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ABSTRACT We present a novel method of estimating the chest wall displacement in the frequency domain
from a narrow portion of the IR-UWB radar received spectrum. A Maximum Likelihood (ML) estimator of
the displacement is designed, and the associated bias and Cramér-Rao lower bound of the ML estimator
are analyzed. To improve estimation accuracy, empirical mode decomposition is applied to denoise the
ML-estimated displacement. Simulation studies are conducted to evaluate the performance of the proposed
method under realistic system parameter values. The computational complexity of the proposed method is
low and equal to that of the Discrete Fourier Transform.

INDEX TERMS Bias, Cramér-Rao lower bounds, denoising, displacement estimation, IR-UWB radar,
maximum likelihood estimator.

I. INTRODUCTION
Chest displacement has clinical significance in identifying
cardiopulmonary disorders. Chest displacement recorded
during sleep is a part of the polysomnogram (PSG), the gold
standard diagnostic tool in sleep medicine, and is valuable
in diagnosis of sleep disorders such as sleep apnea [1], [2].
During unobstructed respiration, a linear relationship
between tidal volume and chest wall displacement have been
shown in a number of studies [3]–[5]. In addition, the com-
plex intrathoracic motion of the heart also causes minute
displacement of the chest wall, which if measurable could
be useful in diagnosis of cardiac disorders.

Many methods have been proposed to reconstruct chest
wall displacement. The most common tool is inductance
plethysmography, in which an adhesive elastic band(s) is
applied on the chest wall or abdomen surface. While being
low cost and simple, there are several concerns about this
method. Its sensitivity is strongly dependent on the tight-
ness of the elastic band [6]. In addition, the band does not
provide absolute chest wall displacement directly, rather it
measures the relative change in the ribcage circumference [4].
Also, attaching sensors to the body can be restrictive, can
disrupt sleep, and can cause discomfort, distress, or pain espe-
cially for long-term monitoring. Furthermore, some patients,
such as burned patients or those with skin ulcers, cannot

accept skin attachments. Several other methods reconstruct
heartbeat-induced displacement during absence of breathing
based on capacitance variation [7] or electromagnetic field
interaction [8] between a sensing probe and the moving chest
surface, but are limited by skin attachment or low repro-
ducibility, unstableness, and low rate of obtaining recordings
of adequate quality for data analysis [9].

Problems associated with skin attachment can be avoided
with non-contact methods. Laser techniques have been pro-
posed for displacement sensing of generic target surface [10]
and chest wall in particular [4], [11]–[14]. However, laser
sensors do not offer through-clothes sensing, causing incon-
venience and unsuitability for continuous monitoring.

Continuous wave (CW) Doppler radar can penetrate
through clothes, and has been proposed for non-contact chest
wall displacement sensing in many studies [6], [15]–[19].
These methods typically perform DC offset calibration
to estimate the undesired DC offsets present in the two
quadrature baseband signal channels, followed by arctan-
gent demodulation [16] to obtain displacement information.
Wavelet filtering and ensemble empirical mode decomposi-
tion [20] have also been added to improve estimation accu-
racy [18]. Good agreement with gold standard method such
as overnight PSG recordings has been demonstrated [6].
However, these methods face several challenges. Existing DC
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offset calibration methods have been shown to be strongly
dependent on one or a combination of factors such as
displacement amplitude, displacement morphology, and
noise levels [6], [21], [22]. Examples include erroneous
or arbitrary DC offsets estimation result for small breathing
displacement amplitude or when the constellation diagram of
the in-phase and quadrature baseband channels is not close
enough to an arc shape [6]. In addition, phase imbalance and
amplitude imbalance between the two channels can cause
errors in the arctangent estimator of the displacement [15].

While many studies exist for applying Doppler radar on
non-contact chest wall displacement estimation, few exist
for IR-UWB radar. The major advantage of IR-UWB in
this application is IR-UWB’s benign co-existence proper-
ties. To qualify to be UWB, the signal must have a 10-dB
bandwidth that is at least 20% of the center frequency or at
least 500 MHz [23]. Because of its extremely low spec-
tral power density - orders of magnitude lower than mobile
communication signals - it makes negligible interference on
other wireless systems in its band (3 GHz-10 GHz) and their
interference has negligible effect on the UWB receiver [24].
The IR-UWB radar transmits a series of extremely narrow
(on the order of sub-nanosecond wide) pulses to the chest,
and the pulses reflect off the chest and arrive at the receive
antenna. The round trip propagation delay is directly related
to the distance between the chest and the radar system.
The novelty of this paper is a Denoised Maximum Likeli-
hood (DML) estimator of an arbitrary chest displacement
waveform from only a narrow portion of the IR-UWB radar
received spectrum. In-depth analysis of the bias and CRLB
will also be presented.

For IR-UWB radar, some existing methods perform direct
sampling of the backscattered RF waveforms, and then either
detect the waveform peaks [25], [26] or compute the cor-
relation with a reference waveform [27], [28] to obtain
the absolute or relative pulse delays, which are associated
with the chest displacement. However, these methods require
extremely high sampling rate (tens of GHz). Specialized
radar system designs have been proposed [29]–[33], where
cross correlation is obtained by hardware, transforming the
received RF pulses into a low-frequency equivalent which
can be digitized at a much lower sampling rate. Muragaki
and coworkers [34] perform chest displacement estimation
with UWB radar based on the direct phase demodulation
proposed for CW Doppler radar, however the residual phase
noise inherent in this method is not addressed. Sana and
coworkers [35] propose a respiratory movement estimation
scheme based on time-domain subsampling and sparse vector
estimation of the channel impulse response using a Bayesian
framework. However, the method assumes that the received
signals at each pulse interval in the observation window have
identical round-trip delays. In our proposed method, we do
not impose this assumption.

Unlike the related works mentioned above, which are time
domain approaches, an iterative time-delay estimation algo-
rithm based on the weighted Fourier transform has been

proposed in [36]. In this study, the received signal com-
prises copies of a known signal with different amplitudes
and delays. The delays are estimated from the received signal
spectrum using an iterative algorithm. Each step comprises
one or more one-dimensional search procedures that use
the Fast Fourier Transform (FFT) followed by a fine search
algorithm. The number of such search procedures grows
quadratically with the number of copies, or equivalently,
the number of time delays to be estimated. Another limitation
is possible convergence to local minima. In addition, since
this algorithm requires direct sampling of the backscattered
signal, extremely high sampling rate is needed if applied to
IR-UWB pulse delay estimation, as demonstrated in the work
itself as well as mentioned earlier for [25]–[28]. Potential
application of periodic breathing pattern estimation from the
IR-UWB complex spectral amplitudes has been suggested in
another study [37].

In this paper, we propose a novel low-complexity chest
displacement estimator in the frequency domain. A striking
feature that differs from existing methods is that only a
narrow portion of the UWB received spectrum is needed
to reconstruct the entire chest displacement waveform with
a computational complexity as low as that of the Discrete
Fourier Transform (DFT). The estimator is based on the
maximum likelihood principle, and the associated bias and
Cramér-Rao lower bound (CRLB) are analyzed. Theoreti-
cal limits for estimators developed with UWB radar signal
have been either derived or formulated. Zhang et al. [38]
analyzes CRLBs for pulse delay estimation for UWB syn-
chronization, but the pulses within an observation window are
assumed to have the same roundtrip delay. This assumption
is not valid for a moving reflecting interface, such as the
chest surface. Assuming the chest displaces according to a
periodic waveform, Gezici [39] formulated the CRLBs of
the waveform parameters. A Maximum Likelihood (ML)
estimator that requires an exhaustive search over a multi-
dimensional parameter space is formulated, and an effi-
cient sub-optimal solution based on matched filtering and
least squares fitting is proposed. However, both the CRLBs
and estimators are based on the assumption that the chest
displaces according to some known parametric, periodic,
analytical function. In reality, the chest displacement can
follow an unknown irregular pattern such as during obstructed
breathing, and is typically non-stationary even during nor-
mal breathing [40]. In addition, the ML estimator com-
plexity in [39] can be prohibitive for real-time applications
due to the exhaustive search. In contrast, our ML estimator
directly estimates an arbitrary chest displacement waveform
with conceptually and computationally simple closed-form
expressions.

In order to improve estimation accuracy, especially under
low SNR, a denoising method is applied to our ML estimates.
In this paper, Empirical Mode Decomposition (EMD) [41] is
chosen as the denoising technique, but other denoising tech-
niques such as Independent Component Analysis (ICA) [42]
can also be used.
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Since only a narrow portion of the UWB bandwidth is
needed, the proposed method offers significant sampling rate
reduction over the conventional digital correlation technique
via passband sampling [43]. Computational complexity of the
ML estimator is on the order of the DFT.When followed with
denoising, the complexity is on the order of the DFT or the
denoising method, whichever is larger. As shown in [44],
the complexity of EMD is the same with that of an FFT,
thus the Denoised ML estimator (ML estimator followed
by denoising, or DML) with EMD has complexity of the
DFT.1 Thus, our proposed method is practical for real-time
applications.

Although chest displacement estimation is the focused
application of this paper, the presented method could also be
applied in remote monitoring of displacement of other targets
such as civil structures. Structural displacement monitoring
applications have been suggested for CW Doppler radar [21]
and vision-based sensors [45].

The paper is organized as follows. Section II describes the
estimation methods. Section III presents the bias and CRLB
analysis. Section IV shows simulation results. Discussion and
conclusion are given in Sections V and VI, respectively.

II. METHODS
In this section, derivation of the proposed estimator will be
presented. The noiseless baseband IR-UWB radar received
signal can be expressed as

s(t) =
N−1∑
n=0

p0

(
t − nTr −

2D0

c
−1n

)
, (1)

where N is the number of pulses received, p0(t) is the trans-
mitted UWB pulse shape, Tr is the pulse repetition period,
D0 is the nominal distance between the radar and the chest,
c = 3 × 108 m/s is the pulse propagation speed, 1n is the
additional delay that the moving chest wall imposes on the
nth pulse.

Let p(t) = p0
(
t − 2D0

c

)
. Then (1) becomes

s(t) =
N−1∑
n=0

p(t − nTr −1n). (2)

The Continuous Time Fourier Transform of this is

S(f ) = P(f )
N−1∑
n=0

e−j2π f (nTr+1n)

= P(f )
N−1∑
n=0

e−j2π f1ne−j2π fnTr . (3)

Denote fr = 1/Tr as the pulse repetition frequency. Eval-
uating (3) in the neighborhood of the M th pulse repetition
frequency harmonic, f = Mfr + kfr/N , for k ∈ [0,N − 1],

1A procedure that performs several sequential tasks, each of which has
complexity ofO(K ), also has complexity ofO(K )

FIGURE 1. Samples P[k]’s of a UWB pulse being a 7th-order Gausisian
monocycle with bandwidth scaling factor of 0.3 ns [46].

and after some manipulation, we obtain

S
(
Mfr +

kfr
N

)
= P

(
Mfr +

kfr
N

)
×

N−1∑
n=0

e−j2π (Mfr+
kfr
N )1ne−j

2πkn
N . (4)

For the remaining of this paper, Mfr is regarded to be in
the GHz range, which is consistent with the UWB frequency
band. Criteria to determineM will be given in Section III-D.
In this case, kfrN < fr � Mfr , since fr is typically on the order
of kHz in practical IR-UWR radar systems. Consequently,
the kfr

N term in the first exponential term of (4) can be dropped.
Denote P[k] = P(Mfr +

kfr
N ) and x[n] = e−j2πMfr1n . A plot

of |P[k]| for fr = 5 kHz, M = 1, 063, 846 (so Mfr ≈
5.32 GHz), and N = 65, 536 is depicted in Fig. 1, showing
P[k] is nearly a constant as a function of k .
Thus, (4) becomes

S
(
Mfr +

kfr
N

)
≈ P[k]

N−1∑
n=0

x[n]e−j
2πkn
N = P[k]X [k], (5)

where X [k] is the N -point DFT of the discrete time sequence
x[n], n = 0, . . . ,N − 1.
Let zk be the received signal spectrum at the frequency

f = Mfr +
kfr
N , for k = 0, 1, . . . ,N − 1. Then,

zk = P[k]X [k]+ vk , (6)

where {vk} is an additive noise modeled as i.i.d. zero mean
complex Gaussian random variables with variance N0.

Denote Pk = P[k] and Xk = X [k]. Then (6) is rewritten as

zk = PkXk + vk . (7)

Denote

Yk = zk/Pk = Xk + vk/Pk . (8)

An example plot of Yk ’s is shown in Fig. 2. Fig. 2a depicts
the entire frequency range of kfr/N for k = 0, 1, . . . ,N − 1.
Here fr = 5 kHz, Mfr ≈ 5.32 GHz, so the range of
frequency is the narrow band from 5.32 to 5.325 GHz, with
SNR = 6 dB. It is observed that the majority of the spectrum
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FIGURE 2. Plots of (a) Yk ’s over the entire frequency band of fr = 5 kHz starting from Mfr ≈ 5.32 GHz, and the close-up version of the (b) first
and (c) last 25 Hz of the frequency band. SNR = 6 dB.

energy concentrates near the range edges. The spectrum cor-
responding to the first and last 25 Hz of the range is replotted
in Fig. 2b and 2c, respectively.

Taking the IDFT of Yk ((8)) yields

yn = IDFTN (Yk )

= xn + wn (9)

where wn = IDFT (vk/Pk ) ∼ CN (0, σ 2
w), with σ

2
w =

N0/(N |P0|2), since {vk/Pk} is a zero mean, white com-
plex Gaussian random process with variance N0/|Pk |2 ≈
N0/|P0|2.
Denote

θn = −2πMfr1n (10)

Then (9) becomes

yn = ejθn + wn (11)

The following vector notation will be used:

θ = [θ0, θ1, . . . , θN−1]T

y = [y0, y1, . . . , yN−1]T

w = [w0,w1, . . . ,wN−1]T

Based on (11),

y = exp(jθ )+ w.

where w ∼ CN (0, σ 2
wI).

The likelihood of θ corresponding to the measurement
vector y is

p(y|θ ) =
1

(πσ 2
w)N

exp
{
−

1
σ 2
w
||y− exp(jθ )||22

}
=

1
(πσ 2

w)N
exp

{
−

1
σ 2
w

N−1∑
n=0

∣∣∣yn − ejθn ∣∣∣2}
The log likelihood is

ln p(y|θ ) = −N ln(πσ 2
w)−

1
σ 2
w

N−1∑
n=0

∣∣∣yn − ejθn ∣∣∣2
After rather tedious manipulation, the partial derivatives of

the log likelihood are derived as

∂

∂θm
ln p(y|θ ) =

2
σ 2
w
rm sin(φm − θm),

where ym = rmejφm ,m = 0, 1, . . . ,N − 1.
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Therefore, the ML estimate of the phase vector θ is

θ̂ = φ

where φ = [φ0, φ1, . . . , φN−1]T

Let 1 = [10,11, . . . ,1N−1]T be the pulse delay vector.
Its ML estimate is

1̂ = −
1

2πMfr
φ

Let dn = c1n/2 be the chest displacement corresponding
to the nth pulse, and d = [d0, d1, . . . , dN−1]T . The ML
displacement estimate is

d̂ = −
c

4πMfr
φ

Although the sequence of ML displacement estimates fol-
lows the waveform of the chest displacement, as will be
shown in Section IV, it is noisy. In order to reduce noise from
the estimates, a denoising method is applied. Examples of
denoising methods include EMD [41] and ICA [42]. In this
paper, EMD is selected as the denoising method. The ML
estimator followed by denoising will be referred to as the
denoised ML estimator, or DML estimator.

III. BIAS AND CRAMÉR-RAO LOWER BOUND
OF THE MAXIMUM-LIKELIHOOD CHEST
DISPLACEMENT ESTIMATOR
In this section, bias and CRLB are analyzed, and the criteria
for selecting the frequency portion of the received spectrum
used for estimation are specified.

A. FISHER INFORMATION MATRIX (FIM)
The mnth element of the FIM is Fmn = E

[
−
∂2 ln p(y|θ )
∂θm∂θn

]
and

can be derived or found directly in [47]

Fml =
2
σ 2
w

N−1∑
n=0

∂µn

∂θm

∂µn

∂θl
+
∂νn

∂θm

∂νn

∂θl

where µn = cos(θn) and νn = sin(θn). It can be easily shown
that

F =
2
σ 2
w
I. (12)

B. BIAS
E[θ̂ ] = E [φ] = [E [φ0] ,E [φ1] , . . . ,E [φN−1]]T (13)

E[θ̂n] =
∫ π

−π

φnp(φn|θ )dφn =
∫ π

−π

φnp(φn|θn)dφn (14)

where the conditional density is obtained based on the general
result in [48]

p(φn|θn) =
1
2π

e
−

1
σ2w

[
1−
√
παneα

2
nerfc(αn)

]
,

where αn = −
√

1
σ 2w

cos(φn − θn) and erfc(.) is the comple-

mentary error function defined as erfc(u) = 2
√
π

∫
∞

u e−t
2
dt .

Fig. 3 plots p(φn|θn) for various values of θn for σ 2
w = 10.

Fig. 4 plots p(φn|θn) for θn = −0.4π and various values
of σ 2

w.

FIGURE 3. Plots of p(φn|θn) for various values of θn and σ2
w = 10.

FIGURE 4. Plots of p(φn|θn) for θn = −0.4π and various values
of σ2

w .

The bias of the estimator θ̂n is defined as

b(θn) = E(θ̂n)− θn

and is depicted in Fig. 5. It is observed that θ̂n is a biased
estimator. The bias increases quickly near the edges and
reaches extreme values at ±π . The bias approaches zero
when σ 2

w → 0 and approaches the line b(θn) = −θn as
σ 2
w →∞.
The vector of the bias of all parameters in θ is defined as

b(θ ) = [b(θ0), b(θ1), . . . , b(θN−1)]T

C. CRAMÉR-RAO LOWER BOUND
Let ε = θ̂ − θ . Since θ̂ is a biased estimator, the CRLB on
the mean squared error matrix is expressed as [49]

E[εεT ] ≥ b(θ )bT (θ )+ (I+ Oθb)F−1(I+ Oθb)T (15)

where Oθb is the gradient matrix with elements of the form

[Oθb]mn =
∂bm
∂θn

.
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FIGURE 5. Bias of θ̂n.

FIGURE 6. CRLB of the root mean squared estimation error of θn. Note
that the presented CRLB is associated with the ML estimator θ̂n. Only in
the case of unbiased estimators is the CRLB independent of the
estimator used [49].

A matrix is lower-bounded by a second matrix if the differ-
ence between the two is a positive semidefinite matrix.

It follows that the mean squared errors of θ̂n’s are bounded
by the diagonal elements of the right-hand side of (15)

E[(θ̂n − θn)2] ≥ b2(θn)+ [(I+ Oθb)F−1(I+ Oθb)T ]nn

Fig. 6 shows the CRLB of the root mean squared error
of θ̂n.

Then the MSE of the chest displacement estimator is
related to that of the phase estimator by

E[(d̂− d)(d̂− d)T ] =
(

c
4πMfr

)2

E[εεT ], (16)

where c is the propagation speed of a pulse.
It follows that the CRLB of the dn estimate is

E[(d̂n − dn)2] ≥
(

c
4πMfr

)2

×

{
b2(θn)+ [(I+ Oθb)F−1(I+Oθb)T ]nn

}
.

(17)

The CRLB is a function of the parameters to be estimated.
Estimate of each displacement sample has a lower bound as
shown in (17). The mean squared error defined for the entire
sequence of N displacement samples is expressed as

E

[
1
N

N−1∑
n=0

(d̂n − dn)2
]
≥

1
N

N−1∑
n=0

Bn, (18)

where Bn is the right-hand side of (17), i.e., the CRLB of the
estimate of dn.
The sequence MSE is lower-bounded by the average of the

individual CRLBs. The RMSE and its CRLB is defined by
taking the square root of the left-hand side and right-hand side
of (18), respectively.

D. SELECTION OF M
As seen in (17), the CRLB of the displacement pattern is
inversely proportional to the square of Mfr , so Mfr should
be large. However, it is also proportional to the CRLB of θn.
Based on Fig. 6, the CRLB of θn is low for small |θn|,
notably for |θn| ≤ π/2. Thus,Mfr should therefore be upper-
bounded, based on (10). In addition, |P(Mfr )| should be large
since it is desired that σ 2

w, which controls how much φn
deviates from θn, is small.

In summary, the cluster indexM is selected a-priori to have
the following properties

1) Mfr is large
2) Mfr ≤ γ c/(4 D), where 0 < γ < 1 and D is the

maximum human chest displacement magnitude. It can
be easily shown that |θn| ≤

4πMfrD
c . When Mfr ≤

γ c/(4 D), |θn| ≤ γπ .
3) |P(Mfr )| is large.

Based on these criteria, the integer M is selected as

M = arg max
M≤γ c/(4frD)

Mfr |P(Mfr )|, (19)

which avoids the worst-case bias, maximizes SNR, and
reduces the CRLB. In this paper, we make heuristic choice
of γ = 1/2 and D = 7mm.

IV. SIMULATION RESULTS
Simulations are conducted to evaluate the estimation per-
formance of the proposed method. A record of real chest
respiratory signal obtained by inductance plethysmography
available on PhysioNet [50]. Since the record is in unit of
Voltage, we linearly scale it to simulate the absolute chest dis-
placement which serves as reference. The transmitted UWB
pulse is a 7th-order monocycle with bandwidth scaling factor
of 0.3 ns [46]. The pulse repetition frequency, fr , is set to
5 kHz. The nominal distance between the radar and the sub-
ject is assumed to be 0.5m. M is selected according to (19),
resulting in M = 1, 063, 846 and Mfr ≈ 5.32 GHz.

Fig. 7 shows the reference chest displacement waveform
and its estimate using the ML estimator (Fig. 7a) and DML
estimator (Fig. 7b) at SNR = 6 dB. The latter follows the
reference displacement waveform accurately. The RMSE is
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FIGURE 7. Displacement estimates with SNR = 6 dB. (a) Maximum
likelihood displacement estimates. (b) Displacement estimates after
denoising with EMD.

1.77 mm and 0.22 mm for the ML and DML estimates,
respectively. Note that the entire displacement waveform
containing N = 131, 072 displacement samples has been
estimated at complexity of the N-point DFT.

The estimated chest displacement waveform for
SNR = 0 dB is depicted in Fig. 8. Wrapping is observed
in the ML waveform. This is explained as follows. The ML
displacement estimates are estimated from the phase. In large
noise, the phase can be wrapped (see Eq (11)), causing wrap-
ping in the displacement estimate. AlthoughM is selected so
that θn is far away from π or −π as in Section III-D, when
the noise is large, φn can deviate away from the truth (θn) so
much that it wraps. The RMSE is 4.04 mm and 0.55 mm for
the ML and DML estimates, respectively.

The performance of the ML and DML estimators for chest
displacement due to heart-beating in the absence of breathing
is displayed in Fig. 9a and 9b, respectively. This refer-
ence displacement is simulated based on the experimental

FIGURE 8. Displacement estimates with SNR = 0 dB. (a) Maximum
likelihood displacement estimates. (b) Displacement estimates after
denoising with EMD.

measurements over the apex reported in [7]. In order to
simulate the gradual changing of cardiac activity, we read
the 10 values from the mean displacement curve at 10 phases
along the R-R interval of ECG. In each cardiac cycle, zero-
mean Gaussian noise samples are added to these values, and
linear interpolation is performed to obtain the displacement
samples corresponding to every pulse repetition period. Heart
rate variability [51] is also modeled by varying the heart beat
period according to a Gaussian random process of mean 0.8 s
and standard deviation 0.1 s. As expected, accurate estimation
of heartbeat-induced chest displacement needs a much higher
SNR due to the much smaller displacement amplitude of the
heart-beating compared to that of breathing. The heart beats
are discernible in the DML sequence, which is overlaid with
the reference displacement in Fig. 9b.

Fig. 10 plots the RMSE of theML estimator and the CRLB
(the square roots of two sides of (18)), and the RMSE of
the DML estimator. A sequence of N = 65, 536 samples
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FIGURE 9. Estimates of heartbeating-induced chest displacement during
absence of breathing at SNR = 36dB. The mean cardiac cycle is 0.8 s.
(a) Maximum likelihood displacement estimates (b) Displacement
estimates after denoising with EMD.

FIGURE 10. RMSE of the ML estimator and its associated CRLB, and RMSE
of the DML estimator.

equally spaced over the range [−7, 7] mm is used as the
chest displacement sequence. This value of N corresponds

FIGURE 11. CRLB of the ML estimator of a displacement sample.

to an observation window of N/fr ≈ 13s. The MSE values
are averaged over 1000 random noise trials for each SNR
value, before being taken square root of. As shown in Fig. 10,
the ML estimator approaches the CRLB as SNR increases,
and almost achieves the CRLB at SNR = 12 dB. It is also
shown that denoising improves estimation accuracy for SNR
greater than −3dB. For SNR = −3dB, the DML estimator
produces the same estimates with those of the ML estimator,
hence the same RMSE value on the plot. The RMSE curve
of the DML estimator starts off higher than the CRLB, but
strikingly gets below the CRLB at SNR > 2 dB. This out-
performance over the CRLB is justified, since the CRLB is
associated with the ML estimator, not the DML estimator.

The CRLB of the ML estimator for an individual dis-
placement sample is given in Fig. 11. As expected, the dis-
placement CRLB resembles the phase CRLB in Fig. 6, with
extreme values near the edges. In the practical range of the
human chest displacement of 0 to 7 mm in absolute value,
the bound becomes smaller as the displacement magnitude
gets larger, although this relationship becomes less dramatic
as the SNR increases.

V. DISCUSSION
In the proposed ML and DML methods, the required cap-
tured bandwidth is as small as fr , whose practical values are
in the order of kHz, thus there is no need to capture the
whole bandwidth of the UWB pulse, which is in the order
of GHz. Benefits include significant reduction of sampling
rate by several orders of magnitude and of in-band noise. Care
must be taken in the hardware implementation to obtain the
spectrum portion needed for these methods. One approach is
to perform baseband down conversion followed by lowpass
filtering, but this approach faces analog issues such as I/Q
crosstalk. Another implementation is bandpass filtering fol-
lowed by passband sampling. Although careful calculation
must be taken to derive practical design choices, this approach
can avoid most of the analog issues of the down conversion
approach.
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VI. CONCLUSION
In this paper, a novel method, DML, that estimates an arbi-
trary chest displacement waveform from a narrow portion
of the IR-UWB received spectrum has been proposed. The
method is based on the maximum likelihood (ML) principle
followed by denoising. In-depth analysis of bias and CRLB
of the ML estimator is also given.

Numerical simulations are performed to evaluate the accu-
racy of the ML and DML approaches. Realistic simulated
chest displacements due to breathing and due to heart beating
in the absence of respiration are shown to be accurately recon-
structed by the proposed DML method. The ML estimator is
observed to approach the CRLB as SNR increases. Strikingly,
the DML estimator is shown to outperform this bound for
sufficient SNR.

The proposed approach offers several advantages over
existing works. Since it uses only a narrow portion of the
UWB spectrum, whose bandwidth is on the order of GHz,
significant sampling rate reduction can be achieved via pass-
band sampling. In addition, the computational complexity of
the proposed method is equal to that of the DFT or that of
the denoising method, whichever is larger. When Empirical
Mode Decomposition is used for denoising, the complexity
is that of the DFT.

A topic of future work is to combine multiple spectral
clusters to improve estimation accuracy.
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