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ABSTRACT Background modeling and subtraction based on change detection are the first step in many
high-level computer vision applications. Many background subtraction methods have been proposed in the
recent past and their efforts mainly focus on two aspects: more advanced background models and more
complex feature representations. Recently, hierarchical features learned from deep convolutional neural
networks have been shown to be effective for many computer vision tasks, such as classification and
recognition. However, few researchers try to learn the deep features to address the background subtraction
problem. Therefore, in this paper, we propose a novel multiscale fully convolutional network (MFCN)
architecture which takes advantage of different layer features for background subtraction. We show that
the foreground detection accuracy can be greatly improved by using the deep features learned from the
MEFCN and instead of building highly complex background models, and the complexity of the background
subtraction process can be easily solved during the subtraction operation itself. Experimental results on
CDnet 2014 data set and SBM-RGBD data set show that the proposed MFCN-based method achieves
state-of-the-art performance while operating at real time.

INDEX TERMS Background subtraction, convolutional neural network, multiscale fully convolutional

network, video surveillance.

I. INTRODUCTION

Background subtraction based on change detection is the
first step in many high-level computer vision systems.
The output of the background subtraction is usually an
input to a post higher level process, such as traffic mon-
itoring, object tracking, and action recognition. Therefore,
the accuracy of the detection result has a huge effect
on these subsequent higher level tasks. Needless to say,
the quality of many computer vision applications directly
depends on the quality of the background subtraction method
used.

Generally speaking, a complete background subtraction
process has four components (See Fig. 1): (1) model initial-
ization, which regards the initialization process; (2) model
representation, which describes what kind of model to be
used to represent the background model; (3) model main-
tenance, which concerns the update mechanism used for
adapting the model to the changes; (4) foreground detec-
tion, which consists of comparing the current frame with
the background image and classifying the pixels as fore-
ground or background. In the past few decades, a multitude

of background subtraction methods have been proposed and
have achieved promising progress [1]-[3]. However, it is still
regarded as a challenging problem due to the complexity
of environment such as dynamic backgrounds, illumination
changes, shadows, camera jitter, camouflage, and so on. It is
not straightforward to handle all these challenges in a single
framework.

Recently, convolutional neural networks (CNNs) have
drawn a lot of attention in the computer vision community.
Hierarchical features learned from deep convolutional neural
networks have been shown to be effective for many com-
puter vision tasks such as classification [4], [5], recognition
[6], [7], semantic segmentation [8], [9], saliency detec-
tion [10], [11], and so on. Despite its popularity, only a few
researchers are attempting to employ the CNNs for back-
ground subtraction. To the best of our knowledge, [12] is the
first attempt to apply CNN to solve the background subtrac-
tion problem on a single scene and an improved CNN-based
method with a novel background image generation was pro-
posed in [13]. Another multi-scale and cascade convolutional
neural network based method was proposed in [14] and
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FIGURE 1. Block diagram of the background subtraction process.

achieved state-of-the-art results on the CDnet 2014 dataset
at present.

However, current CNN-based approaches have several
drawbacks. First, it is quite slow for these patch-wise based
methods because the network must run each patch separately,
so it is difficult to achieve real-time performance, and it also
result in a lot of redundancy due to the overlapping patches.
Second, using neural networks to classify the background and
foreground, only the outputs of the last layer are considered
following the recent object recognition tasks. As we know, for
high-level visual recognition problems, it is more effective
to use features from the last layer as they are more closely
related to category-level semantic information. However, for
foreground detection, there is a trade-off between the seg-
mentation accuracy and the use of the semantic information.
Third, training a robust classifier requires a large number of
training samples, while this is not available in background
subtraction area. Current CNN-based methods use highly
redundant scene-specific data for training will lead to over-
fitting problems.

Inspired by the above observations, in this paper we pro-
pose a novel multiscale fully convolutional network (MFCN)
architecture for background subtraction. Our method draws
on the recent success of transfer learning and fully convo-
lutional network (FCN) for semantic segmentation. Transfer
learning has recently been applied to many areas [15]-[17].
Previously trained network weights are used to initializa-
tion and then the weights are fine-tuned on a new dataset.
Compared with training a network from random initializa-
tion, this method can sometimes achieve better accuracy.
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The FCN architecture was first proposed in [8] for image
segmentation. By transforming fully connected layers into
convolutional layers, the new architecture can be trained end-
to-end. Compared with patch-wise methods, the FCN-based
models can capture more local and global context informa-
tion, which yields more accurate and detailed segmentation
results. And recent research shows that deep features obtained
from different convolutional layers can improve the results
for different image tasks [5], [16]. The lower layers contain
low-level semantic information but retain higher spatial reso-
lution, while the deep layers capture more high-level seman-
tic information but with less spatial details. Taking features
from different convolutional layers into account can get more
precise localization and achieve high-level semantics at the
same time. Thus in this paper, we re-architect and fine-tune
the VGG-16 [5] network and use the fully convolutional net-
work. Multiscale convolution and deconvolution operations
are used to make the output of the network has the same size
with the input while capturing the local and global context as
well as features at various resolutions to make a more accurate
foreground segmentation result.

Our contributions lie in two aspects: first, we propose a
novel multiscale fully convolutional network (MFCN) archi-
tecture which takes advantage of different layer features
for background subtraction. Extensive experiments are per-
formed on the CDnet 2014 and SBM-RGBD dataset. The
results show that the proposed approach is superior to the
existing state-of-the-art methods and also shows real-time
performance. Second, we show that in contrast to traditional
background subtraction methods which contain complex
background modeling and updating processes, our method
can simplify these steps into a simple network classification
process.

The rest of this paper is organized as follows. Section II
gives a brief introduction of related works. Section III
describes the framework of the proposed MFCN-based back-
ground subtraction method. Section IV shows the experimen-
tal results carried out on the CDnet 2014 and SBM-RGBD
dataset compared with other state-of-the-art methods. Final
conclusions are given in Section V.

Il. RELATED WORKS

There are various kinds of background subtraction algo-
rithms, and it is difficult to review all prior works here. Read-
ers are recommended to refer to [1] and [2] for a thorough
review of background subtraction. In this section, we focus
on several traditional background subtraction algorithms first
and then discuss more recently CNN-based background sub-
traction algorithms.

A. TRADITIONAL BACKGROUND SUBTRACTION

Traditional background subtraction methods mainly man-
ifest in two aspects. The first one is to construct more
advanced background models. For example, a very classic
and popular background subtraction method GMM was pro-
posed in [18], which models each pixel with a mixture of
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Gaussian. As further development, more flexible and adap-
tive variations were proposed in [19] and [20] to improve
the model update speed and the model stability. In [21],
Elgammal et al. proposed a nonparametric approach based
on kernel density estimation (KDE), which directly esti-
mates the pixel probability distribution function from the
data without any prior assumptions. The algorithm presented
in [22] and [23] named SOBS implements a background sub-
traction approach based on self-organizing neural networks
and achieves good results in various situations. ViBe [24] pre-
sented a non-deterministic background subtraction method,
a stochastic update strategy is used to integrate new scene
information into the background model. An improvement of
ViBe called SUBSENSE was proposed in [25] which com-
bines the color and local binary similarity pattern features to
improve the spatial awareness of change detection.

The second one is to employ a more powerful feature
representation such as color features, edge features, motion
features, and texture features. Color features are the most
commonly used to characterize pixel representations, how-
ever, they have some limitations in the presence of challenges
such as camouflage, shadows, and illumination changes. To
deal with these challenges, other features like edge [26],
motion [27] and texture [28], [29] features are proposed.
The edge features have the merit of dealing with local
illumination change and the ghost problems. The motion
features are usually calculated via optical flow, so it is
computationally expensive. The local binary pattern (LBP)
feature [28] is the first texture feature proposed for back-
ground subtraction. An improved version called scale invari-
ant local ternary pattern (SILTP) was proposed in [30], which
exceed LBP in the computational efficiency and tolerance
to noises. In [31], an extended scale invariant local binary
pattern called ESILBP was proposed and shows consider-
able robustness for image noise and illumination variations.
Recently, local bianry similarity pattern (LBSP) was pro-
posed in [25] and [29], which took the spatiotemporal infor-
mation into consideration to enhance the feature discriminant
performance.

B. CNN-BASED BACKGROUND SUBTRACTION

The first CNN-based background subtraction approach was
proposed in [12]. The key idea of their method is: firstly,
a gray scale background image is extracted from several ini-
tialization frames with the temporal median operation. Then,
for each pixel, two small patches with a size of 27 x 27
centered on the pixel are extracted from the input frame and
the background image. Finally, feeding the patches through
the trained network to compute the foreground probability
for that pixel. However, generating the background image
through the temporal median is not always feasible. It is
appropriate only when each background pixel is visible for
more than 50% of the time. Babaee et al. [13] propose a novel
approach for background image generation by combining the
segmentation mask from [25] and [32] to alleviate this issue.
Another CNN-based background subtraction was proposed
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in [14] with a multi-scale and cascade convolutional neural
network architecture. The input frame is first downsampled
into two different scales with 0.75 and 0.5. Then the original
input frame and the scaled frames are fed to a basic CNN
network which contains 4 convolutional layers and 2 fully
connected layers. Finally, the different scale output maps are
resized back to the input size and the final foreground seg-
mentation map is obtained with an average pooling operation
on these upscaled maps. This approach achieved state-of-the-
art results on the CDnet 2014 dataset at present.
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FIGURE 2. Process of the proposed MFCN-based background subtraction
algorithm.
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IlIl. MFCN-BASED BACKGROUND SUBTRACTION

In this section, we will give a detailed description of
the framework for the multiscale fully convolutional net-
work (MFCN) based background subtraction method. Fig. 2
shows the pipeline of our method, which contains two stages.
The training stage and the foreground detection stage. During
the training stage, a few input frames with their correspond-
ing foreground/background label masks are used to train the
model. Once the training process is over, the MFCN model is
used for foreground segmentation across all sequences.

A. TRAINING DATA PREPARATION

In order to train our network, we have two ways to get the
training data. Depending on the way of the training data is
generated, the final background subtraction algorithms can
be viewed as supervised and unsupervised.

1) Supervised: The training frames and their correspond-
ing label masks are taken from the Change Detection
challenge benchmark dataset, whose ground truths are
constructed by the human expert. For example, in the
CDnet 2014 dataset [33], for each sequence, we con-
sider the first 3000 frames (with the ground truths
available) as the initialization process (this is about
2 minutes length of video with the frame rate of 25fps).
Then, a subset of 200 frames is randomly and manu-
ally selected from these frames. Finally, the selected
frames with their corresponding ground truths are used
to train the model. If the sequence frame number is less
than 3000, the training frames are selected across the
whole frames. This strategy has a disadvantage that it
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FIGURE 3. Architecture of the proposed MFCN for background subtraction. This architecture is based on the VGG [5] network, which is
separated into five stages by max pooling operations. In order to effectively utilize multiscale features from different stages, a set of
convolution and deconvolution operations with the stepwise upsampling strategy are used to aggregate multiscale features, making a feature
representation that contains more category-level information and fine-grain details.

requires human intervention, but it can greatly improve
the detection accuracy.

Unsupervised: The training frames and their cor-
responding label masks are taken from the results
generated by other existing background subtraction
algorithms. For example, we can use the results gen-
erated by PAWCS [34], which is currently average
ranked the first on the CDnet 2014 dataset, as the
training data. This strategy has the advantage that it is
unsupervised, without human intervention. However,
the disadvantage is that the final classification accu-
racy is determined by the performance of the chosed
algorithm.

In this paper, we mainly focus on training the network in a
supervised manner. After all the training frames and the label
masks have been collected, pre-processing is performed on
these data. As we will show in section III-B, our network is
based on the VGG-16 [5] network architecture and the inputs
are with a size of 288 x 288 x 3, so we have to pre-resize
all training frames to the fixed size 288 x 288 x 3 (for gray
images, we just set the R, G and B channels equal to the gray
intensities) and then a mean subtraction is operated on each
pixel. For the label masks, since we treat the background and
foreground segmentation as a binary classification problem,
thus the corresponding training label masks will have two

2)
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channels (2 classes) with a size of 288 x 288 x 2. The label
value is given by:

17
07

if class(p) = foreground,;

W= ey

otherwise.,

where p denotes the pixels in the label masks.

B. NETWORK ARCHITECTURE

The architecture of the proposed MFCN is shown in Fig. 3.
A fully convolutional network architecture with multiscale
convolution and deconvolution operations. Unlike the previ-
ous works [12], [13], our method has no need to extract the
background images. The input of our network is the RGB
frame from different sequences, the output is a probability
map (one channel, the size of which is the same as the input).
Here we organize our network into three parts: the pink
dashed box (the first row), the orange dashed box (the second
row) and the purple dashed box (the third row).

The pink dashed box contains the VGG-16 [5] network.
As in our experiment, only a small number of training data is
available, therefore we fine-tune our model on the VGG-16
network. Compared with training a new network from ran-
dom initialization, this method can result in better accuracy.
We can split the VGG-16 network into 5 stages with each
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containing some convolution and max pooling operations.
The sizes of the corresponding output layers are shown
in Fig. 3. We can see that the lower layers have higher spatial
resolutions but perceive only low-level local features, while
the deeper layers can perceive more high-level global features
but are with lower resolutions. Be different with the original
VGG-16 network, we have to make some modifications so
that it is suitable for our tasks: firstly, we cut the last stage of
the VGG-16 network, including all the fully connected layers.
The fully connected layers contain more high-level semantic
information but with less spatial details, which is unsuitable
for the background subtraction task. And the fully connected
layers are computationally expensive, trimming these layers
can significantly reduce the complexity of our model and
improve the detection speed. Secondly, as we mentioned
earlier, taking features from different convolutional layers
into account can not only get more precise localization and
but also achieve high-level semantics at the same time. Then,
in order to aggregate these multiscale features from different
feature layers, 3 x 3 convolution kernels are operated on the
max pooling output layer in each stage, respectively F, F3,
F3, F4 and F5 in Fig. 3. The output convolution feature maps
(X1, X2, X3, X4 and Xs) keep the same spatial resolution with
the upper layers and all of them have 128 channels.

The orange dashed box contains the multiscale features
(X1, X2, X3, X4 and Xs) extracted from different stages of
VGG-16 and the contrast features (Cy, Co, C3, C4 and Cs).
The contrast feature layers are used to extract the outstanding
difference between foreground object and its local neighbor-
hood region. Since in this paper, we treat the background and
foreground segmentation as a binary classification problem.
From the output binary masks we can see that there is a
great contrast between the foreground objects and their back-
grounds, and in most cases the foreground objects are uniform
connected areas, which means that in the input frames, there
should also have a big difference of the features between the
foreground and the background. So in order to extract this
kind of contrast information, we add a contrast layer after
the feature layer X;. The contrast feature C; is calculated as
follows:

Ci = X; — avgPool(X;), 2)

where avgPool(X;) is the average pooling operation on the
feature X; with a kernel size of 3 x 3. Then the difference
between X; and its local average result avgPool(X;) represents
the contrast information.

After getting the multiscale features from different layers,
a set of deconvolution operations is used to upsample these
feature maps to make the final output probability map has the
same size as the input, as shown in the purple dashed box of
Fig. 3. However, instead of upsampling the feature maps with
a fixed ratio in [8], e.g: 8x, 16x and 32x. We adopt a stepwise
upsampling strategy to produce more refined feature maps.
Firstly, the feature map Xs from the fifth stage of the VGG-16
network is concatenated with its contrast feature Cs on the
last dimension. The concatenated feature is upsampling by a
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factor of 2 with the deconvolution operation to get the new
deconvolution layer Ds. Then, the feature D5 is concatenated
with the feature map X4 and its contrast feature C4 from
the fourth stage of VGG-16. Upsampling the concatenated
feature as before and get the next stage deconvolution layer
Dy. After five stages of deconvolution operations, the features
maps with different scales are integrated and upsampled to the
input size. These operations can be expressed as follows:

D;_1 = Decomv(Concat(X;, C;, D;)). 3)

The Concat is the concatenation operation of the feature maps
on the last dimension and the Decony is the deconvolution
operation with a kernel size of 3 x 3 and stride is 2. In the
end, the last deconvolution feature layer D has a size of 288 x
288 x 640. Then, convolution kernel with a size of 1 x 1 is
operated on D and producing a score layer which contains
two channels. Finally, a softmax operation is performed on
the score layer to get the final foreground probability map.

For the loss function, due to the distribution of fore-
ground/background pixels is heavily biased, we use the class-
balancing cross-entropy loss, which was firstly proposed
in [35] for contour detection tasks. Let’s denote the training
dataas S = {(Iy, Yn),n = 1,..., N},, where [, is the input
images, and Y, = {y},”),p = 1,..., ||} is the predicted
labels. y,(,") € {0, 1}, which is defined in Equation (1). Then
the loss function is defined as follows:

LW)=—B Z logPr(y, = 11I; W)
peYy

—(1=B) Y logPr(y, =O0lI; W), (4)

peY_

where W denotes the learning parameters of the network
model and B is used to handle the imbalance of the back-
ground and foreground pixels numbers. Here, 8 = |Y_|/|Y|
and 1 — B8 = |Y4|/|Y]. Y+ and Y_ denote the foreground
and the background of the label mask Y, respectively. The
probability Pr(-) is computed by using a sigmoid function
o (-) on the final activation layer.

C. IMPLEMENTATION AND TRAINING DETAILS

Table 1 summarized the detailed configuration of the pro-
posed multiscale fully convolution network which have been
presented in Fig. 3. Here “conv” denotes the convolu-
tion operation, ‘““max-pool” denotes the max pooling opera-
tion, “avgPool” denotes the average pooling operation and
“deconv” denotes the deconvolution operation. The input
layer corresponds to the input frames, and the output layer
is the probability maps have the same size as the input.

Our MFCN model is implemented in TensorFlow [36]. The
layers from the VGG-16 are initialized with the pre-trained
weights [5], while other weights are initialized randomly with
a truncated normal distribution A(0, 0.01). The AdamOpti-
mizer method is used for updating our model parameters with
a learning rate of 10~*. During the training stage, the training
data are augmented with horizontal flipping. Each category
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TABLE 1. Detailed configuration of the proposed multiscale fully
convolution network for background subtraction.

name kernel stride pad output size
input image - - - 288%288*3
convl-1 3%3 1 Yes 288*288%64
convl-2 3*3 1 Yes 288*288*64
max-pooll 2%2 2 No 144*144*64
conv2-1 3%3 1 Yes 144*144*128
conv2-2 3#3 1 Yes 144*144*128
max-pool2 2%2 2 No 72%72%128
conv3-1 3*3 1 Yes 72%72%256
conv3-2 3%3 1 Yes 72%72*%256
conv3-3 3*3 1 Yes 72*%72%256
max-pool3 2%2 2 No 36*36%256
conv4-1 3*3 1 Yes 36%36*512
conv4-2 3%3 1 Yes 36%36*512
conv4-3 3*3 1 Yes 36%36*512
max-pool4 2%2 2 No 18*18*512
conv5-1 3%3 1 Yes 18*18*512
conv5-2 3%3 1 Yes 18*18*512
conv5-3 3*3 1 Yes 18*18*512
max-pool5 2*2 2 No 9%9*512
conv-X1 3%3 1 Yes 144*144*128
conv-X2 3*3 1 Yes 72¥72%128
conv-X3 3*3 1 Yes 36%36%128
conv-X4 3%3 1 Yes 18*18*128
conv-X5 3*3 1 Yes 9*%9%128
avgPool-C1 3*3 1 Yes 144*144*128
avgPool-C2 3*3 1 Yes 72%72*%128
avgPool-C3 3%3 1 Yes 36%36*128
avgPool-C4 3*3 1 Yes 18*18%128
avgPool-C5 3%3 1 Yes 9%9*128
deconv-D5 3%3 2 Yes 18*18*128
deconv-D4 3*3 2 Yes 36%36%256
deconv-D3 3*3 2 Yes 72*%72%384
deconv-D2 3%3 2 Yes 144*144*512
deconv-D1 3*3 2 Yes 288%288*640
output 1%*1 1 No 288*288%2

video is trained for 20 epochs with a batch size of 5 frames.
It takes about 17 hours to finish the whole training process
with an NVIDIA Titan Xp GPU for the 53 sequences (each
sequence is about 20mins) from the CDnet 2014 dataset
and about 2 hours for the whole training frames from the
SBM-RBGD dataset.

IV. EXPERIMENTAL RESULTS

This section describes the details about the evaluation dataset
and metrics and presents the quantitative and qualitative
results of the proposed algorithm.

A. EVALUATION DATASETS

As we mentioned early, we use two different datasets to
evaluate the proposed algorithm. There are certain require-
ments for finding proper datasets for algorithm evaluation,
especially in the research area of deep learning. The most
important, a large number of labeled samples is necessary
for training the network models. And the video sequences
must span across a wide variety of categories under different
challenges to make an exhaustive evaluation of the algo-
rithm’s capabilities. In this paper, we evaluate the proposed
MFCN-based background subtraction method on the CDnet
2014 dataset [33] and the SBM-RGBD dataset [37] provided
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for the Change Detection Challenge, which with the goal
of allowing performance comparison for recent and future
background subtraction methods.

TABLE 2. Overview of the CDnet 2014 dataset.

Category  Videos Total Frames Evaluation Frames
baseline 4 6049 4413
cameral 4 6420 3134
dynamic 6 18871 13276
intermittent 6 18650 12111
shadow 6 16949 14105
thermal 5 21100 18055
badWeather 4 20900 17904
lowFramerate 4 9400 5204
nightVideos 6 16609 12285
PTZ 4 8630 5534
turbulence 4 15700 12204
Total 53 159278 121721

1) CDnet 2014 DATASET

The CDnet 2014 dataset consists of 53 videos from realistic
scenarios with nearly 160 000 frames. Accurate human con-
structed ground truths are available for all sequences. These
sequences are grouped into 11 categories namely: “base-
line”, “camera jitter”, “dynamic background”, “intermit-
tent object motion”, ““shadow”, “thermal”, “‘bad weather”,
“low framerate”, “‘night videos”, “pan-tilt-zoom™ and ““tur-
bulence”. This is currently the most complete dataset for
background subtraction. Among them, the first six sequences
constitute the CDnet 2012 dataset. A complete overview of
this dataset is depicted in Table 2. And Fig. 4 shows some
sample frames and their corresponding ground truths. Over
the years numerous background subtraction methods have
been evaluated on this dataset and their quantitative results
are published on the website. Therefore, in this paper, we use
the CDnet 2014 dataset as our primary evaluation dataset.

2) SBM-RGBD DATASET

The SBM-RGBD dataset [37] provides all facilities for the
SBM-RGBD Challenge, a set of ground-truthed synchro-
nized color and depth sequences acquired by RGBD sensors.
This dataset consists of 33 videos (nearly 15 000 frames)
captured in video surveillance and smart environment sce-
narios. These videos span seven categories: ‘‘bootstrapping”’,
“color camouflage”, ‘“depth camouflage”, “illumination
changes”, ‘“‘intermittent motion”, “out of sensor range”,
and “‘shadows”. All sequences come with pixel-wise ground
truth labels and quantitative evaluation is made across
whole sequences. However, be different with the CDnet
2014 dataset, for each sequence, only a few random frames’
ground truths are publicly available on the website (about
1080 frames in the whole ~15 000 frames).

B. EVALUATION METRICS
In order to make an exhaustive competitive compari-
son between different background subtraction methods,
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FIGURE 4. The CDnet 2014 dataset [33]: The first row shows an original frame from each category and the second row shows its ground truth. From left to

right: “baseline”, “camera jitter”, “intermittent object motion”, “thermal”, “pan-tilt-zoom” and “bad weather”.

seven different performance metrics have been defined
in [33] and [37]: Let TP stands for true positives and rep-
resents the number of correctly classified foreground pixels,
TN stands for true negatives and represents the number of
correctly classified background pixels, FN stands for false
negatives and represents the number of incorrectly classified
foreground pixels, and FP stands for false positives and
represents the number of incorrectly classified background
pixels. The seven metrics are defined as follows: Recall (Re),
Specificity (Sp), False positive rate (FPR), False negative rate
(FNR), Percentage of wrong classifications (PWC), Precision
(Pr), F-Measure (FM).

TP
o Recall (Re) = TPLFN
o Specificity (Sp) = T,\,T—i/FP
« False positive rate (FPR) = st
« False negative rate (FNR) =

N
TP+FN
o Percentage of wrong classifications (PWC) = 100 -

FN+FP
TP+FN+FP+IN P
o Precision (Pr) = TP1FP

o F-Measure (FM) =2 - Iief;f,

With the standardized evaluation tool provided by [33],
we can easily compare our method with other state-of-the-
art methods based on these metrics. For PWC, FNR and
FPR metrics, lower values indicate higher accuracy, while for
Recall, Specificity, Precision and F-Measure metrics, higher
values indicate better performance. Among these metrics,
we are especially interested in the F-Measure (FM) metric,
which is commonly accepted as a good indicator of the
overall performance of the background subtraction methods.
Generally, if a method has high Recall scores without sac-
rificing Precision, that’s a good algorithm. The F-Measure
metric represents a balance between the Recall and Precision.
As shown in [33], most state-of-the-art methods typically
exhibit higher F-Measure scores than the worse performing
methods.

C. POST PROCESSING

During the foreground detection stage, the foreground prob-
ability map is obtained with a softmax operation on the last
score layer. Then the threshold is applied to the probability
map and achieve the final binary mask. We test the threshold
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FIGURE 5. F-Measure scores of MFCN evaluated with different threshold
values.

value from O to 0.6 to find the optimal for our method.
Fig. 5 shows how the F-Measure scores vary with different
threshold values on the CDnet 2014 dataset. We can see that
a threshold with 0.05 gives the best performance.

TABLE 3. Overall results in F-Measure with different sizes of median
filter for post processing on the CDnet 2014 dataset.

None 3x3 5x5 7x7 9x9
FM 09817 09824 09830 0.9821 0.9790

11 x 11
0.9754

Since the classify decision is made independently for each
pixel. The foreground segmentation result can be benefited
from regularization step, which combines information from
neighboring pixels and assigns homogeneous labels on uni-
form regions. In our method, a simple median filter is used to
enhance the spatial coherency and reduce the noises. Table 3
presents results with different median filter sizes. It can be
seen that strong median filtering leads to higher F-Measure
but it is also important to note that it also increases computa-
tional complexity. In this paper, we use a 5 x 5 median filter
for all our experiments.

D. EXPERIMENTS ON THE CDNET 2014 DATASET

1) QUANTITATIVE EVALUATION

Firstly, to demonstrate our key contribution, the superior-
ity of the proposed multiscale fully convolutional network
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MFCN_ MFCN

FIGURE 6. Visual comparison of foreground object detection results with different network architectures. (a) Input frame. (b) Ground Truth.
(c) Detection results of FCN architecture. (d) Detection results of MFCN_ architecture. (e) Detection results of MFCN architecture.

TABLE 4. Average performance comparison of different network
architecture on the CDnet 2014 dataset.

Network Recall Precision F-Measure
FCN 0.88438 0.9178 0.8975
MFCN_ 0.9462 0.9881 0.9662
MFCN 0.9828 0.9841 0.9830

architecture, we implemented two another models. The first
one is based on the FCN [8] architecture but with 2 class
output. The second one (denoted as MFCN_) is based on
the MFCN architecture without contrast layers (C; ~ Cs,).
In Table 4, we present the results of performance compar-
ison. Here, we can see that MFCN outperforms others on
F-Measure with a large margin and the Recall, Precision,
and F-Measure scores of FCN are much lower than MFCN_
and MFCN. For MFCN_, although its Precision is larger
than MFCN, the Recall is too low, so its F-Measure is much
lower than MFCN. In Fig. 6, we made a visual comparison
of foreground object detection results with these different
architectures on two sequences. We can notice that results
produced by FCN are very coarse, which contain many holes
(False Negative pixels) and unconnected regions. However,
for MFCN_ and MFCN, benefiting from stepwise upsam-
pling strategy to combine different scales features, the final
detection results are much more accurate. From Fig. 6, we
can also see that the main difference between MFCN_ and
MEFCN is foreground object boundaries. Without the contrast
layers, the foreground object boundaries of MFCN_ are not
well preserved, which made the final foreground results much
thinner and less accurate.

Secondly, we present the detail performance evaluation
results of our method in Table 5, seven metric scores are
reported. We can see that our method achieves an over
F-Measure of 0.9830 on the dataset. On CDnet 2012 dataset
(the first six categories), which mainly deals with traditional
challenges of background subtraction, the F-Measure scores
are all more than 0.98. For the latter five new add categories
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from CDnet 2014, which include videos captured under out-
side snowy conditions, low framerate videos with wavering
global lighting conditions, urban traffic surveillance videos
captured at night with glare effect caused by car headlights,
videos obtained with pan-tilt-zoom cameras and long dis-
tance thermal surveillance videos with air turbulence under
high temperature environments, although these categories are
much harder to deal with, the results show that in addition
to the lowFramerate, the F-Measure of other categories are
all more than 0.97. As demonstrated in [14], a method with
a F-Measure above 0.94 and a PWC below 0.9, then the
segmentation results may be considered almost as good as
the ground truth, since a simple dilation (or erosion) of one
(or two) pixel of the ground truth may result in the F-Measure
drop from 1.0 to about 0.94. This again shows the efficiency
of our method. The reason for the F-Measure of lowFramerate
and nightVideos are little lower may be due to the fact that
the training data from CDnet 2014 contain more noise than
CDnet 2012. We know that the ground truth labels provided
from CDnet 2014 contain many out of scope regions, and
the pixel classes are not defined in these regions. However,
in our training data preparation stage, we treat these pixels
as background, which may affect the accuracy of the model
trained. If all the training pixels are labeled in the ground
truth, we may get higher accuracy.

Finally, we also compare our MFCN-based method with
some classical and state-of-the-art background subtraction
methods. Due to space limitations, we choose following
nine methods: CascadeCNN [14], IUTIS-5 [38], Shared-
Model [39], DeepBS [13], WeSamBE [40], SuBSENSE [25],
PAWCS [34], C-EFIC [41], GMM [18]. Among them, Cas-
cadeCNN and DeepBS are CNN-based methods. In Table 6
we give the detail per-category F-Measure comparisons. The
results are from the online evaluation server.! (Note: our
result can be visited at here.)> And for a specific category,
if the method obtains the best performance, the corresponding

1 http://jacarini.dinf.usherbrooke.ca/results2014/
2http://jacarini.dinf.usherbrooke.ca/resu1ts2014/497/
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TABLE 5. Complete results obtained with the proposed method on the CDnet 2014 dataset.

Category Recall Specificity FPR FNR PWC Precision F-Measure

baseline 0.9897 0.9999 0.0001 0.0102 0.0393 0.9965 0.9931

cameraJ 0.9918 0.9998 0.0002 0.0082 0.0491 0.9960 0.9939

dynamic 0.9923 0.9999 0.0001 0.0076 0.0098 0.9989 0.9956

intermittent 0.9665 0.9998 0.0001 0.0334 0.2024 0.9985 0.9822

shadow 0.9873 0.9998 0.0002 0.0126 0.0647 0.9949 0.9911

thermal 0.9780 0.9998 0.0002 0.0220 0.0965 0.9968 0.9873

badWeather 0.9860 0.9998 0.0002 0.0139 0.0431 0.9843 0.9852

lowFramerate 0.9846 0.9998 0.0002 0.0153 0.0383 0.9317 0.9550

nightVideos 0.9681 0.9994 0.0006 0.0319 0.1280 0.9722 0.9701

PTZ 0.9864 0.9998 0.0002 0.0136 0.0247 0.9859 0.9860

turbulence 0.9793 0.9998 0.0002 0.0206 0.0287 0.9688 0.9740

Overall 0.9828 0.9998 0.0002 0.0172 0.0659 0.9841 0.9830

TABLE 6. Overall and per-category F-Measure scores on the CDnet 2014 dataset by different methods.

Method Overall Fbaseline Fca’m.jitt den.bg. Fint.mot. Fshadow Ftherma,l Fbad.wea. Flow.fr. Fnight Fprz Ft'rubul,
MFCN 0.9814  0.9931 0.9939 0.9956 0.9822 0.9911 0.9873 0.9881 0.9353 0.9764 0.9818 0.9709
CascadeCNN [14] 0.9209  0.9786 0.9758 0.9658 0.8505 0.9593 0.8958 0.9431 0.8370  0.8965 0.9168 0.9108
TUTIS-5 [38] 0.7717  0.9567 0.8332 0.8902 0.7296 0.8766 0.8303 0.8248 0.7743  0.5290 0.4282 0.7836
SharedModel [39] 0.7474  0.9522 0.8141 0.8222 0.6727 0.8898 0.8319 0.8480 0.7286  0.5419 0.3860 0.7339
DeepBS [13] 0.7458  0.9580 0.8990 0.8761 0.6098 0.9304 0.7583 0.8301 0.6002 0.5835 0.3133  0.8455
WeSamBE [40] 0.7446  0.9413 0.7976 0.7440 0.7392 0.8999 0.7962 0.8608 0.6602  0.5929 0.3844 0.7737
SuBSENSE [25] 0.7408  0.9503 0.8152 0.8177 0.6569 0.8986 0.8171 0.8619 0.6445 0.5599 0.3476  0.7792
PAWCS [34] 0.7403  0.9397 0.8137 0.8938 0.7764 0.8913 0.8324 0.8152 0.6588 0.4152 0.4615 0.6450
C-EFIC [41] 0.7307  0.9309 0.8248 0.5627 0.6229 0.8778 0.8349 0.7867 0.6806 0.6677 0.6207 0.6275
GMM [18] 0.5566  0.8382 0.5670 0.6328 0.5325 0.7322 0.6548 0.7406 0.5065 0.3960 0.1046 0.4169

F-Measure value is highlighted in bold. We can see that
our method gets the highest F-Measure in all eleven cate-
gories, and the overall F-Measure score of our method is
a big improvement compared with the current top method
CascadeCNN. According to the statement of [13], current
CNN-based background subtraction methods are scene spe-
cific, a model can only be used in a single scene. Thus the
authors proposed to train a universal network with data from
multiple scenes and achieve a universal model that can handle
various scenes. It could be argued whether it is suitable for
practical application. From the point of view of research,
we also try to train a new model with all the training data
from different sequences. The experimental results show that
even using one model we also get the overall F-Measure
of 0.9763 on the CDnet 2014 dataset, a little bit worse than
the scene specific MFCN model, but a huge improvement
than [13] of 0.7458. This fully demonstrates the effectiveness
of our network architecture.

2) QUALITATIVE EVALUATION

To make a better visual comparison of the segmentation
results under different challenges, we select the following
sequences (without training frame): highway (815th) from
the “baseline” category, traffic (1481th) from the “‘camera
jitter” category, sofa (2019th) from the ““intermittent object
motion” category, diningRoom (3166th) from the ‘“‘thermal”
category, turnpike_0_5fps (1011th) from the “low framer-
ate” category and twoPositionPTZCam (1041th) from the
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“pan-tilt-zoom™ category. As shown in Fig. 7, the first col-
umn displays the input frames and the second column shows
the corresponding ground truth. From the third column to
the eighth column, the segmentation results of the following
method are showed: our method (MFCN), CascadeCNN,
IUTIS-S5, DeepBS, SubSENSE and GMM. Visually, we can
see that our results look better than all other methods, which
show good agreement with the quantitative evaluation results.
In the highway sequence which contains dynamic back-
ground (waving trees) and shadows, the segmentation results
of our method are closest to the ground truth. In the traf-
fic sequence with camera vibration challenge, the repetitive
motions of the background objects resulting in many false
positives are avoided in our method. And compared with
other CNN-based methods CascadeCNN and DeepBS, which
segment the foreground objects with several false negatives
regions, our multiscale fully convolutional based method can
learn more hierarchical features and segment the foreground
object more accurately. Sofa sequence contains challenge
about intermittent object motion. One man wearing a dark
trouser and its color and texture is very similar to the sofa.
In this case, even people are difficult to segment accurately,
but our method also performs well in such environment with
a concatenate and perfect foreground mask. The results of
other method either include holes or divide foreground object
into several parts. For the box left on the sofa which should
be considered as foreground, we can observe that many
methods absorb it into the background, resulting in many
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FIGURE 7. Qualitative performance comparison for various sequences (from top to bottom: highway, traffic, sofa, diningRoom, turnpike_0_5fps and
twoPositionPTZCam). The first column to the last column: input frame, ground truth, our segmentation result, CascadeCNN [14], IUTIS-5 [38], DeepBS [13],

SubSENSE [25] and GMM [18] segmentation results.

false negatives while the proposed method can successfully
detect the object. In the diningRoom sequence from the ther-
mal category which contains infrared images with a narrow
distribution range of pixel values. Although the foreground
segmentation results of this frame are little difference with the
ground truth, interesting, when we turned back and checked
the original input frames, we found that from the human
point of view, our segmentation results are more reasonable.
The small region under the hand should not be considered
as foreground. Turnpike_0_5fps sequence is obtained from
low framerate videos. There may have a huge difference
between adjacent frames. We can see that the foreground
detected results from traditional methods are very noise.
Results for our method are more close to the ground truth.
In the twoPositionPTZCam sequence from the pan-tilt-zoom
category, although the camera is not static, our method also
detects the moving car perfectly. This again demonstrates the
effectiveness of our method in difficult situations.

E. EXPERIMENTS ON THE SBM-RGBD DATASET

For the evaluation of the proposed method in the SBM-RGBD
dataset, the following algorithms are compared: RGBD-
SOBS [43] and RGB-SOBS [23], SCAD [42], SRPCA [45],
and CwisarDH+ [44]. It should be noted that most of these
methods exploit color and depth features for the background
modeling, but the proposed method only uses RGB color
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information as well as the RGB-SOBS method. Since the
whole ground truths are not available and the average pro-
vided ground truths frames for each sequence is about 30.
It is difficult to train a model for each sequence due to the
small mount of training data. So in the SBM-RGBD dataset,
we only train one model with all training frames (about
1080 frames) from different sequences. Then the trained
model is run across the whole dataset for foreground detec-
tion. Finally, we upload our results to make a quantitative
comparison. In Table 7, we report average results for seven
metrics on the whole dataset (the results are reported by
the online evaluation server.)3 For the Ls_ds and TimeOf-
Day_ds sequences in the dataset, there have no foreground
objects through the whole duration, this leads to undefined
values of Precision, Recall, and F-Measure metrics. So the
average results are reported on the rest 31 sequences. From
Table 7, we can see that the proposed method MFCN surpass
all other methods in every metrics. Compared with CDnet
2014 dataset, the SBM-RGBD dataset contains stronger
illumination changes, camouflage, and shadows. From the
comparison between RGBD-SOBS and RGB-SOBS, we can
see that a combination of color and depth information for
foreground segmentation has a great improvement compared
to the use of only color information. However, although

3 http://rgbd2017.na.icar.cnr.it/SBM-RGBDchallengeResults.html
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TABLE 7. Average results on the SBM-RGBD dataset.

Method Recall Specificity FPR FNR PWC Precision F-Measure
MFCN 0.9907 0.9981 0.0019 0.0093 0.2547 0.9807 0.9856
SCAD [42] 0.9503 0.9914 0.0086 0.0497 1.1476 0.9323 0.9391
RGBD-SOBS [43] 0.9035 0.9949 0.0051 0.0965 1.2726 0.9473 0.9211
CwisarDH+ [44] 0.8434 0.9810 0.0190 0.1566 2.9010 0.8301 0.8254
SRPCA [45] 0.8611 0.9730 0.0270 0.1389 3.2551 0.8102 0.8210
RGB-SOBS [23] 0.8381 0.9763 0.0237 0.1619 4.7902 0.8125 0.7882

our algorithm only takes color information into considera-
tion, it still achieves state-of-the-art performance with the
F-Measure score of 0.9856. A new network architecture
which combines color and depth features will be our future
work.

F. PROCESSING SPEED

We know that background subtraction is often the first step in
many high-level computer vision systems. Processing speed
is the critical factor for researchers to be considered before
choosing which method to use. During the detection stage,
our MFCN method is run on the Ubuntu 16.04 operating
system with an NVIDIA Titan Xp GPU, the average frame
rate is nearly 20 fps(frames per second), which shows real
time potential.

V. CONCLUSION

In this paper, we present a multiscale fully convolutional
network (MFCN) architecture which takes advantage of dif-
ferent layer features for background subtraction. Benefit-
ting from the deep features learned from different layers
and the fully convolutional network architecture, our method
achieves much higher foreground detection accuracy. And
we also show that without building complex background
models, the background subtraction process can be easily
solved by the network classification. Experiments evaluated
on the CDnet 2014 and SBM-RGBD dataset demonstrate that
our method outperforms recent state-of-the-art background
subtraction methods and has the potential for real-time
applications.
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