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ABSTRACT This paper investigates the system testing scheduling problem (STSP), using one of the largest
computermanufacturing companies in theworld as a case study. Amixed integer linear programming (MILP)
model and a restricted simulated annealing (RSA) heuristic which applies two rules to eliminate ineffective
job moves to minimize makespan in the STSP are presented. The proposed RSA is empirically evaluated
using 188 simulation instances derived from the characteristics of a real technology company. The RSA
computational results are compared with those of the traditional simulated annealing (SA) and the artificial
bee colony (ABC) algorithms. The statistical results demonstrate that the RSA, SA, and ABC provide much
better solutions than the MILP model solved using Gurobi solver for small problems within a reasonable
execution time. The RSA offers significant improvements over the SA and ABC algorithms when applied to
large problems. The simulation results demonstrate that the proposed RSA heuristic significantly decreases
system testing makespan in a computer manufacturing plant at Taiwan.

INDEX TERMS System testing, scheduling, parallel machines.

I. INTRODUCTION
The rapid development of Taiwan’s electronics industry
began in the 1980s, when companies first started producing
personal computers (PCs), which became one of the prin-
cipal driving elements in the development of essentially all
modern technology. In the 2010s, PC products included desk-
top computers, laptop (or notebook) computers and tablet
computers. The manufacturers’ excellent research and design
(R&D), mass production, logistics and service made Tai-
wan one of the world’s largest PC production centers. In
order to enhance competitiveness, PC manufacturers must
deliver targeted specifications, achieve cost targets within
a set development timetable and realize high-quality prod-
ucts [1]. In the product development phase, system testing
is one of the most important aspects in the production of
high-quality PCs.

System testing is actually a series of different tests which
exercise a full computer-based system. In practice, devel-
oping a better schedule to minimize the makespan of the
system testing process is the key to improving production

performance, shortening the product testing cycle, and even
reducing manufacturing costs [2], [3]. The system testing
scheduling problem (STSP) considered in this study is a
variant of minimizing the makespan of the identical parallel
machine scheduling problem (IPMSP) under resource con-
straints, where each PC represents a machine and each test
item corresponds to a job. Since the classic IPMSP is strongly
NP-hard, the STSP is clearly strongly NP-hard. Given that
IPMSPs arise in a broad range of industrial applications in
both manufacturing and service sectors, many researchers
and practitioners have addressed it in recent decades [4]–[6].
Classical IPMSPs are commonly solved using exact methods
and heuristic algorithms. Heuristic algorithms found in the
literature for solving IPMSPs can further be decomposed
into two subclasses: constructive heuristics and improvement
heuristics. Dispatching rules are examples of construction
heuristics, which are simple rules that prioritize all jobs
waiting for processing on a machine. Improvement heuristics
usually begin with an initial schedule and then iteratively
try to find a better schedule. Due to the computational com-

16464
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-1343-0838
https://orcid.org/0000-0002-9549-5290


S.-W. Lin et al.: Decreasing the System Testing Makespan in a Computer Manufacturing Company

plexity of solving IPMSPs, exact methods in the literature,
such as dynamic programming [7], [8], branch-and-bound
(B&B) algorithms [9], [10], and mixed integer program-
ming models [11] can only be used to solve very small
problems.

In order to meet practical requirements, some priority rules
are simply applied with very low computational complex-
ity. Frequently used priority rules found in the literature for
solving IPMSPs include the Shortest Processing Time rule
(SPT), the Preemptive Shortest Processing Time rule (PSPT),
theWeighted Shortest Processing Time rule (WSPT), the Ear-
liest Due Date rule (EDD), the Longest Processing Time rule
(LPT), the Critical Path rule (CP), the Largest Number of
Successors rule (LNS), the Longest Remaining Processing
Time First rule (LRPT), the Longest Remaining Processing
Time First-Fastest Machine rule (LRPT-FM), and the Short-
est Remaining Processing Time rule (SRPT) [12]. These pri-
ority rules, though simple, do not consistently yield optimal
results. Therefore, most relevant works focus on the develop-
ment of heuristic algorithms, which are simple to apply and
can be very effective.

The most famous improvement heuristics include a family
of rolling horizon procedures, the Tabu search algorithm,
the pseudo-polynomial algorithm, the simulated annealing
(SA) algorithm, the variable neighborhood search method,
the greedy randomized adaptive search procedure and the
approximation algorithm [13]. In these improvement heuris-
tics, metaheuristics are themain alternativemethod of solving
IPMSPs. Metaheuristics are upper level general templates
that can be used as guiding strategies in designing underlying
heuristics to provide ‘‘acceptable’’ solutions in a reasonable
time for specific hard and complex problems [14]. In addition
to being easily understood, metaheuristics also have a greater
potential to be employed effectively; they are therefore state-
of-the-art methods for solving medium- and large-sized IPM-
SPs. Since metaheuristics are very simple, fast, robust and
flexible for solving large optimization problems [15], this
study also designs and implements a metaheuristic to solve
the practical STSP. A detailed discussion of heuristic algo-
rithms for solving IPMSPs can be found in the excellent
survey conducted by Kaabi and Harrath [12], Mokotoff [16],
and Nandagopal et al. [17].

This study investigates the STSP under constraints on
the number of workforces and machines, using a computer
manufacturing plant in Taiwan as a case study. This com-
puter manufacturing plant uses the First Come, First Served
(FCFS) method to schedule all test items that involve man-
ual testing and automated testing, which is implemented as
follows. Given a sequence of test items, the tests of those
items are sequentially scheduled using the machine with the
shortest completion time for the currently assigned test items.
However, the FCFS method typically generates a schedule
that takes a long time to perform the system testing, which
is a priority for improvement. To minimize the makespan
of the addressed STSP, this study develops a mixed integer
linear programming (MILP)model, and a restricted simulated

annealing (RSA) heuristic which is applied two rules to
eliminate ineffective job moves.

The remainder of this paper is arranged as follows. First,
the system testing schedule problem is outlined and for-
mulated. Second, the proposed RSA heuristic is described.
Third, the proposed algorithm is empirically evaluated using
188 simulation instances derived from the characteristics of
a real PC production company in Taiwan, and its perfor-
mance is compared with that of the MILP model, simulated
annealing (SA), and artificial bee colony (ABC) algorithms.
Finally, conclusions are drawn and recommendations for
future research are provided.

II. PROBLEM DESCRIPTION
A traditional method used in the development of PCs consists
of five steps (see Fig. 1) as follows:

(1) AKICKOFFmeeting is held and the product specifica-
tions are finalized. All required people and equipment
should be identified. Relevant personnel participate in
the project meeting to discuss the introduction of the
product, the production schedule, and the assignment
of tasks and work with departments.

(2) The Engineering Verification Test (EVT) takes six to
eight weeks, during which period logic design, lay-
out design and mechanical design are performed, and
electronic components are selected. A product verifi-
cation test is conducted on prototypes to confirm that
the design satisfies the desired product specifications
and performance requirements. The EVT is composed
of basic functional tests, specification verification and
parametric measurements.

(3) The Design Verification Test (DVT) involves intensive
logic and layout modifications. This intensive test-
ing program delivers objective, comprehensive results
that verify all product specifications, original equip-
ment manufacturer requirements, interface standards
and diagnostic commands.

(4) The Production Verification Test (PVT) is performed
when the product moves to the production phase. The
PVT focuses on pre-production or production units.
The purpose of the PVT is to confirm that the design
has been correctly produced. Approximately 100 units
are fabricated for an experiment [18]. The standard
operation procedure is drawn up.

(5) Mass Production (MP) is the final phase of the project.
The contract with the customer determines whether
the manufacturer configures products and packages
them, or ships them as semi-finished products to be
configured and packaged by the customer [18].

The entire process from EVT toMP takes a very long time,
and each stage involves lengthy system testing to ensure prod-
uct quality. In these stages, the testing of software or hardware
is performed using a complete, integrated system, to evaluate
the extent to which the system meets its requirements. When
errors are found, corrective action must be taken.
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FIGURE 1. The procedure of computerized product development.

The STSP considered herein can be formulated as a more
complex variation of the IPMSP with resource constraints.
In this study, each TM is a test machine, each test item
corresponds to a job, and the availability of testers and/or test
machines represents resource constraints. To formulate the
STSP with resource constraints addressed in this study, con-
sider a set J = {1, 2, . . . , n} of n given test items (jobs) that
must be carried out on a set TM = {TM1,TM2, . . . ,TMq}

of q identical TMs. The test items involve manual testing
and automated testing, following the sequence of steps in a
written testing proposal, that is J = Ja ∪ Jm, where Ja is
the set of automated testing items, and Jm represents the set
of manual testing items. The heart of the problem is that the
manual testing is executed by one tester and one machine,
and must be carried out during working hours, and therefore
only on weekdays; the automated testing is performed by one
machine only whenever it is available. Any available TMs
can carry out each test item j ∈ J with an identified testing
time Pj. The setup time is independent of the sequence of the
test item, and is included in the processing time. The lower
bound for the number of jobs assigned to a machine is zero.
The upper bound for the number of jobs assigned to amachine
is restricted by two constraints on resource consumption as
follows: Automated testing items can be tested in any period
of 24 hours if the required test machines are vacant; Manual
testing items can only be tested when the testers are available
during working hours. Each TM can test just one test item at
a time and is persistently available to deal with all scheduled
test items when required. The available working time of
each member of staff (manual testing periods) is the same
and known in advance. The testing times of test items are
non-negative values that are known in advance. Moreover,
the STSP considered in this research satisfies the following
two assumptions:

(1) Each test item can be tested by exactly one of the test
machines.

(2) All test items are available for testing at the beginning
of the scheduling period.

The objective is to obtain a feasible testing schedule
5 = {π1, π2, . . . , πq} for all test items which minimizes
the makespan, Cmax, of the n test items, where πk (k =
1, 2, . . . , q) is the sequence of test items on TMk .

III. MILP MODEL
This section presents a formulation of the STSP of interest.
The MILP model is constructed herein using a case company.
The proposed model can be modified to meet the needs of
other companies as required. To simplify this formulation,
the following notation is used:

Indices

n : Number of test items
q : Number of TMs
r : Number of manual testing periods
i, j: Index of test item, i, j ∈ {1, 2, . . . , n}
k : Index of machine, k ∈ {1, 2, . . . , q}
t : Index of manual testing period, t ∈ {1, 2, . . . , r}
Ja : Set of automated testing items
Jm : Set of manual testing items

Parameters

Ot : Start time of manual testing period t
Wt : End time of manual testing period t
Pj : Time required to test item j
V : A very large positive number

Decision Variables

Aijk = 1, if test item j is processed immediately after test
item i on TMk ;
0, otherwise

A0jk = 1, if test item j is the first item processed on TMk ;
= 0, otherwise

xjt = 1, if test item j is processed inmanual period t;
0, otherwise

Cj: Completion time of test item j (real variable)
Cmax: Maximal completion time (makespan)

of last test item (real variable)

Let job 0 be a dummy initial job. Now the STSP can be
formulated as follows:

Min Cmax

Subject to
n∑

i = 0
i 6= j

q∑
k=1

Aijk = 1, ∀j = 1, . . . , n (1)

n∑
i = 0
i 6= h

Aihk ≥
n∑

j = 1
j 6= h

Ahjk , ∀h=1, . . . , n, ∀k=1, . . . , q

(2)

Cj ≥ Ci +
q∑

k=1

AijkPj + V

( q∑
k=1

Aijk − 1

)
,

∀i = 0, . . . , n, ∀j = 1, . . . , n (3)
r∑
t=1

OtXjt + Pj ≤ Cj ≤
r∑
t=1

WtXjt , j ∈ Jm (4)
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r∑
t=1

Xjt = 1, j ∈ Jm (5)

n∑
j=1

A0jk ≤ 1, ∀k = 1, . . . , q (6)

C0 = 0 (7)

Cmax ≥ Cj, ∀j = 1, . . . , n (8)

Cj ≥ 0,∀j = 1, . . . , n (9)

Aijk = {0, 1} , ∀i = 0, . . . , n,

∀j = 1, . . . , n,∀k = 1, . . . , q (10)

Xjt = {0, 1} , j ∈ Jm, ∀t = 1, . . . , r, (11)

The objective function is to minimize the makespan. Con-
straint set (1) ensures that each test item is tested on only
one machine. Constraint set (2) ensures each item is tested
after one test item (including a dummy test item). Constraint
set (3) defines the relations between the completion times of
test items j and i that are dependent on whether test item j is
processed immediately after test item i on the same machine.
For Constraint set (4) the manual testing item will be pro-
cessed after (or on) the starting time and finished before (or
on) the one manual testing period. Constraint set (5) ensures
that each manual testing is performed in only one manual
testing period. Constraint set (6) ensures that at most one item
is the first to be processed on each machine. Constraint set
(7) defines the completion time of the testing of the dummy
test item as zero. Constraint set (8) defines the makespan.
Constraint set (9) specifies the completion time of each job as
a non-negative real number. Finally, constraint sets (10) and
(11) define the domain of the binary variables. In addition,
Assumptions (1) and (2) of the addressed STSP correspond
to Constraint sets (1) and (9), respectively.

IV. PROPOSED RESTRICTED SIMULATED ANNEALING
ALGORITHM
This section describes the representation of the solution and
the calculation of the objective function value for the RSA
heuristic, and discusses other parts of the RSA used herein to
solve the STSP.

A. BASIC SIMULATED ANNEALING HEURISTIC
The SA heuristic is a commonly used meta-heuristic for
solving hard combinatorial optimization problems. SA mim-
ics the annealing process in metallurgy. Annealing is the
procedure by which rapid cooling results in poor crystal-
lization, whereas slow cooling of metal results in a uni-
form and good crystallization. By analogy, the SA heuristic
is an optimization procedure that reaches a (near-) global
minimum by mimicking the crystallization cooling proce-
dure [14], [15], [19].

In general, the SA heuristic generates an initial solution
as a current solution X by random or dispatch rule(s). Then,
in the following iteration, the SA heuristic randomly chooses
a candidate solution Y from the preset neighborhood solution
of X . The objective function value of Y is then compared

with that of X . If the objective function value of Y is less
than that of X , then it will replace X , after which the search
processes will be continued. In order to escape from a local
minimum, SA allows a worsening candidate as X , based on
a probabilistic criterion derived from the Boltzmann function
and controlled by a gradually reduced temperature. Typically,
this step is repeated until one of the termination conditions is
met.

B. RULES TO ELIMINATE INEFFECTIVE JOB MOVES
In the basic SA heuristic, the set of solutions for neigh-
bor X , N (X ), is generated using a swap operation and an
insertion operation. That is, N (X ) is sampled by randomly
choosing two jobs (test items), which are exchanged with
each other, or by randomly picking one job and placing
it back immediately before another randomly selected job.
However, many of the random job moves yield the same
objective function value, and these are called ineffective job
moves or non-effective job moves [20].

The following two rules can be used to eliminate the
ineffective moves in order to increase the search speed in
this study; (1) if there are exactly two bottleneck machines,
only exchanging one test item from each of them has the
probability to improve the current solution, (2) if there is
exactly one bottleneck machine, then only exchanging one
test item from it has the probability to improve the current
solution. However, if there are more than two bottleneck
machines, then not exchanging two test items can improve the
current solution. Therefore, one test item on any bottleneck
machine is chosen, and the second test item is chosen from
any one machine [21].

When the most recent test item on a bottleneck machine
has been identified, many ineffective job moves can be
recognized and excluded from the neighborhood. To limit the
generation of unnecessary neighborhood solutions, the neigh-
borhood generation of the SA heuristic is revised by apply-
ing the two above rules into the swapping and insertion
operations.

C. REPRESENTATION OF SOLUTION AND CALCULATION
OF VALUE OF OBJECTIVE FUNCTION
In this work, a solution is represented as a sequence of
numbers that comprises a permutation of n test items and
m − 1 zeros, which split the n test items into m parts. For
instance, the solution representation in Figure 2 is inter-
preted as follows: Twenty test items are to be tested on two
machines. The test items are processed on machines 1 and 2
in sequences 4-16-19-13-12-3-1-11-7-10 and 18-17-14-8-15-
6-5-20-2-9, respectively.

When a test item is scheduled and no machine is available,
it must wait until at least one machine becomes available.
If a manual testing item is scheduled to be tested before the
manual testing period begins, then the process is delayed until
the manual testing period begins. If a manual test cannot be
completed before the end of a manual testing period, then it
is delayed until a new manual testing period begins.
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FIGURE 2. An example of solution representation.

D. PARAMETERS USED
The proposed RSA heuristic involves four parameters: Iiter ,
T0, Nnon-improving and α. Iiter represents the number of itera-
tions of the search at a specific temperature. T0 represents the
initial temperature. Nnon-improving is the maximum admissible
number of temperature reductions in which the best objective
function value has not improved. Finally, α is a coefficient
that controls the cooling schedule.

E. PROCEDURE OF PROPOSED RSA HEURISTIC
The proposed RSA heuristic is the traditional SA plus the two
rules introduced in Section IV.B, which is implemented as
follows:
(1) Parameter setting: Set the initial temperature, the cool-

ing rate, the number of iterations at a particular temper-
ature, and the termination condition.

(2) Initial state configuration: Produce initial solution ran-
domly and calculate the objective function value of the
initial solution.

(3) Neighborhood solution generation: Generate a neigh-
borhood solution as discussed in Section IV.B. and
compute the objective function value of a neighborhood
solution.

(4) Acceptance test: Let1 = obj (Y )−obj (X). If1 is not
less than zero, then X is replaced with Y . Otherwise,
the probability of replacing X with Y is exp(−1/T ).
Xbest and Fbest are the best solution and its objective
function value obtained so far.

(4) Temperature reduction check: The current temperature
T is reduced Iiter iterations after the prior temperature
reduction, using the formula T = αT , 0 < α < 1.

(6) Termination condition check: The search procedure is
terminated when the current best solution Xbest has
not improved for Nnon-improving successive temperature
reductions. If the termination condition is not satisfied,
then repeat Steps (3) to (6). Following the termina-
tion of the search procedure, the best solution is given
by Xbest .

V. EXPERIMENT RESULTS AND DISCUSSION
The proposed RSA heuristic was coded in C and tested on
a computer with an Intel Core 2 2.67 GHz CPU. The MILP
model for the STSP was solved using Gurobi 7.0 on the same
machine.

A. TEST PROBLEMS
To demonstrate the applicability of the RSA heuristic to
real situations, 188 real instances obtained from a computer
manufacturing plant were used. Based on the real data from

this case company, the processing time pj (j = 1, . . . , n) is
an integer generated from the uniform distribution [7, 3840].
To confirm the proposed MILP and to compare it with RSA
and SA, another 50 small problem instances were used. Nine-
teen problem instances were used to calibrate the parameters.
One hundred and twenty large problem instances were used
to compare the RSA, SA and ABC algorithms. The ABC
used in the comparison is based on one of the best-performing
existing algorithms for a similar parallel machine scheduling
problem proposed by Lin and Ying [21].
For the 19 problem instances used in parameter calibration,

the number of test items ranged from 20 to 200. The numbers
of machines in these calibration problem instances were two,
five and ten. One number of test items (N ) corresponds to one
problem.
For small problems, the number of test items (N ) had five

values: 10, 15, 20, 25 and 30, with two machines. For each
number of test items, ten instances were randomly generated,
yielding a total of 50 test instances.
For large problems, the number of test items had four

values, which were 100, 150, 200 and 250, and the number
of machines (M ) had three values, which were two, five
and ten. For each combination of N and M , ten instances
were randomly selected. Therefore, 120 instances of the large
problem were used.

B. PARAMETER CALIBRATION
The four key parameters of the proposed RSA include the
initial temperature (T0), the number of iterations at a particu-
lar temperature (Iiter ), the cooling rate (α), and the maximal
admissible number of temperature reductions in which the
best objective function has not improved (Nnon−improving).
To determine appropriate values for them, the Taguchi
method of design of experiment (DOE) [22] is employed
using 19 randomly selected instances. Since each parameter
had four levels (see Table 1), the orthogonal array L16(44)
was applied. As shown in Table 2, the number of parame-
ter combinations was 16. For each parameter combination,
the RSA was run independently 30 times for each of the
19 randomly selected instances. Themakespan of the 30 trials
for each test instance were recorded and the relative percent-
age deviation (RPD) was calculated as RPD = (CP

max −

CBKS
max )/C

BKS
max ×100%, whereCP

max was the average makespan
of the 30 trails obtained using the parameter combination
P, and CBKS

max was the minimum makespan among 30 trials
obtained using all parameter combinations.

The average RPDs for 19 randomly selected instances
obtained using each parameter combination are shown
in Table 3 as the response variable. The significance value of
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TABLE 1. Levels of the parameters for the RSA.

TABLE 2. Orthogonal array and relative percent of deviation (RPD).

TABLE 3. The average relative percent of deviations for each parameter.

TABLE 4. ANOVA of parameters.

each parameter is also analyzed in Table 3. It can be seen that
Nnon-improving is the most significant of the four parameters.
That is, the more computing time used, the better the solution
obtained will be. The Analysis of Variance (ANOVA) of
Parameters is shown in Table 4, which reveals that T0 and
Iiter also have an impact on the solution quality.

Figure 3 presents the effect of each parameter on solu-
tion quality using the average relative percentage deviation

(ARPD). As presented in Fig. 3, the influences of T0 and
α are not as apparent as those of the other two parameters.
In general, if the initial temperature T0 is too high, then
an excessive computational time is required to find better
solutions; If T0 is too low, then the proposed RSA algorithm
will be inclined to converge prematurely as a consequence of
the low probability of accepting poor solutions; A higher α
requires more time to reduce the temperature to the stopping
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FIGURE 3. The effect of each parameter on solution quality. (a) Parameter T0. (b) Parameter α. (c) Parameter Iiter . (d) Parameter Nnon-improving.

value if the RSA terminates at a final temperature. However,
the termination condition of the proposed RSA heuristic
involves the valueNnon-improving, the ranges of solution quality
and computational times are not too wide for various values
of T0 and α, as presented in Figures 3(a) and 3(b). When
Iiter was increased, better solutions were obtained at the cost
of increased computational times, as shown in Fig. 3(c).
As shown in Fig. 3(d), increasing Nnon-improving improved the
quality of the solution at the expense of a higher computa-
tional time. As a trade-off between computational time and
solution quality, T0 = 1.5, α = 0.99, Iiter = 5000L, and
Nnon−improving = 15 are set in RSA, where L denotes the
length of the solution representation.

C. COMPARISON OF RESULTS WITH THOSE OBTAINED BY
MILP USING THE GUROBI SOLVER
In the comparison of results obtained by the RSA heuristic
with those obtained by MILP using the Gurobi solver, each
problem is solved by both RSA, SA and ABC for only one
run. Gurobi 7.0 was used to solve the model. For small

problems with 15 and 20 jobs, it is difficult to solve the MILP
model to optimality in a reasonable amount of time using the
Gurobi solver. In the pilot experiments, it was found that the
incumbent feasible solution obtained after running one hour
of the Gurobi solver usually did not change for some time.
Therefore, the solver was terminated after one hour if it had
not obtained an optimal solution. Table 5 presents solutions to
50 small problem instances and the corresponding computa-
tional times. The Gurobi solver finds optimal solutions to ten
out of 50 problems, as indicated in bold in Table 5. RSA, SA
and ABC also generate optimal solutions to all ten of these
problems with known optimal solutions. For the remaining
50 problems without known optimal solutions, RSA, SA and
ABC find better solutions than the Gurobi solver in 35 out
of 50 problems, respectively, and find solutions equal to
that of Gurobi solver in the remaining 15 problems. The
computational times of RSA, SA and ABC are all less than
three seconds.

Many factors may influence computational time; these
include CPU speed, memory size, operating system,
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TABLE 5. Computional results for the small size of problem.

TABLE 6. Performace comparison for ABC, SA, AND RSA.

compiler, coding skill and precision. Generally, the proposed
RSA, SA and ABC heuristics take no more than 1.2 seconds
to solve small problems, where the Gurobi solver requires
significantly more time to solve. To measure the degree of
improvement, the overall relative percentage deviation (RPD)

is used.RPD is computed as [(CMILP
max −C

h
max)/C

MILP
max ]×100%

where CMILP
max and Ch

max are the makespan values obtained
using MILP and heuristic h, respectively. The RPDs of
RSA and SA are 4.203 and 4.199, respectively. In sum-
mary, the proposed RSA, SA and ABC heuristics obtain
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TABLE 7. Wilcoxon rank tests on MIN. RPD, MEAN RPD, and MAX. RPD.

better solutions in less computation time than the Gurobi
solver.

D. COMPARING RESULTS OBTAINED
USING RSA, SA AND ABC
To validate the performance of the RSA with that of the
SA and ABC heuristics, computational experiments were
carried out on a large problem set. Given the computational
complexity of the STSP, a high-quality solution to a large
problem is typically not readily obtainable. Therefore, for
each benchmark instance of the large problem set, the RPD
values of the RSA SA and ABC heuristics were calculated
using the best solution found by each, according to the fol-
lowing equation:

RPDh =
Ch
max − C

B
max

CB
max

× 100% (12)

where Ch
max and CB

max are the makespan value obtained by
heuristic h and the best obtained solution, respectively.

Table 6 presents the statistical results of the average
makespan (Cmax), RPD and computational times obtained
with the large problem set using the RSA, SA and ABC
heuristics. As shown in Table 6, RSA outperforms both SA
and ABC. Additionally, RSA outperforms SA and ABC on
both solutions obtained and the required computational times.

The best, mean and worst makespan values of the solutions
to each test problem, based on five runs, obtained using RSA
and SA, were used to compute RPD values, which were
denoted as Min.RPD, MeanRPD and Max. RPD. To deter-
mine whether the RSA heuristic outperformed the SA and
ABC algorithms, Wilcoxon Rank tests in terms of Min.RPD,
MeanRPD and Max. RPD were conducted. The analytical
results obtained in Table 7 revealed that, at a confidence
level of α = 0.05, the proposed RSA heuristic significantly
outperformed the SA and ABC in terms of Min. RPD,Mean
RPD and Max. RPD. These statistical results verify that the
two rules to eliminate ineffective job moves applied to RSA
significantly improved the performance of SA and ABC in
solving the STSP problem.

VI. CONCLUSIONS AND FUTURE RESEARCH
This study proposes a novel solution to the STSP, which is
critical in new product development. The novelty of this work
is that the addressed problem with constraints on both the
number of workforces and machines has not, to date, been
studied in relation to the IPMSP. The contribution of this work
is that the investigated problem is not just a purely theoretical
model, but can also be applied to many practical manufac-
turing systems, such as notebook, desktop, laptop and server
manufacturers. To reduce the gap between industrial practice
and scheduling theory, this work develops an MILP model
of the STSP and an RSA heuristic, which applies two rules
to eliminate ineffective job moves in order to obtain better
neighborhood solutions, for solving it. The proposed RSA
heuristic significantly reduces search effort while minimizing
makespan in solving the STSP. Experimental results reveal
that the RSA yields higher-quality solutions to the STSP than
do the SA and the ABC algorithms.

The STSP is a challenging extension of the parallel
machine scheduling problem with resource constraints, and
has many practical applications. Some suggested directions
for future research are based on this work. First, related prob-
lems, such as those with various objective functions, can be
solved in the future. Second, extensions of the STSP that con-
sider other costs, such as fixed costs of using machines, costs
of usage of machines and the costs of tardy jobs, would be an
interesting topic. Third, multi-objective STSPs, such as one
including themakespan, mean flow time, weighted number of
tardy jobs and total setup time for machines, would be com-
plex, but certainly worthy of further research. Finally, future
research may also attempt to apply other meta-heuristics or to
hybridize other algorithms to solve the STSP.

REFERENCES
[1] C. H. Yeh, J. C. Y. Huang, and C. K. Yu, ‘‘Integration of four-phase

QFD and TRIZ in product R&D: A notebook case study,’’ Res. Eng. Des.,
vol. 22, no. 3, pp. 125–141, 2011.

[2] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, ‘‘The art of testing
less without sacrificing quality,’’ in Proc. 37th Int. Conf. Softw. Eng., vol. 1.
2015, pp. 483–493.

[3] S. Gottesman, J. Ramos, and J. Valfre, ‘‘Developing built in test to meet
the demands of the product test lifecycle,’’ in Proc. IEEE Autotestcon,
Nov. 2015, pp. 58–64.

[4] S.-W. Lin, Z.-J. Lee, K.-C. Ying, and C.-C. Lu, ‘‘Minimization of maxi-
mum lateness on parallel machines with sequence-dependent setup times
and job release dates,’’ Comput. Oper. Res., vol. 38, no. 5, pp. 809–815,
2011.

[5] S.-W. Lin, K.-C. Ying, Y.-I. Chiang, and W.-J. Wu, ‘‘Minimising total
weighted earliness and tardiness penalties on identical parallel machines
using a fast ruin-and-recreate algorithm,’’ Int. J. Prod. Res., vol. 54, no. 22,
pp. 6879–6890, 2016.

[6] K.-C. Ying, ‘‘Scheduling identical wafer sorting parallel machines with
sequence-dependent setup times using an iterated greedy heuristic,’’ Int.
J. Prod. Res., vol. 50, no. 10, pp. 2710–2719, 2012.
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