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ABSTRACT Data-driven approaches, when tasked with situation awareness, are suitable for complex grids
withmassive datasets. It is a challenge, however, to efficiently turn these massive datasets into useful big data
analytics. To address such a challenge, this paper, based on random matrix theory, proposes a data-driven
approach. The approach models massive datasets as large random matrices; it is model-free and requires no
knowledge about physical model parameters. In particular, the large data dimension N and the large time
span T , from the spatial aspect and the temporal aspect, respectively, lead to favorable results. The beautiful
thing lies in that these linear eigenvalue statistics (LESs) are built from data matrices to follow Gaussian
distributions for very general conditions, due to the latest breakthroughs in probability on the central limit
theorems of those LESs. Numerous case studies, with both simulated data and field data, are given to validate
the proposed new algorithms.

INDEX TERMS Big data analytics, linear eigenvalue statistics, random matrix theory, situation awareness,
statistical indicator.

I. INTRODUCTION
Situation awareness (SA) is of great significance for power
system operation, and a reconsideration of SA is essential for
future grids [1]. These future grids are always huge in size
and complex in topology. Operating under a novel regulation,
their management mode is much different [2]. Data are more
andmore easily accessible, on the other hand, and data-driven
approaches become natural for future grids. Towards this
vision, following problems need to be solved urgently:
• There are massive data in power grids. The so-called
curse of dimensionality [3] occurs inevitably.

• The resource cost (time, hardware, human, etc.) for
extracting big data analytics should be tolerable.

• For a massive data source, there often exist realistic
‘‘bad’’ data, e.g. the incomplete, the inaccurate, the asyn-
chronous, and the unavailable. For system operations,
decisions such as relay actions, should be highly reliable.

This paper is built upon our previous work in the last
several years. See Section I-B for details. Motivated for data
mining, our line of research is based on the high-dimensional

statistics. By high-dimensionality, the datasets are repre-
sented in terms of large randommatrices. These data matrices
can be viewed as data points in high-dimensional vector
space—each vector is very long.

Data-driven approaches and data utilization for smart grids
are current stressing topics, as evidenced in the special issue
of ‘‘Big Data Analytics for Grid Modernization’’ [1]. This
special issue is most relevant to this paper in spirit. Several
SA topics are discussed. We highlight the anomaly detection
and classification [4], [5], the estimation of active ingredients
such as PV installations [6], [7], and the online transient
stability evaluation using real-time data [8].

In addition, some researches are concerned with the
improvement in wide-area monitoring, protection and con-
trol (WAMPAC) and the utilization of PMU data [9]–[11],
together with the fault detection and location [12], [13].
Xie et al. [14] based on principal component analysis (PCA),
propose an online application for early event detection
by introducing a reduced dimensionality. Lim et al. [15]
based on singular value decomposition (SVD), study the
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quasi-steady-state operational problem relevant to the voltage
instability phenomenon. Their work has a special connection
to this paper.

A. CONTRIBUTIONS OF THIS PAPER
Randomness is critical to future grids since rapid fluctuations
in voltages and currents are ubiquitous. Often, these fluctua-
tions exhibit Gaussian statistical properties [15]. The central
interest in this paper is to model these rapid fluctuations using
the framework of random matrix theory (RMT). This new
algorithms are made possible due to the latest breakthroughs
in probability on the central limit theorems of the linear
eigenvalue statistics (LESs) [16, Ch. 7]. See [17] for a recent
review.

1) Starting from fundamental formulas of power systems,
a theoretical justification is given for the validity of
modeling complex grids as large randommatrices. This
data modeling framework ties together the RMT and
the power system analysis. This part is basic in nature.

2) This paper studies numerous basic problems includ-
ing the technical route and applied framework, data-
processing and relevant procedures, evaluation system
and indicator sets, and the advantages over classical
methodologies.

3) This paper makes a comparison between RMT-based
approach and PCA-based one.

4) On the basis of big data analytics, this paper studies
some power system applications: anomaly detection
and location, empirical spectral density test, sensitivity
analysis, statistical indicator system and its visualiza-
tion, and, finally, robustness against asynchronous data.

B. RELATIONSHIP TO OUR PREVIOUS WORK
Thework [2] is the first attempt to introduce themathematical
tool of RMT into power systems. Later, numerous papers
demonstrate the power of this tool. Ring Law andMarchenko-
Pastur (M-P) Law are regarded as the statistical foundation,
and Mean Spectral Radius (MSR) is proposed as the high-
dimensional indicator. Then we move forward to the second
stage—paper [18] studies the correlation analysis under the
above framework. The concatenated matrix Ai is the object
of interest. It consists of the basic matrix B and a factor
matrix Ci, i.e., Ai = [B;Ci]. In order to seek the sensitive
factors, we compute the advanced indicators that are based
on the LESs of these concatenated matrices Ai. This study
contributes to fault detection and location, line-loss reduction,
and power-stealing prevention. Based on the same theoretical
foundation, analysis for power transmission equipment is
also conducted [19]. Paper [20] is the third step in which
the LES set is studied. Based on the LES set, a statistical
and data-driven indicator system, rather than its deterministic
and model-based counterpart, is built to describe the system
from a high-dimensional perspective. The robustness against
spatial data error, precisely, data losses in the core area,
is emphasized.

C. ADVANTAGES OF RMT-BASED APPROACH
The data-driven approach conducts analysis requiring no
prior knowledge of the system topology, the unit opera-
tion/control mechanism, the causal relationship, etc. Compar-
ing with classical data-driven methodologies such as PCA-
based method, the RMT-based counterpart has some unique
advantages:

1) The massive dataset of power systems are in a
high-dimensional vector space; the temporal variations
(T sampling instants) are simultaneously observed together
with spatial variations (N grid nodes). The extraction of
information from the above temporal-spatial variations is a
challenge that does not meet the prerequisites of most classi-
cal statistical algorithms. Unifying time and space through
their ratio c = T/N , RMT deal with such kind of data
mathematically rigorously.

2) The statistical indicator is generated from all the data in
the form of matrix entries. This is not true to principal compo-
nents; the rank of the covariancematrix is unknown. The large
size of the data enhances the robustness of the final decision
against the bad data (inaccuracy, losses, or asynchronization),
as well as those inevitable challenges in classical data-driven
methods, such as error accumulations and spurious correla-
tions [18].

3) For the statistical indicator, a theoretical or empirical
value is obtained in advance. The statistical indicator such
as LES follows a Gaussian distribution, and its variance is
bounded [21] and decays very fast in the order of O(N−2) for
a given data dimension N , say N = 118.
4) The proposed approach can flexibly handle

heterogenous data to realize data fusion via matrix oper-
ations, such as the blocking [2], the sum [22], the prod-
uct [22], and the concatenation [18] of the matrices.
Data fusion is guided by the latest mathematical research
[16, Ch. 7].

5) Only eigenvalues are used for further analyses, while
the eigenvectors are omitted. This leads to a much faster
data-processing speed and less required memory space.
Although some information is lost, there is still rich infor-
mation contained in the eigenvalues [23], especially those
outliers [24], [25].

6) Particularly, for a certain RMM, various forms of LES,
in the form of τF =

∑N
i=1 ϕF

(
λM,i

)
, can be constructed by

designing test functions ϕF (·) without introducing any sys-
tem error. Each LES, similar to a filter, provides a unique
view-angle. As a result, the system is understood piece by
piece. Besides, some specific signal can be detected and
tracked using LES technologies.

Section II gives the mathematical background and theo-
retical foundation. Spectrum test is introduced as a novel
tool. Section III studies the details about the RMT-based
method. Section IV and Section V, using the simulated data
and field data respectively, study the function designing
based on the proposed method. Section VI concludes this
paper.
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II. MATHEMATICAL BACKGROUND AND
THEORETICAL FOUNDATION
A. RANDOM MATRIX MODELING
Operating in a balance situation, power grids obey{

1Pi = Pis − Pi (V, θ)
1Qi = Qis − Qi (V, θ) ,

(1)

where Pis and Qis are the power injections of node i, and
Pi (V, θ) and Qi (V, θ) are the power injections of the net-
work, satisfying

Pi = Vi
n∑
j=1

Vj
(
Gij cos θij + Bij sin θij

)
Qi = Vi

n∑
j=1

Vj
(
Gij sin θij − Bij cos θij

)
.

(2)

Combining (1) and (2), we obtain

w0 = f (x0, y0), (3)

where w0 is the vector of nodes’ power injections depending
on Pis, Qis, x0 is the system status variables depending on Vi,
θi, and y0 is the network topology parameters depending on
Bij, Gij.
Then, the system fluctuations, thus randomness in datasets,

are formulated as

w0 +1w = f (x0 +1x, y0 +1y). (4)

With a Taylor expansion, (4) is rewitten as

w0+1w = f (x0, y0)+ f ′x (x0, y0)1x+ f ′y (x0, y0)1y

+
1
2
f ′′xx (x0, y0) (1x)2 +

1
2
f ′′yy (x0, y0) (1y)2

+ f ′′xy (x0, y0)1x1y+ · · · . (5)

The value of system status variables x are relatively sta-
ble, which means that the second-order term (1x)2 and
higher-order terms are ignorable. Besides, (2) shows that
f ′′yy (x, y) = 0. As a result, (5) is turned into

1w = f ′x (x0, y0)1x+ f ′y (x0, y0)1y

+ f ′′xy (x0, y0)1x1y. (6)

Suppose the network topology is unchanged, i.e.,1y = 0.
From (6), it is deduced that

1x =
(
f ′x (x0, y0)

)−1
(1w) = S01w. (7)

On the other hand, suppose the power demands is
unchanged, i.e., 1w = 0. From (6), it is deduced that

1x = S01wy, (8)

where wy = [I+ f ′′xy (x0, y0)1ys0]−1[f ′y (x0, y0)].
Note that S0 =

(
f ′x (x0, y0)

)−1, i.e., the inversion of the
Jacobian matrix J0.
Thus, the power system operation is modeled in the form of

random matrices. If there exists an unexpected active power

change or short circuit, the corresponding change of system
status variables x0, i.e. Vi, θi, will obey (7) or (8) respectively.
For a practical system without dramatic changes, rich sta-

tistical empirical evidence indicates that the Jacobianmatrix J
keeps nearly constant, so does s0. Considering T random
vectors observed at time instants i = 1, · · · ,T , the relation-
ship is built in the form of 1Xs = S01W with a similar
procedure as (3) to (8), where 1Xs denotes the variation
of state [1x1, · · · ,1xT ] , and 1W denotes the variation of
power injections or topology parameters accordingly.

Taking the case in [20] as an example, for an equilibrium
operation system (the topology is unchanged, the reactive
power is almost constant or changes much more slowly
than the active one), the relationship model between volt-
age magnitude and active power is just like the Mul-
tiple Input Multiple Output (MIMO) model in wireless
communication [16], [22]. We writeV = 4P. Note that most
variables of vectorV are random due to the ubiquitous noises,
e.g., small random fluctuations in P. Furthermore, with the
normalization, the standard random matrix model (RMM) is
built in the form of Ṽ = 4̃R, where R is a standard Gaussian
random matrix.

B. ANOMALY DETECTION BASED ON ASYMPTOTIC
EMPIRICAL SPECTRAL DISTRIBUTION
Often, these rapid fluctuations exhibit Gaussian statistical
properties [15], as pointed out above. In practice, Gaus-
sian unitary ensemble (GUE) and Laguerre unitary ensemble
(LUE) are used in the proposed models:

A =


1
2

(
X+ XH

)
, X ∈ XN×N , GUE;

1
N
XXH , X ∈ XN×T , LUE.,

(9)

where X is the standard Gaussian random matrix whose
entries are independent identically distributed (i.i.d.) complex
Gaussian random variables.

Let fA (x) be the empirical density of A, and define its
empirical spectral distribution (ESD) FA (x):

FA (x) =
1
N

N∑
i=1

I{λi≤x}, (10)

where A is GUE or LUE matrix, and I (·) represents the event
indicator function. We investigate the rate of convergence
of the expected ESD E {FA (x)} to the Wigner’s Semicircle
Law or Wishart’s M-P Law.

Let gA (x) and GA (x) denote the true eigenvalue density
and the true spectral distribution of A, and the Wigner’s
Semicircle Law and Wishart’s M-P Law say:

gA (x) =


1
2π

√
4− x2, x ∈ [−2, 2] , GUE;

1
2πcx

√
(x − a) (b− x), x ∈ [a, b] , LUE; ,

(11)
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where a =
(
1−
√
c
)2
, b =

(
1+
√
c
)2.

GA (x) =
∫ x

−∞

gA (u) du. (12)

Then, we denote the Kolmogorov distance between
E {FA (x)} and GA (x) as 1:

1 = sup
x
|E {FA (x)} − GA (x)| . (13)

Gotze and Tikhomirov [26], in their work, prove an optimal
bound for 1 of order O

(
N−1

)
.

Lemma 2.1: There exists a positive constant C such that,
for any N ≥ 1,

1 ≤ CN−1. (14)

They also prove that the convergence of the density of stan-
dard Semicircle Law and M-P Law to the expected spectral
density fA(x) satisfies following lemmas.
Lemma 2.2: For GUE matrix, there exists a posi-

tive constant ε and C such that, for any x ∈[
−2+ N−

1
3 ε, 2− N−

1
3 ε
]
,

|fA (x)− g (x)| ≤
C

N
(
4− x2

) . (15)

Lemma 2.3: For LUE matrix, let β = N/T , there exists
some positive constant β1 and β2 such that 0 < β1 ≤ β ≤

β2 < 1, for all N ≥ 1. Then there exists a positive constant
C and ε depending on β1 and β2 and for any N ≥ 1 and
x ∈

[
a+ N−

2
3 ε, b− N−

2
3 ε
]
,

|fA (x)− h (x)| ≤
C

N (x − a) (b− x)
. (16)

Lemma 2.2 and 2.3 also describe how fast the popula-
tion distribution functions converge to the asymptotic ESD
limit. This ESD-based test is interesting for anomaly detec-
tion about a complex grid; the effectiveness is validated in
Section IV. We exploit the mathematical knowledge that the
ESD converges to its limit with a optimal convergence rate
of N−1.

III. THE METHOD OF SITUATION AWARENESS
A. TECHNICAL ROUTE AND PRACTICAL PROCEDURES
The proposed RMT-based method consists of three proce-
dures as illustrated in Fig. 1: 1) big data model—to model
the system using experimental data for the RMM; 2) big data
analysis—to conduct big data anlytics for the indicator sys-
tem; 3) engineering interpretation—to visualize and interpret
the statistical results to operators for decision-making.

This method is universal. Numerous successful attempts
have already be made in the field of anomaly detection and
diagnosis for both the grid network [2], [18] and the trans-
mission equipment [19]. In addition, [27] and [28] based on
RMT, study the steady stability and transient stability.

FIGURE 1. RMT-based Method for SA.

FIGURE 2. Science paradigms [30].

B. PARADIGMS AND METHOD
Fig. 2 in [29] is referred as a clue. It is the age of
4th-paradigm—data-intensive scientific discovery. Besides,
the summaries for the classical decision-making approaches
and for the proposed ones, obtained initially in [2], are
improved as Fig. 3.
The second and third paradigms are typically model-

based—they use equations, formulas, and simulations to
describe the system. The blue line in Fig. 3 depicts the general
procedure and corresponding tools. These tools cannot deal
with massive data due to the essence of mechanismmodels—
the models are in low dimensions, leading to deterministic
results which are fully dependent upon only a few param-
eters.1 It may cause inefficient or even incorrect big data
analytics. For instance, only under ideal conditions, is the
wind power proportional to the cube of wind speed. More-
over, some physical parameters, e.g., admittance matrixes,
will introduce system error due to the ubiquitous randomness
and uncertainty.

Under classical statistical framework, only two typical data
matrices in the form ofX ∈ RN×T are at our disposal: 1)N ,T
are small, and 2)N is small, T is very large (compare withN ).
This prerequisite greatly restricts the utilization of the

1E.g., y = ax2+bx+c is a 3-dimensional model; the relationship between
x and y fully depends on a, b, and c.
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FIGURE 3. Data utilization method for power systems. The above, middle, and below parts indicate the data processing procedures and the
work modes for G1, G2, and G3, respectively.

massive data; we should enable more data to speak for
themselves [31]. In other words, model-based framework is
not able to turn massive data into useful big data analyt-
ics. Although these massive data can contribute to model
improvement and parameters correction, we can hardly con-
duct analysis more precisely with extremely large data vol-
umes. Even worse, more data mean more errors; if those
bad data are taken into the fixed model, poor results are
obtained almost surely. Besides, the bias, caused by chal-
lenges such as error accumulations and spurious correlations,
will not be alleviated via a low-dimensional procedure [18]—
the dimensions of the procedure are limited by the dimensions
of the model. The belief that data-driven mode is adapted to
the future grid’s analysis agrees with the core viewpoint of
the 4th-paradigm. The classical data utilization methodology
needs be revisited.

C. CLASSICAL DIMENSIONALITY REDUCTION
ALGORITHM—PCA
Data-driven methodology is an alternative; it is model-free
and able to process massive data in a holistic way. Princi-
pal component analysis (PCA) is one of the classical data
processing algorithms which are sensitive to relative scaling
original variables. It uses an orthogonal transformation to

convert a set of possibly correlated raw variables into a set of
linearly uncorrelated variables called principal components.
The number of principal components is often much less than
the number of original variables. In [14], PCA is used for
dimensionality reduction from 14 PMU datasets to extract
the event indicators. For PCA, the procedure consists of
three parts: 1) Singular Value Decomposition (SVD) [15],
2) Projection, and 3) Indicators.

This procedure is applied to conduct early event detection;
details can be found in [14]. The comparison between the
PCA-based approach and the RMT-based approach, and the
advantages of the later are summarized in I-C.

D. DATA-DRIVEN APPROACH BASED ON RANDOM
MATRIX THEORY
The framework of RMT-based approach starts with the use
of sample covariance matrix to replace the true covariance
matrix. It is well known that this replacement is far from
optimal. The almost optimal estimation of large covariance
matrices using tools fromRMT [32] can be used, instead. The
procedure based on RMT is outlined below.

1) RING LAW AND MSR
Ring Law Analysis conducts SA as follows:
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Steps of Ring Law Analysis
1) Select arbitrary raw data (or all available data) as data
source �.
2) At a certain time ti, form X̂ as random matrix.
3) Obtain Z̃ by matrix transformations
(X̂→ X̃→ Xu→ Z→ Z̃ [2]).
4) Calculate eigenvalues λZ̃ and plot the Ring on the com-
plex plane.
5) Conduct high-dimensional analysis.
5a) Observe the experimental ring and compare it with

the reference.
5b) Calculate τMSR =

∑N
i=1

∣∣λZ,i∣∣/N as the statistical
indicators.
5c) Compare τMSR with the theoretical value E(τMSR ).

6) Repeat 2)-5) at the next time point (ti = ti + 1).
7) Visualize τ on the time series, i.e. draw τ–t curve.
8) Make engineering explanations.

In Steps 2–7, with a high-dimensional procedure, one con-
ducts SA without any prior knowledge, assumption, or sim-
plification. In step 2, arbitrary raw data, even those from
distributed nodes or intermittent time periods, are at our
disposal. The size of X̂ is controllable, and as a result the
dimensionality curse is relieved in some ways.

2) M-P LAW AND LES
For the M-P Law Analysis, the steps are very similar, except
for the following differences:

Partial Steps of M-P Law Analysis

3] ObtainM by matrix transformations (M = 1
N X̃X̃

H
).

4] Calculate eigenvalues λM.
5b] Calculate τ =

∑N
i=1 ϕ

(
λM,i

)
as the statistical indi-

cators.
5c] Compare τ with the theoretical value E(τ ).

Notice that Ring Law maps the information from datasets
to the complex plane (CN×T

7→ C), while M-P law does this
to the right half real-axis (CN×T

7→ R+). This fundamental
difference plays a critical role in data visualization.

IV. CASE STUDIES USING SIMULATED DATA
A. BACKGROUND AND ASSUMPTION OF THE CASE
A standard IEEE 118-node system is adopted as Fig. 16,
shown in Appendix A, and the events are assumed as Table 2,
shown in Appendix B. Thus, the power demand on each
node is obtained as the system injections (Fig. 4a), while
the voltage is accessible as the operation status (Fig. 4b).
Suppose that the power demand data is unknown or unqual-
ified for SA due to the low sampling frequency or the bad
quality. For further analysis, we just start with data source
�V : v̂i,j ∈ R118×2500 and assign the analysis matrix as
X ∈ R118×240 (4 minutes’ time span). Firstly, category is con-
ducted for the system operation status; the results are given

FIGURE 4. Background of Case 1. (a) Assumed event, unavailable. (b) Raw
voltage, �V for analysis. (c) Category for operation status.

in Fig. 4c. In general, according to the data feature (events
on time-series) and the matrix length (time span, i.e., T ),
the operation status of the system is divided into 8 stages.
Note that S4, S5, and S6 are transition stages, and their time
span is right equal to the analysis matrix length minus one,
i.e, T − 1 = 239. These stages are described as follows:
• For S0, S1, S2, white noises play a dominant part.
PNode-52 is rising in turn.

• For S3, PNode-52 keeps a sustained and stable growth.
• S4, transition stage. Ramping signal exists.
• S5,S6, transition stages. Step signal exists.
• For S7, voltage collapse.
Two typical data sections, at stage S0 and S6 respectively,

are selected: X0 ∈ R118×240, covering period t = [61 : 300]
and at sampling time tend = 300, and 2) X6 ∈ R118×240,
covering period t = [662 : 901] and at sampling time
tend = 901.

B. ANOMALY DETECTION
1) BASED ON RING LAW AND M-P LAW
According [2], RMM Ṽ is build from the raw voltage
data. Then, τMSR is employed as a statistical indicator to
conduct anomaly detection. For the selected data section
X0 andX6, their M-P Law and Ring Law Analysis are shown
as Fig. 5a, 5b, 5c and 5d. With sliding-window, the τMSR-t
curve is obtained as Fig. 5e.

Fig. 5 shows that when there is no signal in the sys-
tem, the experimental RMM well matches Ring Law and
M-P Law, and the experimental value of LES is approx-
imately equal to the theoretical value. This validates the
theoretical justification for modeling rapid fluctuation of
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FIGURE 5. Anomaly detection results. (a) Ring Law for X0. (b) M-P Law
for X0. (c) Ring Law for X6. (d) M-P Law for X6. (e) τMSR-t curve using
MSW method on time series.

FIGURE 6. Illustration of various LES indicators.

each node using white Gaussian noises, as the description
in Section II-A. On the other hand, Ring Law and M-P Law
are violated at the very beginning (tend = 901) of the
step signal. Besides, the proposed high-dimensional indicator
τMSR, is extremely sensitive to the anomaly—at tend = 901,
the τMSR starts the dramatic change (Fig. 5e, τMSR-t curve),
while the raw voltage magnitudes are still in the normal range
(Fig. 4c). Moreover, following [20], we design numerous
kinds of LES τ and defineµ0 = τ/E(τ ).The detection results
using results τ are shown in Fig. 6, proving that different

FIGURE 7. Anomaly Detection Using LUE matrices. (a) ESD of Y0 (Normal).
(b) ESD of Y6 (Abnormal).

FIGURE 8. Anomaly detection using GUE matrices. (a) Density of Z0
(Normal). (b) Density of Z6 (Abnormal). (c) ESD of Z0 (Normal). (d) ESD of
Z6 (Abnormal).

indicators have different effectiveness; this suggests another
topic to explore in the future.

2) BASED ON SPECTRUM TEST
The sampling time is still set at tend = 300 and tend = 901.
Following Lemma 2.2 and Lemma 2.3, Y0,Y6 ∈ R118×240

(span t = [61 : 300] and t = [662 : 901]),
and Z0,Z6 ∈ R118×118 (span t = [183 : 300] and
t = [784 : 901]) are selected. The analysis results are
shown in Fig. 7 and Fig. 8. These results validate that empir-
ical spectral density test is competent to conduct anomaly
detection—when the power grid is under a normal condition,
the empirical spectral density fA (x) and the ESD function
FA (x) are almost strictly bounded between the upper bound
and the lower bound of their asymptotic limits. On the other
hand, these results also validate that GUE and LUE are proper
mathematical tools to model the power grid operation.

C. STEADY STABILITY EVALUATION
The V − P curve (also called nose curve) and the small-
est eigenvalue of the Jacobian Matrix [15] are two clues

VOLUME 6, 2018 13861



X. He et al.: Novel Data-Driven SA Approach for Future Grids

FIGURE 9. The V − P curve and λ− P curve. (a) V − P Curve. (b) λ− P
Curve.

FIGURE 10. RMT-based results for voltage stability evaluation. (a) Ring
Law for T1. (b) M-P Law for T1. (c) Ring Law for T2. (d) M-P Law for T2.
(e) Ring Law for T3. (f) M-P Law for T3.

for steady stability evaluation. In this case, we focus on
E4 stage during which PNode-52 keeps increasing until the
system exceeds its steady stability limit. The V − P curve
and λ − P curve, respectively, are given in Fig. 9a and
Fig. 9b. Furthermore, some data section are chosen, T1 :

[1601 : 1840]; T2 : [1901 : 2140]; T3 : [2101 :
2340], shown as Fig. 9a. The RMT-based results are shown
as Fig. 10. The outliers become more evident as the stability
degree decreases. The statistics of the outliers, in some sense,
are similar to the smallest eigenvalue of Jacobian Matrix,
Lyapunov Exponent or the entropy.

For further analysis, the signal and stage division are
taken into account. In general, sorted by the stability
degree, the stages are ordered as S0 > S1 > S2 �
max(S3, S4, S5) > min(S3, S4, S5) � S6 � S7.

TABLE 1. Indicator of various LESs at each stage.

FIGURE 11. Sensitivity analysis based on concatenated matrix.

According to Fig. 6, Table 1 is obtained. The high-
dimensional indicators τXR has the same trend as the stability
degree order. These statistics have the potential for data-
driven stability evaluation. Moreover, based on the Gaussian
property of LES indicators, hypothesis tests are designed for
the anomaly detection; see [33] for details.

D. CORRELATION ANALYSIS
The key for correlation analysis is the concatenatedmatrixAi,
which consist of two part—the basic matrix B and a certain
factor matrix Ci, i.e., Ai = [B;Ci]. For details, see [18]. The
LES of eachAi is computed in parallel, and Fig. 11 shows the
results.

In Fig. 11, the blue dot line (marked with None) shows
the LES of basic matrix B, and the orange line (marked with
Random) shows the LES of the concatenated matrix [B;R]
(R is the standard Gaussian RandomMatrix). Fig. 11 demon-
strates that: 1) node 52 is the causing factor of the anomaly;
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FIGURE 12. Situation awareness with asynchronous data.

FIGURE 13. Raw power flow data of 34 PMUs.

2) sensitive nodes are 51, 53, and 58; and 3) nodes 11, 45, 46,
etc, are not affected by the anomaly. Based on this algorithm,
it is able to conduct behavior analysis, e.g., detection and
estimation of residential PV installations [6]. It is another hot
topic which is expanded in our research [33].

E. SA WITH ASYNCHRONOUS DATA
The proposed data-driven method is robust against bad data
both in space and in time. He et al. [20] have successfully
conducted SA with data loss in the core area. This paper
stuides SA with asynchronous data. It is common that asyn-
chronous data exists in the data platforms such as SCADA
and WAMS. The problem is mainly caused by erroneous
time-tags or communication delays. Sometimes, for a certain
signal, the proper delay protection or interaction/response
mechanism may also lead to asynchronous data. It is hard
to measure or even to detect the time delay via traditional
methods. The proposed approach has a special meaning here.

Using the simulated data, we make an artificial delay
of 25 sampling points for 7 nodes—11, 14, 50, 52, 53, 77,
and 81. With the concatenation operation introduced above,
the results is obtained as shown in Fig. 12. It is an interesting
discovery that the approach is robust against asynchronous
data: 1) the anomalies are detected at t = 501 and t =
901; 2) Node 52 is the most sensitive node; 3) with more
detailed observation, it is even able to quantitatively draw
the conclusion that there exists a 25 sampling points delay
(925− 900) for Node 52. It is surprising that the exact delay
value can be recovered for the particular node! The power of
the proposed approach is vividly exhibited here.

FIGURE 14. Ring Law and M-P Law for the fault. (a) Pre-fault: Ring Law.
(b) Pre-fault: M-P Law. (c) During fault: Ring Law. (d) During fault: M-P
Law. (e) Post-fault: Ring Law. (f) Post-fault: M-P Law.

FIGURE 15. LES t − τ curves.

V. CASE STUDIES USING FIELD DATA
Some power grid of China is selected, with 34 PMUs collect-
ing power flow data. The raw data are shown as Fig. 13; it is
quite obvious that the fault begins at sampling time ts = 3271.
The ring distribution and M-P law pre-fault (3101 − 3100),
during fault (3173 − 3272), and post-fault (7201 − 7300)
are given as Fig 14. This implies that the real-world data do
follow Ring Law and M-P Law under normal condition, and
they violate these laws when the fault is occurring. Moreover,
the LES t − τ curves of basic matrix B and concatenated
matrix Ci are obtain as Fig. 15. It shows that Node 8, 9, 26,
27, 28, 10, 11, and 12 are most relevant to this fault; while
Node 1− 7 are not so sensitive.
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VI. CONCLUSION
This paper has made significant progress on the basis of the
previous work in the context of big data analytics for future
grids. Randomness and uncertainty are at the heart of this data
modeling and analysis. The approach exploits the massive
spatial-temporal datasets of power systems. Random matrix
theory (RMT) appears very natural for the problem at hands;
in a randommatrix ofCN×T ,we useN nodes to represent the
spatial nodes and T data samples to represent the temporal
samples. When the number of nodes N is large, very unique
mathematical phenomenon occurs, such as concentration of
measure. Phase transition as a function of data size N is a
result of this deep mathematical phenomenon. This is the
very reason why the proposed algorithms are so powerful in
practice.

Explicitly expressed in forms of linear eigenvalue statistics
(LESs), the proposed RMT-based algorithms have numerous
unique advantages. In the form of a large randommatrix, they
handle massive data that are in high dimensions and within a
wide time span all at once. The trick is to treat these data as
a whole at the disposal of RMT. In this way, highly reliable
decisions are still attainable with some imperfect data, e.g.,
the asynchronous data. Moreover, with the statistical process-
ing such as test function setting, the proposed data-driven
approach has the potential to balance the perspectives of the
speed, the sensitivity, and the reliability in practice.

The stability evaluation and behavior analysis are two big
topics along this direction. Besides, the statistical indicators
are good starting points for artificial intelligence andmachine
learning. For example, we can extract the linear eigenvalue
statistics as features; those extracted features are used for
further data processing in the pipeline using algorithms such
as random forest, decision trees, and support vector machine.

APPENDIX A

FIGURE 16. Partitioning network for the IEEE 118-node system.

APPENDIX B
The power demand of other nodes are assigned as

ỹload_nt = yload_nt × (1+ γMul × r1)+ γAcc × r2, (17)

TABLE 2. Series of events.

where r1 and r2 are the element of standard Gaussian random
matrix; γAcc = 0.1, γMul = 0.001.
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