖g‖∞ ≤ 8M2 and

EG(z′(k−1)am+1, z
′

(k−1)am+2, · · ·, z
′
kam )

≤
2bm
m

kam∑
i=(k−1)am+1

∫
Z
gdρ(i).

We thus apply Proposition 17 to the functional set G̃ in the
product measurable space

(
(Zam )bm ,

∏bm
j=1 Q

am
2j−1

)
with B =

8M2 and a = cp(4M )pRp. Also note that

w(G) =
4a2mb

2
m

m2

∫
Z
g2dρ ≤

∫
Z
g2dρ ≤ 8M2

∫
Z
gdρ,

then for any D > 0, g ∈ G , with probability at least 1− e−t ,
there holds

1
bm

bm∑
j=1

2bm
m

(2j−1)am∑
i=2(j−1)am+1

(∫
Z
g(z)dρ(i) − g(z′i)

)
≤
8M2

D

(∫
Z
gdρ

)
+ c′pη1 +

(D+ 144M2
+ 2)t

bm
,

where

η1 = max
{
D

2−p
2+p , (8M2)

2−p
2+p + 1

}{
cp(4M )pRp

bm

} 2
2+p

+
4bmam
m2 Cρ,8max{R, 1}

bm∑
j=1

am∑
i=1

α(2j−2)am+i,

which implies

Prob
{
sup
g∈G

1
bm

bm∑
j=1

(
2bm
m

(2j−1)am∑
i=2(j−1)am+1

(∫
Z
g(z)dρ(i)

− g(z′i)
))
−

8M2

D

(∫
Z
gdρ

)
≥ ε1

}
≤ e−t ,

where ε1 = c′pη1 +
(D+144M2

+2)t
bm

.
In the same way, we apply Proposition 17 to the functional

set G̃ in the product measurable space
(
(Zam )bm ,

∏bm
j=1 Q

am
2j

)
,

there holds

Prob
{
sup
g∈G

1
bm

bm∑
j=1

(
2bm
m

2jam∑
i=(2j−1)am+1

(∫
Z
g(z)dρ(i)

− g(z′i)
))
−

8M2

D

(∫
Z
gdρ

)
≥ ε2

}
≤ e−t ,

where ε2 = c′pη2 +
(D+144M2

+2)t
bm

with

η2 = max
{
D

2−p
2+p , (8M2)

2−p
2+p + 1

}{
cp(4M )pRp

bm

} 2
2+p

+
4bmam
m2 Cρ,8max{R, 1}

bm∑
j=1

am∑
i=1

α(2j−1)am+i.

Note that

4bmam
m2

bm∑
j=1

am∑
i=1

α(2j−2)am+i

+
4bmam
m2

bm∑
j=1

am∑
i=1

α(2j−1)am+i ≤
2
m

α

1− α
,

and ∥∥∥∥g(z)− ∫
Z
g(z)dρ(i)

∥∥∥∥
∞

< 16M2.

From Lemma 16 by taking ε = c′pη̃ +
(D+18·8M2

+2)t
bm

with

η̃ =

{
max

{
D

2−p
2+p , (8M2)

2−p
2+p + 1

}{
cp(4M )pRp

bm

} 2
2+p

+
2
m
Cρ,8max{R, 1}

α

1− α

}
,

we have

Prob
{
sup
g∈G

1
m

m∑
j=1

(∫
Z
g(z)dρ(i) − g(zi)

)

−
16M2

D

(∫
Z
gdρ

)
> ε +

16M2

bm

}
≤ 2e−t + 2bmβ(am).

Finally we derive our result by setting

R = κm1− 1
q

(
M2

η

) 1
q

:= Rη, 2e−t + 2bmβ(am) := δ
2 ,

D = 32M2.
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VI. ESTIMATES FOR THE TOTAL ERROR
We are in a position to prove the main result.

Proof of Theorem 7: Putting the estimates in Proposi-
tion 11, 12, 13, 15 and 18 into (19), with confidence 1 − δ,
we have

‖πM (fz,η)− fρ‖2ρX

≤ D1t
{
D(λ)+

(
m−

1
q η
−

1
q + m−

1
q η
−

1
q

√
D(λ)
λ

+ m−1
D(λ)
λ

)
+ m1−qηλ−q + b−1m

D(λ)
λ

+ m
(
1− 1

q

)
2p
2+p η

−
1
q

2p
2+p b

−
2

2+p
m + b−1m

}
.

We take am to satisfy m1−ζ
≤ am < m1−ζ

+1, ζ ∈ [0, 1] and
bm = [ m

2am
]. Assume m ≥ 8

1
ζ , therefore

1
bm
≤ 8m−ζ . (45)

When 0 < r < 1/2,

‖πM (fz,η)− fρ‖2ρX ≤ D2t
{
λ2r + m−

1
q η
−

1
q λr−

1
2

+m1−qηλ−q + m−ζλ2r−1

+ η
−

1
q

2p
2+pm(1− 1

q )(
2p
2+p )−

2ζ
2+p
}
.

Let λ = m−θ1 and η = m−θ2 . Then

‖πM (fz,η)− fρ‖2ρX ≤ D2tm−θ , (46)

where

θ = min
{
2rθ1,

1
q
+

(
r −

1
2

)
θ1 −

1
q
θ2,

q− 1− qθ1 + θ2, ζ + (2r − 1)θ1,
2ζ

2+ p
−

2p(q− 1)
(2+ p)q

−
2pθ2

(2+ p)q

}
.

(47)

To get the fastest learning rates, we choose θ as follow:

θmax = max
θ2

min
{
max
θ1

min
{
2rθ1,

1
q
+

(
r−

1
2

)
θ1−

1
q
θ2

}
,

max
θ1

min
{
2rθ1, q− 1− qθ1 + θ2

}
,

max
θ1

min
{
2rθ1, ζ + (2r − 1)θ1

}
,

2ζ
2+ p

−
2p(q− 1)
(2+ p)q

−
2pθ2

(2+ p)q

}
. (48)

Let

2rθ1 =
1
q
+

(
r −

1
2

)
θ1 −

1
q
θ2,

2rθ1 = q− 1− qθ1 + θ2,

2rθ1 = ζ + (2r − 1)θ1.

We have

θmax = max
θ2

min
{
4r(1− θ2)
2rq+ q

,
2r(q− 1+ θ2)

2r + q
, 2rζ,

2ζ
2+ p

−
2p(q− 1)
(2+ p)q

−
2pθ2

(2+ p)q

}
= min

{
max
θ2

min
{
4r(1− θ2)
2rq+ q

,
2r(q− 1+ θ2)

2r + q

}
,

max
θ2

min
{
4r(1− θ2)
2rq+ q

,
2ζ

2+ p
−

2p(q− 1)
(2+ p)q

−
2pθ2

(2+ p)q

}
, 2rζ

}
.

Let
4r(1− θ2)
2rq+ q

=
2r(q− 1+ θ2)

2r + q
,

4r(1− θ2)
2rq+ q

=
2ζ

2+ p
−

2p(q− 1)
(2+ p)q

−
2pθ2

(2+ p)q
.

We have

θmax = 2r min
{

2q
2qr + 3q+ 4r

,
2(ζ − p)
4r − p

, ζ

}
.

When r ≥ 1/2, the inequality (46) holds with

θ = min
{
θ1,

1
q
−

1
q
θ2, q− 1− qθ1 + θ2, ζ,

2ζ
2+ p

−
2p(q− 1)
q(2+ p)

−
2pθ2

(2+ p)q

}
.(49)

Similarly, we choose

θmax = min
{

q
1+ 2q

,
2(ζ − p)
2− p

, ζ

}
to minimize the convergence rate.

Finally, we take m large enough to guarantee
δ − 4bmβ(am) ≥ δ

2 . Since β(am) ≤ β0(am)
−γ , we require

m ≥
(4β0
δ

) 1
(γ+1)(1−ζ )−1

, ζ ∈
(
0,

γ

γ + 1

)
,

thus

t = log
4

δ − 4bmβ(am)
≤ log

8
δ
.

This completes the proof of Theorem 7.

VII. CONCLUSIONS
In this paper, we derive the learning rates for the
algorithm (4) with lq-regularization for the non-identical and
dependent samples. To the best of our knowledge, there is no
general error analysis of the algorithm (4) that covers the case
1 ≤ q ≤ 2 under the conditions (8) and (10). We establish
some probability inequalities and use the block technique to
estimate the drift error and the sample error. Based on these
estimates, we obtain our final results. Comparing with [12],
we extend their error analysis to the non-i.i.d. case. In par-
ticular, for the i.i.d. case, that is, taking α = 0 in (9) and

18812 VOLUME 6, 2018



Q. Guo et al.: Convergence Rate for lq-Coefficient Regularized Regression

ζ = 1 in (45), we derive the following learning rate by the
same method

‖πM (fz,η)− fρ‖2ρX ≤ C̃t
(
1
m

) 2q
(2+p)q+2p(1+q)

.

Note that when p tends to 0, the exponent 2q
(2+p)q+2p(1+q) tends

to 1 which is the best one obtained so far.
Furthermore, Guo and Ye [11] derived the error bounds of

the algorithm (4) with q = 2 for the strongly and uniformly
mixing samples under the generalized moment hypothesis
below.
Definition 19: Generalized Moment Hypothesis. There

exist two constants M > 0 and p ≥ 2 such that∫
Z
|y|pdρ ≤ M . (50)

It may be interesting to extend our above analysis to the
case of the non-i.i.d. samples under the hypothesis (50).
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