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ABSTRACT This paper attempts to fuse a multispectral image and an auxiliary hyperspectral image (HSI)
with no requirement of image registration. Most previous studies solve this problem with sparsity-based
methods. However, in this paper, a novel fusion framework is developed based on a Gaussian mixture
model (GMM): First, the GMM is adopted to extract the spectral information from the input HSI. Low-
rank constraints are imposed on the covariance matrices of the model to solve the computational problem
in the expectation-maximization approach. Second, considering the spatial self-similarity, a structure-
similarity regularization term is designed to further enhance the quality of the reconstructed image. To that
end, a forward–backward splitting method is adopted to cut down the computational complexity of the
optimization. The proposed method does not require two well-aligned images, thus, it will not be influenced
by the registration errors between two fusing images. Experimental results of a simulated data set and an
actual satellite (EO-1/Hyperion/ALI) data set show that the proposed method displays a stable performance
and outperformsmany state-of-the-art methods with acceptable computational complexity, when registration
errors are taken into consideration.

INDEX TERMS
Hyperspectral image fusion, Gaussian mixture model, low rank constraint, local and nonlocal similarity,
registration errors.

I. INTRODUCTION
Hyperspectral images (HSIs), with tens or hundreds of spec-
tral channel bands, have been widely used in many computer
vision tasks. Unfortunately, although these images have rich
spectral information, spatial resolution is usually limited due
to the technical trade-off between the resolutions of spectra
and space in the imaging device. As a result, HSI super-
resolution is proposed, working as a post-processing method
to overcome the instrument limitation.

A popular way of HSI super-resolution (SR) is to fuse
a low-spatial resolution HSI and a high-spatial resolu-
tion multispectral (or panchromatic) image (MSI) after
image registration [1]. Most studies assume that two input
images can be registered totally and perfectly. Under
the assumption, the fusion issue turns into an ill-posed
inverse problem, and a rational prior model on the tar-
get fusion image is the corresponding bottleneck [1].

So far, various prior models have been explored, includ-
ing low rank constrained model [2]–[4], matrix factorization
models [1], [5], [6], sparsity based models [7]–[10], total
variation models [11], PCA-based models [12]–[14], etc.
Apparently, if two input images can be registered totally
and perfectly, the spatial resolution of the common region of
these two image can be effectively enhanced by these fusion
methods.

However, in practice, it is difficult to ensure the perfect
registration between two fusing images, since this process
can be easily affected by the differences in terms of angle of
view, date of acquisition, and spectral coverage [15]. There-
fore, the fusion accuracy of the above methods is inevitably
compromised due to the registration errors [16]. Moreover,
the overlapped scene between two images acquired by dif-
ferent sensors or satellites sometimes is very small, despite
that these two images may share similar geographical feature.
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In this case, the above registration-based fusion methods fail
to work and cannot make full use of the nonlocal similarity
laid in the input images [16], [17].

To overcome the above difficulties, various schemes have
been proposed. Early studies promote to utilize component
substitution fusion methods, since they are found relatively
less sensitive to registration errors [18]. In the recent years,
Zhang et al. [19] proposed a robust point-matching algo-
rithm to reduce the registration errors. Chen et al. [16] further
reduced the influence of registration errors by putting image
registration and fusion in a unified optimization framework.
Unfortunately, as the approach proposed by [16] was only
available when the registration error was limited within a
certain range, Zhang et al. [20] proposed a practical scheme
for joint image registration and fusion later. To totally avoid
registration errors, Akhtar et al. [21] and Huang et al. [22]
proposed a novel framework without image registration
requirements. In their approaches, the MSI is not directly
fused with the HSI, instead, it is fused with a spectral dictio-
nary learned from the low spatial resolution HSI. Obviously,
how to obtain a good spectral dictionary is a key step for
these methods. Thus, subsequently, Akhtar et al. [23], [24]
proposed two Bayesian methods to further enhance the qual-
ity of the learned spectral dictionary. On the basis of spectral
dictionary learning, to further enhance the fusion accuracy,
Zhao et al. [15] introduced the joint regulation of spatial
and spectral nonlocal similarities, whereas Fang et al. [25]
proposed to obtain fusion results using super-pixels-based
sparse representation. All the above schemes reduce the influ-
ence of registration errors in varying degrees. Particularly,
the spectral dictionary methods [21]–[25] are less sensitive
to registration errors, since the learned spectral dictionary
has little or no relation to the translation and rotation of
the input HSI. However, these kind of methods usually cost
too much computational resource due to the optimization of
the sparsity regularization. Furthermore, it remains open to
question whether the learned spectral dictionary is the most
efficient way to extract the spectral features from the input
HSI.

In this paper, we develop a novel hyperspectral and mul-
tispectral image fusion framework based on a low rank con-
strained Gaussian mixture model (LR-GMM). The proposed
framework has no registration requirement on the input HSI
and the MSI. Thus, unlike the traditional registration-based
methods [1]–[14], it will not be influenced by the registration
errors between the HSI and the MSI. Moreover, different
from the spectral dictionary approaches [21]–[25], the pro-
posed method utilizes a novel efficient spectral model, the
LR-GMM model, to extract spectral features from the low
spatial resolutionHSI, and jointly takes the local and nonlocal
texture similarity of the MSI into consideration to further
enhance the fusion accuracy. The main ideas of our work can
be summarized as follows:

1) Gaussian mixture model (GMM) is adopted to effi-
ciently extract the spectral feature from the HSI. Since
the spectral pixels lay in a low dimensional subspace,

we impose low rank constraints on the covariance
matrices of GMM to cut down the complexity of the
model.

2) To make full use of the spatial and spectral information
of the MSI, the local and nonlocal structure similarity
of spectral and spatial domains is incorporated into the
proposed framework, working as a regularization term
to improve the resolution of the fused image.

3) The proposed framework casts the HSI super-
resolution as a quadratic optimization problem.
A forward-backward splitting method is derived to cut
down the computational complexity brought by the
inverse of a very large matrix in the optimization.

The remainder of this paper is organized as follows.
In Section II, we formulate the super-resolution problem dis-
cussed in our paper mathematically, and present the proposed
approach and the optimization process. Experimental results
and comparisons are given in Section III and the conclusion
is drawn in Section IV.

II. PROPOSED LR-GMM BASED FUSION APPROACH
This section introduces the proposed LR-GMM based fusion
framework. Define the input m × n × L hyperspectral
image (HSI) asX ∈ RL×mn, the inputM×N×l multispectral
image (MSI) asY ∈ Rl×MN .m×n andM×N are the spatial
sizes of two input images. Let Z ∈ RL×MN denote the M ×
N × L full resolution target image. Assuming that the noise
brought by the measurement is additive and independent, and
has a Gaussian distribution, then the observation model of Z
can be formulated as:

Y = FZ+ Ny, X = ZPQS+ Nx (1)

where F denotes the known relative spectral response
betweenY and Z, P denotes a warping matrix,Q and S are an
unknown image-blurring matrix and a down-sampling matrix
respectively, Nx and Ny denote the isotropic Gaussian noise,
i.e., nyij ∼ N (0, λ−1) and nxij ∼ N (0, ε−1). In the problem
discussed in our paper, X and Y are two not-well-aligned
images, i.e., the warping matrix P is unknown and cannot
be accurately obtained. This paper aims to obtain the full
resolution image Z without having to estimate the warping
matrix P and the blurring matrix Q.

Apparently, the target full resolution image Z cannot be
obtained simply resorting to Eqn.(1), since this is an ill-posed
problem and requires prior information about the image Z.
According to Eqn.(1), although the spatial mapping between
the images X and Z is unknown, X has similar spectral fea-
tures with Z, which have little or no relation to the mapping
matrix PQS. Moreover, since the target image Z is the high
spectral-resolution version of the MS image Y, the image
Y shares the same geographical texture features with the
image Z. To make full use of the spectral information of
the image X and the spatial information of the image Y,
we introduce two prior regularization terms for the target
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FIGURE 1. (a) The traditional registration-based fusion framework. (b) The proposed LR-GMM based fusion framework. The spectral features
learned by Gaussian mixture model (GMM) has little or no relation to the image translation and rotation. Thus, the results are robust to
registration errors.

image Z, and formulate the prior of Z as:

ln p(Z) ∝ −[g(Z,S(X))+ h(Z, T (Y))] (2)

where g(·) is designed to regularize the spectral features of Z
while h(·) is introduced to regularize the texture features of
Z; S(X) is a designed operator to extract spectral information
from the imageXwhile T (Y) is a designed operator to extract
local and nonlocal texture similarity from the image Y. Since
the relationship between the images Y and Z is known,
according to Eqn.(1), the conditional distribution of Y given
Z can be formulated as:

ln p(Y|Z) ∝ −λ‖Y− FZ‖2F (3)

A maximum-a-posteriori(MAP)-based estimator is utilized
to obtain the target image Z. According to Bayes theory,
p(Z|Y) ∝ p(Y|Z)p(Z). Then, the fusion problem can be
formulated as the following regularized least squares problem
based on the introduced prior regularizations:

min
Z
λ‖Y− FZ‖2F + g(Z,S(X))+ h(Z, T (Y)) (4)

The differences between the registration-based fusionmethod
and the proposed fusion framework are summarized in Fig.1.
In the following passage, we will elaborate the introduced
regularization terms, g(·) and h(·).

A. LEARNING SPECTRA VIA LOW RANK
CONSTRAINED GMM
To extract the spectral features from the image X, Gaussian
mixture model (GMM) is utilized, i.e., each spectral pixel
vector x ∈ RL×1 is assumed to be drawn from a GMM with
C mixture components,

p(x) =
C∑
w=1

p(x|w)p(w) =
C∑
w=1

πwN (x|µw, 6w) (5)

where p(w) = πw is the prior probability of the wth com-
ponents, p(x|w) = N (x|µw, 6w) is a multivariate Gaussian

distribution, µw is the mean of the wth Gaussian compo-
nent representing the spectral cluster center, 6w is the cor-
responding covariance matrix recording the spectral variance
information. This modeling is reasonable, since each pixel
in low-spatial resolution HSI usually contains more than one
spectral component [26]. Furthermore, it has been proved that
GMM, as a spectral clustering model, has similar qualities to
the linear mixture model for characterization and classifica-
tion of hyperspectral imagery [27]. Based on this modeling,
the parameters of GMM can be easily learned by the EM
algorithm, and S(X) = {µw, 6w}

C
w=1.

Unfortunately, in the EM algorithm, the inverse of covari-
ance matrices will bring in a high computational cost, espe-
cially when the number of channel bands in the HSI is
very large. Furthermore, since the spectral pixel vectors in
the HSI tend to live in a low dimensional manifold [8],
the inverse of covariance matrices will fail due to the rank
deficiency. Hence, to avoid the above computational prob-
lems, we impose low rank constraints on the covariance
matrices, i.e., 6w = 8w8

T
w + γ IL , where 8w ∈ RL×r

is a r-rank matrix, IL is a L × L identity matrix, and γ is
a small parameter set to 10−3. Then, the parameters 2 =
{πw,µw,8w}

C
w=1 can be efficiently learned by the modified

EM approach based on the references [28]–[30]. (See the
Appendix).

As the target image Z shares similar spectral features with
X, S(X) = {µw,8w}

C
w=1 can be adopted to regularize the

image Z = [z1, z2, ..., zMN ] as the following form:

g(Z,S(X)) =
MN∑
j=1

min
wj

(zj − µwj )
T6−1wj (zj − µwj ) (6)

Since zj is unknown, finding the optimal value of wj is a com-
plicated optimization process. Fortunately, the observation
Y = [y1, y2, ..., yMN ] is known and its conditional prior has
a Gaussian distribution according to Eqn.(1). Thus, we can
approximate wj and simplify the regularization term (6) as a
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Algorithm 1 LR-GMM-Based HSI Super-Resolution
Input: The images X and Y, the spectral response F
Learning 2 = {πw,µw,8w}

C
w=1 from the image X:

• Initialize 2 by the scheme in Section-III-A
• Update 2 iteratively using Eqn.(14), Eqn.(17) and
Eqn.(16) shown in Appendix

Obtaining the weight matrix B from the image Y:
• Divide the image Y into overlapped patches and calcu-
late the matrix B using Eqn.(8)

Solving the optimization problem in Eqn.(4):
• Initialize Z(0) by solving Eqn.(10) with α = 0
• Update Z(t) iteratively using Eqn.(11)

Output: The high-spatial hyperspectral image Z.

normal quadratic form by solving the following problem:

ŵj = argmax
wj

N (yj|Fµwj ,F6wjF
T
+ λ−1Il) (7)

B. LOCAL AND NONLOCAL STRUCTURE SIMILARITY
REGULARIZATION
Early studies have pointed out that spectral pixels are spatially
correlated to their local and nonlocal similar neighbors in
the high-spatial resolution HSI [15], [31]. These correlations
can be regarded as a kind of priors on the texture features
of the target image Z. In our problem, as the input image Y
is captured from the same scene of Z, Y has the spatial self-
similarity structure similar toZ. Thus, we extract the structure
similarity based on the MS image Y and utilize it as a kind of
prior for the target image Z.

To extract the self-similarity, the input M × N × l MSI
(Y) is firstly divided into p × p × l overlapped 3-D patches.
Define the image patch centered at position i as Yi ∈ Rl×p2 .
Then, for each Yi, we search its similar patches in a S×S× l
window, which form a set satisfying1i = {Yk |‖Yk−Yi‖

2
F <

tsp2l}., ts is a given threshold. According to [15], Yi can
be predicted by the weighted average of its similar patches,
i.e.,

∑
Yk∈1i

bikYk , and its prediction error can be defined as
the following, where Di =

∑
k bik .∥∥∥∥∥∥Yi −

∑
Yk∈1i

bikYk

∥∥∥∥∥∥
2

F

, bik =
1
Di

exp (−
‖Yi − Yk‖

2
F

lp2
) (8)

Obviously, the prediction weights bik in Eqn.(8) can also
be obtained in least-square way. However, we do not adopt
this way for two reasons: First, as introduced in [15], the pre-
diction error in Eqn.(8) should be small, but it cannot be set
infinitely small because there is some trade-off among all the
regularization terms in Eqn.(4). If the weights are obtained in
least-square way, this prediction error will be too small, and
the image will be too smooth and blurred. Second, the self-
similarity extracted from the image Y should be shared by
the target image Z. The weights obtained in least-square way
based on Eqn.(8) are effective for the image Y, but they

are not suitable for the image Z, since the image Y is a
projection of the image Z according to Eqn.(1). However,
if the similarity betweenYk andYi is very high, the similarity
between two corresponding image patches inZ is more likely
to be very high. Considering the texture structure similarity
shared by Y and Z, we prefer to enhance the regularization
weight of Yk for Yi, if Yk is more similar to Yi. In this case,
it is better to choose to the exponential function to compute
the weights.

As the self-similarity extracted from the image Y is shared
by the image Z, this error term can be extended to regularize
the image Z based on Eqn.(1), i.e., the structure-similarity
regularization term can be formulated as

h(Z, T (Y)) = α‖Z(I− B)‖2F (9)

where α is a preset positive regularization parameter, andB =[
bij
]
is a sparse matrix. IfYj /∈ 1i, bij = 0. Otherwise, bij can

be obtained based on Eqn.(8).

C. OPTIMIZATION AND COMPUTATIONAL COMPLEXITY
To solve the target image Z of the problem (4), an easy way
is to set the corresponding gradient to zero, i.e.,

(λFTF+6−1wj )zj +
[
αZGGT

]
.j
= λFTyj +6

−1
wj µwj (10)

where G = I − B, [·].j denotes the jth column vector of
a matrix. If α = 0 or G is an identity matrix, solving Z
based on Eqn.(10) only brings in the order of computational
complexity O(MNL3). Unfortunately, G is obtained based
on the input image Y, and elements in Z are correlated by
G and F in the above equation when α > 0. Thus, the inverse
problem of a very large matrix has to be encountered in
this solution, which will bring in the unacceptable order of
computational complexity O(M3N 3L3).
To avoid the large-matrix-inverse problem, we propose to

use the forward-backward splitting (FBS) method instead
of directly solving Eqn.(10). Let f1(Z) = λ‖Y − FZ‖2F +
g(Z,S(X)) and f2(Z) = h(Z, T (Y)). Define four operators
as A = ∇f1, B = ∇f2, I is an identity operator, and
JβA = (I + βA)−1. It can be easily proved that A is max-
imal monotone while B is a Lipschitz continuous monotone
operator with Lipschitz constant ‖∇f2‖ = ‖αGGT

‖ > 0.
According to the FBS method [32], the iterative scheme,
Z(n+1)

= JβA(I − βB)(Z(n)), β ∈ (0, 2/‖∇f2‖), converges
weakly to an element of the set of solutions (A+ B)−1({0}),
which can be equivalently written as:

Z(n+1)
= min

Z
λ‖Y− FZ‖2F + g(Z,S(X))

+
1
2β
‖Z− Z(n)

+ β∇h(Z(n), T (Y))‖2F (11)

The problem in Eqn.(11) has a closed form solution, which
brings in the order of computational complexity O(MNL3).
Let Topt denote the number of iteration. Z(0) is initialized
based on Eqn.(10) with α = 0. Then we can obtain the result
with the order of computational complexity O(MNL3Topt)
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by iteratively updating Z(t) using Eqn.(11). The optimization
process is summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we introduce the experimental set up for
the proposed method. Then, we compare our method with
seven fusion methods, including the SASFM method [22],
the GSOMP method [21], the BSR method [23], the SSR
method [25], the HySure method [11], the BN method [33]
and the BSDMF method [1]. The first four methods try
to record spectral information based on dictionary learning.
Similar to the proposed method, they have no registration
requirement on the input HSI and MSI. For fairness, the sizes
of dictionaries in these three methods are all set to 50.
The last three comparison methods are registration-based
fusion methods. In our experiment, to show the registration-
error robustness, we compared the proposed method with
these three registration-based fusion methods under different
amounts of misregistration. All fusion methods are run on the
MATLABR2013a with Intel Core 3.6GHz i7 CPU and 16GB
RAM.

A. IMPLEMENTATION DETAILS
Two problems arise when the proposed approach is put into
implementation. First, as the EM algorithm is used to extract
spectral features from X, a good initialization is crucial to
guarantee the effectiveness of the learnedGMMmodel. In our
experiment, as a single pixel is usually similar to its neighbor-
hoods in the image, we propose to initialize the parameters of
GMM based on the entropy rate super-pixels [34]. A super-
pixel is defined as a cluster of pixels in a perceptually-uniform
region in the image [34]. In our initialization, we generate
2C super-pixels of the input HSI by the approach in [34],
and obtain the Euclidean distances for every two super-pixels’
center locations. Then all super-pixels are partitioned into C
clusters using hierarchical clustering based on the obtained
Euclidean distances. As the number of spectral clusters in the
images used in the following experiment is usually no more
than 20, we set C to 20. Then, on the basis of the wth cluster,
πw and µw are initialized by the corresponding empirical
weight andmean respectively, while8w ∈ RL×r are obtained
by truncated singular value decomposition (SVD) on the
covariance matrix. Since pixels in a spectral cluster live in
a low dimension manifold, the column size r of 8w should
be very small. To reduce the computational cost brought by
the matrix inverse in Eqn.(14), we set r to 1.
Second, there exist several model parameters, including

the size of image patch p, the size of the search window S,
the threshold ts, and the regularization parameters λ and α.
In Section-II-B, the parameters, p, S and ts, are related to the
texture structure regularization term. Theoretically, the size of
the search window S should be set large so that more similar
patches can be found all over the image. However, large
S will bring in high computational cost. According to [15]
and [31], considering the balance between performance and
computational consumption, S is set to 18, and p is set to 3.
ts should be set small, and it is usually set to 10−3.

FIGURE 2. The fusion results for different values of λ and α for the
Balloon image in the CAVE dataset (Scale = 8). (a) PSNR for different
values of α, λ is set to 1010. (b) PSNR for different values of λ, α is set to
107.

As for λ and α, on the basis of the above settings, we design
a group of experiments to select the values of these two
regularization parameters. In our experiment, we choose a
real-life 512 × 512 × 31 hyperspectral image as a ground
truth and generate a low resolution HSI and a MSI according
to the simulation method in Section-III-B. Then, these two
generated images are fused using the proposed approach with
different values of λ and α. The fusion results are shown
in Fig.2. It can be found that the fusion results are relatively
better when λ = 1010 and α = 107. Thus, in the following
experiments, we set λ = 1010 and α = 107.

B. EXPERIMENTS WITH SIMULATED DATA
We test the performance of fusion methods using the CAVE
database [35]. This database consists of 32 512-by-512 hyper-
spectral images formed by 31 spectral bands ranging from
400nm to 700nm at 10nm intervals in wavelength. It has been
used to evaluate the fusion methods in [21]–[23].

In our experiment, each image in the CAVE database
is taken as the ground truth. Low-spatial resolution HSIs
and high-spatial resolution MSIs are generated according to
Wald’s protocol [36]. Specifically, for each image, three low-
spatial resolution HSIs with 8, 16 and 32 spatial downsam-
pling scales (denoted by s) are generated by 16×16, 32×32,
and 64×64Gaussian kernels with standard deviations of 3.40,
6.79 and 13.59, respectively. The high-spatial resolution MSI
is generated by simulating the spectral response of the Nikon
D700 camera.1 To simulate the misregistration between the
HSI and the MSI, we misalign these two input images along
both x and y by dp pixels at the scale of MSI, i.e., dp/s at
the scale of HSI. Then, three quality assessment metrics are

1Available at http://www.maxmax.com/spectral response.htm
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FIGURE 3. Quality Indexes for increasing amount of misregistration
between the hyperspectral image and the RGB image. The results are
based on the the Pompoms image in the CAVE database (Scale = 8). The
bottom x-axis and the top x-axis represent the misregistration pixels at
the scale of MSI and HSI, respectively.

adopted to evaluate the difference between the fused image
and the ground truth, including PSNR, SAM and ERGAS,
as used in [15]. The results are shown in Table 1, Fig.4 and
Fig.5.

For simplicity, we show the means and standard devia-
tions for the quality metrics of the CAVE’s fusion results
in Table 1. It can be found that the proposed method outper-
forms the other comparison methods in the quality of image

TABLE 1. Evaluation of the results of the CAVE database*.

FIGURE 4. The Pompoms image in the CAVE database. The above images
include the RGB image and the high-spatial resolution HSI at 400nm,
500nm, 600nm and 700nm.

reconstruction and costs acceptable computational time.
Besides, since registration errors are taken into consideration
in our simulation, most registration-based fusion methods
perform badly and show relatively unstable results under
different down-sampling scales.

To further show the robustness to registration errors,
we display the results of the Pompoms image with different
value of dp in Fig.3. As the spatial mapping between the
HSI and the MSI in the registration-based fusion framework
is usually assumed to be known and can be made full use
for image fusion, the registration-based methods usually out-
perform the proposed LR-GMM approach when two fusing
images are perfectly aligned. Therefore, it can be found that
the results of the BN and BSDMF methods in Fig.3 are
better than the proposed when the pixels of translation are
zeros (i.e., dp = 0). However, the quality indexes of the
registration-based methods tend to be worse with the increase
of registration errors, whereas the proposed method remains
stable in fusion accuracy and outperforms three registration-
based methods when dp ≥ 4. These results imply that the

16906 VOLUME 6, 2018
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FIGURE 5. The results of the Pompoms image in the CAVE database
(Scale = 8, dp = 4). (a) RMSE images of different fusion methods. The
RMSE values of all fusion methods are 8.59 (SASFM), 4.71 (GSOMP),
5.76 (BSR), 4.70 (SSR), 10.09 (HySure), 11.75 (BN), 3.21 (BSDMF), and
2.24 (LR-GMM). (b) SAM images of different fusion methods. The
corresponding SAM values are 13.41 (SASFM), 7.47 (GSOMP), 8.49 (BSR),
7.42 (SSR), 8.99 (HySure), 7.26 (BN), 4.92 (BSDMF), and 2.97 (LR-GMM).

performance of the proposed method are better than those of
the comparison methods when the input two images cannot
be well aligned.

We also analyze the results of the comparison registration-
based methods under different amounts of misregistration.
The BN method works as the best one when the input images
are perfectly aligned. These results are different from that
in [1], since the sensor characteristics in our experiments
are assumed to be accurately known and the measurement
noise is not taken into consideration in the simulation. Unfor-
tunately, as the BN method assumes two input images to
be ideally aligned and requires an accurately-known spatial
mapping between the HSI and the MSI, the performance of
the BN method degrades sharply with the increase in the
amount of misregistration in Fig.3, which implies that it has
the poorest robustness to registration errors. The HySure
method performs worse than the BSDMF method, since it
also requires an accurately-known spatial mapping between
the HSI and the MSI. However, compared with the BN
method, the HySure method is relatively more robust to
registration errors and has relatively good fusion results with
clear texture due to the effectiveness of the total variation

FIGURE 6. Evaluation process for the fusion methods on the actual
satellite data.

regularization. TheBSDMFmethods is amatrix-factorization-
based method with no requirement of the point spread
function (PSF). Thus, it is not directly related to the esti-
mation errors of the spatial mapping, and the corresponding
results show great robustness to registration errors. It can
be found that the BSDMF method is better than other com-
parison methods when 0 < dp < 4 in Fig.3. In Table 1,
the BSDMF method has comparable results to those of
the proposed method, when the down-sampling scale is set
to 8. Therefore, it would be better to utilize the BSDMF
method to fuse two slightly misaligned images. Nevertheless,
the performance of the BSDMF method degrades with the
increase of the down-sampling scale in Table 1 and tends
to be worse than the proposed method when dp ≥ 4
in Fig.3. Apparently, it is not suitable for the cases when two
input images have large scale difference or large registration
errors.

C. EXPERIMENTS WITH ACTUAL SATELLITE DATA
In this section, we apply the proposed method to the fusion
of EO-1/Hyperion and EO-1/ALI images.2 The Hyperion
image and the ALI image are all acquired over Bay St
Louis (30◦20′N, 89◦20′W) at 16:15 pm on 15 October, 2001.
The HSI captured by the Hyperion consists of 242 spectral
bands ranging from 355.59nm to 2577.08nm in wavelength
at 10nm interval, while the MSI captured by the ALI con-
sists of 9 spectral bands [37]. Both of these two images
are captured with a spatial resolution of 30 meters for all
bands. According to [38], some of image bands have to be
removed for practical applications due to their low image
quality caused by water absorptions. In our experiment, since
the image bands in the range of visible light are of high
quality, for simplicity, we discuss the image fusion within
the range of visible light. Specifically, we only keep the
8th-38th bands for the HSI corresponding to 427nm-732nm

2More information about EO-1/Hyperion and EO-1/ALI can be found at
https://eo1.gsfc.nasa.gov/
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FIGURE 7. The results of the EO-1 satellite data set (Scale = 16) (a) the RMSE images displayed by rotating the results 90◦ clockwise. (b) the SAM
images.

TABLE 2. Evaluation of the results of the EO-1 data set.

in wavelength, and keep the 1th-3th bands for the MSI
corresponding to 450nm-690nm in wavelength, according
to [37]. The spatial sizes of the acquired high resolution
HSI and MSI are set to 536 × 200 and 512 × 160, respec-

tively. The images are shown in Fig.6. Obviously, these two
images are misaligned and have different image sizes. The
common region of these two images is set to 512 × 160,
i.e., the real scene corresponding to the MSI is a partial
scene corresponding to the HSI. Then, low-spatial resolution
HSIs are obtained by directly down-sampling the acquired
high resolution HSI at different scales, and the relative spec-
tral response used for all fusion methods is estimated with
the method proposed in [39]. Similar to the experiment in
Section-III-B, to simulate the registration errors between the
HSI and the MSI,, we misalign these two input images along
y by 0.5 pixels at the scale of HSI, i.e, s/2 pixels at the scale
of MSI.

We utilize the scheme shown in Fig.6 to evaluate the fusion
accuracy. Several quality assessment metrics are adopted to
quantify the fusion performance, including PSNR, SAM,
ERGAS and UIQI, as used in [15] and [22]. The corre-
sponding results are shown in Table 2 and Fig.7. Partic-
ularly, as the index of ERGAS is inversely proportional
to the down-sampling scale [40], the corresponding values
in Table 2 decrease with the increase of the scale. It can
be found from the results that the reconstruction quality of
the proposed method is not so outstanding as that of the
simulation results in Section-III-B due to the unideal real
imaging process and the estimation errors of the spectral
response matrix. Nevertheless, the proposed method still out-
performs other fusion methods based on the actual satellite
data and tends to be better when the down-sampling scale is
large.
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IV. CONCLUSION
This paper proposes a novel hyperspectral image super-
resolution (SR) framework by fusing a multispectral image
(MSI) and an auxiliary hyperspectral image (HSI) without
image registration. The proposed framework casts the SR
problem into an optimization problem, in which a spec-
tral regularization term is designed based on low rank con-
strained Gaussian mixture model (GMM) learned from the
HSI while a texture regularization term is designed based on
the local and nonlocal structure similarity in the MSI. Then,
a forward-backward splitting method is adopted to cut down
the computational complexity in the optimization. Exhaustive
experiments show that the low rank constrained GMM is
more efficient to extract the spectral information compared
with many sparsity-based methods, and the proposed method
outperforms other state-of-the-art methods in fusion quality
and has acceptable computational cost, when the registration
errors are taken into consideration.

APPENDIX
EM APPROACH FOR LOW RANK CONSTRAINED GMM]
The low rank constrained GMM can be equivalently written
as the following form [28], [29],

p(x) =
C∑
w=1

πw

∫
N (x|µw +8wε, γ I)N (ε|0, I)dε (12)

where ε ∈ Rr×1 is an auxiliary latent variable, ε ∼ N (0, I).
To learn the parameters 2 = {πw,µw,8w}

C
w=1 from the

imageX = [x1, x2, . . . , xmn], we maximize the marginal log-
likelihood based on Eqn(12), i.e.,

2̂ = max
2

mn∑
i=1

ln
C∑

wi=1

∫
ε

p(wi, εi, xi)dε (13)

The EM approach can be adopted to optimize the above
maximization problem [29], [30]. In the expectation step (E-
step), we approximate the posterior distributions of latent
variables as follows:

p(w, ε|x,2(t−1)) = ρwN (ε|ηw,�w)

ηw = (γ I+8T
w8w)−18T

w(x− µw)

�w = I− (γ I+8T
w8w)−18T

w8w

ρw =
πwN (x|µw,8w8

T
w + γ I)∑C

k=1 πkN (x|µk ,8k8
T
k + γ I)

(14)

where {wi, εi, xi} are simplified as {w, ε, x}. This step has
the order of computational complexity O(mnLr2). Then on
the basis of approximation, calculate the expectation log-
likelihood function as:

L(2|2(t−1)) =
mn∑
i=1

E[ln p(wi, εi, xi)|wi, εi;2(t−1)] (15)

In the maximization step (M-step), we update the parame-
ters 2(t) by finding the peak values of the expectation log-
likelihood function, i.e., 2(t)

= argmax2 L(2|2(t−1)). The

calculation of the parameters 2(t) can be derived as

[µ(t)
w ,8

(t)
w ] = (

mn∑
i=1

ρ
(t)
iw xi

[
1
η
(t)
iw

]T
)

×

(
mn∑
i=1

ρ
(t)
iw

[
1 (η(t)iw )

T

(η(t)iw ) η
(t)
iw (η

(t)
iw )

T
+�

(t)
iw

])−1
(16)

π (t)
w =

mn∑
i=1

ρ
(t)
iw

/
C∑
w=1

mn∑
i=1

ρ
(t)
iw (17)

which has the order of computational complexityO(mnLr2).
Let Tem denote the number of iteration. Then the EM
approach has the order of computational complexity
O(mnLr2Tem).
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