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ABSTRACT This paper addressed the problem of the simultaneous estimation of unknown inputs and states
in a multi-agent system with time-invariant and time-varying topology. A group of distributed cooperative
recursive filters, in the sense of minimum-variance unbiased, was developed, where the estimations of
unknown input and state were combined. A necessary and sufficient existing condition is presented and
proven for the proposed distributed cooperative filters. Theoretical and numerical analyses demonstrate that
the existing condition of the proposed filters is significantly relaxed, in comparison to that of conventional
decentralized filters.

INDEX TERMS Distributed cooperative filter, estimation, multi-agent system.

I. INTRODUCTION
Unknown inputs can affect system performance significantly.
In many situations, the direct measurement of unknown
inputs is very difficult or even impossible. Hence, the esti-
mation of the unknown inputs in a system is a significant
problem.

In this study, a group of distributed cooperative filters
is proposed for an uncertain multi-agent system in order
to estimate its unknown inputs and states. Its advantages
over conventional decentralized methods are analyzed and
presented. The main motivation for this study arose from
the development of consensus theory [1]–[15]. To provide
the background for this study, consensus theory, unbiased
estimation of minimum-variance, and distributed coopera-
tive filters are respectively introduced in the following three
subsections.

A. CONSENSUS THEORY AND COOPERATIVE STRATEGY
For a multi-agent system, a cooperative strategy involves
achieving a common objective through cooperation among
individual agents in the system. This issue has attracted
considerable attention in the field of computation and

optimization [1] since the 1990s. The consensus theory is
a fundamental cooperative strategy for multi-agent systems.
It requires that the state of every agent in the system reach
a common value through communicating with each other.
Consensus theory has received much attention over the last
decade. Jadbabaie et al. [2] analyzed the consensus of the
Vicsek model [3] theoretically. Since then, many studies on
consensus theory with regard to multi-agent systems have
emerged. Thus far, there have been many interesting results
such as, for example, a survey paper [4] and a book [5]. More-
over, the study on consensus theory has not been confined at
the stage of theoretical research, but has rather advanced to
actual applications on wireless sensor networks [6], flocking
problems [7], and so on. Chen et al. [16] proposed distributed
cooperative adaptive laws in order to estimate the unknown
parameters of multi-agent systems. Inspired by these studies,
we explore a new application of consensus theory in order to
estimate unknown inputs and states in a multi-agent system.
Specifically, we propose new distributed cooperative filters in
order to estimate the unknown inputs and states of a hetero-
geneous multi-agent system. In comparison to conventional
filters, the proposed distributed cooperative filters have a
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much relaxed existing condition. The details will be provided
in Section 3.

B. MINIMUM-VARIANCE UNBIASED ESTIMATION
In [17]–[19] the necessary and sufficient conditions for
the existence of an optimal state estimator in continuous-
time systems was established. Moreover, considerable atten-
tion [20], [21] was given to the design methods for the
reconstruction of unknown input. The earliest approaches
toward reconstructing the unknown input for discrete systems
were based on augmenting the state vector along with the
unknown input vector by using amodel of the unknown input.
To reduce the amount of calculation for the state filter, a two-
stage Kalman filter is proposed [22]. It should be noted that
the estimations of state and the unknown input are decoupled
in [22]. Although [22] has many successful applications,
the result is limited because it ignores the dynamical evolu-
tion of unknown input.

In [23] an optimal recursive state filter was proposed with-
out using prior information for the unknown input. Then,
[23] was extended in [24], which proposed the stability and
convergence conditions and found a new design method for
the filter. In [25], it was found that the two-stage Kalman
filter is closely related to the Kitanidis filter [23], in the sense
of being able to derive the Kitanidis filter by making the
two-stage filter independent of the underlying input model.
Furthermore, paper [25] obtained an estimate of the unknown
input, whereas, paper [25] did not prove the optimality of the
unknown input estimation.

Paper [26] proposed a recursive filter which can simul-
taneously obtain the minimum-variance unbiased (MVU)
estimations of the unknown input and the state. Inspired
by [16] and [26], the current study proposes a new distributed
cooperative filter in order to obtain the MVU estimations of
the unknown input and the state of a heterogeneous multi-
agent system, and to find a more relaxed existing condition
compared to that of the conventional filter proposed in [26].

C. DISTRIBUTED COOPERATIVE FILTER
The main advantage of the distributed multi-agent system is
that it has adaptive and learning abilities. The information
shared between agents can be utilized in order to collab-
oratively solve inference and optimization problems [27].
In comparison to traditional centralized solutions, distributed
solutions do not require a powerful fusion center in order to
process the data from every agent. As a result, distributed
solutions can effectively reduce both computation and com-
munications. On the other hand, in a centralized solution,
if the fusion center breaks down, this will lead to a failure
of the entire network. By comparison, distributed solutions
can avoid this problem and are more robust to agent and
link failure [28]. As a result, many studies have proposed
with a distributed cooperative filter [29]–[33]. Paper [29]
proposed a distributed Kalman filter scheme in order to esti-
mate actuator faults for deep space formation flying satellites
in the form of an overlapping block-diagonal state space

representation. Based on the linear matrix inequality method,
paper [30] considered a robust distributed state estimation
and fault detection, as well as isolation problems based on
an unknown input observer for a network of heterogeneous
multi-agent LPV systems. Additionally, based on the LMI
method, [31] focuses on the design of fault detection and
isolation filters for multi-agent systems, where limited com-
munication exists among the agents and extend the formu-
lation to a class of linear parameter-varying systems. Using
the FIR model, the problem of distributed bias-compensated
recursive least-squares estimation over multi-agent networks
was investigated in [32]. In [33], a robust unknown input
observer-based fault estimation was proposed. It used the
relative output information in order to utilize the communica-
tion topology for multi-agent systemswith undirected graphs.
Inspired by previous work, we propose a new distributed
cooperative filter in order to estimate the unknown input for
heterogeneous multi-agent systems.

To the authors’ best knowledge, this study makes the fol-
lowing contributions. First, we propose a new distributed
cooperative filter for a heterogeneous multi-agent system
in order to obtain the MVU estimation of unknown input
and the states in the system, which has not been previously
studied. The previous work on the distributed method mostly
depends on the LMI method. Whereas, our work get the
distributedMVUfilters of the multi-agent systems. Secondly,
a necessary and sufficient condition for the existence of the
proposed filter has been presented and proven. Furthermore,
in comparison to the traditional decentralized filter [26],
the existing condition of our filter was significantly relaxed,
and this conclusion was proven by theoretical analysis.

The rest of this paper is organized as follows.
Section 2 includes a preliminary discussion, which will be
used in the following sections. In Section 3, the problem is
formulated and the structure of the distributed cooperative
filter is presented. In Section 4 the optimal reconstruction
of the unknown input is investigated. Subsequently, the state
estimation problem is solved in Section 5. The main results
of this paper are provided in Section 6. In Section 7, some
simulation results are provided in order to verify the theory.
Section 8 offers the conclusion of this study.

II. PRELIMINARIES
A. ALGEBRAIC GRAPH THEORY
In this study, the network topology among N agents was used
in order to describe their interconnections and was modeled
as aweighted graphG = (V , ε,A) with a set of nodesV , set of
edges ε, and adjacency matrix A with non-negative adjacent
elements. The i-th agent is denoted by node vi. The edge in
graph G is denoted by an unordered pair eij = (i, j). eij ∈ ε
if and only if there is information exchange between agent i
and agent j, and eij ∈ ε⇔ eji ∈ ε. The adjacency element aij
represents agent-agent communication. Note that eij ∈ ε ⇔
aij = 1. Otherwise, aij = 0. It is assumed that aij = aji, which
means that A is symmetric [34]. If there a path exists between
any two nodes vi, vj ∈ V , then G is connected. Every agent j
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that has a connection with an agent i is considered a neighbor
of agent i. Ni denotes the set of all neighbors for agent i.

B. MINIMUM-VARIANCE UNBIASED ESTIMATOR
Consider the following linear discrete-time system

xk+1 = Bkxk + Gkdk + ωk (1)

yk = Ckxk + vk (2)

where xk ∈ Rq is the state vector, dk ∈ Rm is an unknown
input vector, and yk ∈ Rp is the measurement. Process noise
ωk ∈ Rq and measurement noise vk ∈ Rp are assumed to be
mutually uncorrelated, zero-mean, white random signals.

Below is a recursive filter:

x̂k|k−1 = Bk−1x̂k−1|k−1 (3)

d̂k−1 = Mk (yk − Ck x̂k|k−1) (4)

x̂∗k|k = x̂k|k−1 + Gk−1d̂k−1 (5)

x̂k|k = x̂∗k|k + Kk (yk − Ck x̂
∗

k|k ) (6)

where Mk ∈ Rm∗p and Kk ∈ Rq∗p are the design gain
matrices. Then, the following existing conditions of the filter
are provided.
Lemma 1[26]: Given that x̂k−1|k−1 is unbiased, there exist

Mk and Kk such that the recursive filter (3)-(6) can achieve
theMVU estimations of dk−1 and xk in systems (1)-(2), if and
only if:

rank (CkGk−1) = m (7)

III. PROBLEM FORMULATION
Consider the following linear discrete-time heterogeneous
multi-agent system:

x i
k+1
= Bikx

i
k + G

i
kdk + ω

i
k (8)

yik = C i
kx

i
k + v

i
k (9)

where x ik ∈ R
q is the state vector of agent i, dk ∈ Rm denotes

the unknown input, and yik ∈ Rp is the measurement of
system i. Process noise ωik ∈ Rq and measurement noise
vik ∈ Rp are assumed to be mutually uncorrelated, zero-
mean, white random signals with known covariance matrices
Qik = E

[
ωik ω

iT
k

]
and Rik = E

[
vik v

iT
k

]
, respectively, where

E denotes the mathematical expectation.
Remark 1: The main property of system (8) and (9) is

that although various systems have different time-varying
system structures, the unknown input vector is the same for
all agents. There exist many real-world systems that can be
represented by (8) and (9). For example, a group of agents
working together in the same environment may have the same
unknown input, which is related to the temperature or gravity;
thus, these agents can be described in the form of (8) and (9).
A practical example is that of a group of aircrafts flying in
formation in the same sky. They may have different kinetics,
but they all have the same unknown input, such as wind
power. If one wants to estimate the power of the wind in
real time, distributed cooperative filters can be used instead

of the traditional decentralized one. These practical examples
provided the main motivation for addressing the systems (8)
and (9).

The result of this study was obtained under the assumption
that

(
C i
k B

i
k

)
is observable and x i0 is independent of ω

i
k and v

i
k

for all k and i. Moreover, we assume that p ≥ m and q ≥ m.
This study aimed to estimate the MVU of system state x ik

and unknown input dk−1 by using Y ik =
{
yi0, y

i
1, · · · , y

i
k

}
under the condition that dk−1 is unavailable. Therefore,
the unknown input dk−1 had no restricted conditions.

We considered a distributed cooperative filter in the fol-
lowing form

x̂ ik|k−1=B
i
k−1x̂

i
k−1|k−1 (10)

d̂ ik−1=M
ii
k (y

i
k−C

i
k x̂

i
k|k−1)+

∑
j∈Ni

ai,jM
ij
k (y

j
k−C

j
k x̂

j
k|k−1) (11)

x̂ ik|k
∗
= x̂ ik|k−1+G

i
k−1d̂

i
k−1 (12)

x̂ ik|k = x̂
i
k|k
∗
+K ii

k (y
i
k−C

i
k x̂

i
k|k
∗)+

∑
j∈Ni

ai,jK
ij
k (y

j
k−C

j
k x̂

j
k|k
∗)

(13)

where M ii
k ,M

ij
k ∈ R

m∗p and K ii
k ,K

ij
k ∈ R

n∗p are design gain
matrices, and ai,j is the element of the adjacency matrix of
the multi-agent system graph G. Under the assumption that
x̂ ik−1|k−1 is an unbiased estimate of x ik−1, x̂

i
k|k−1 is biased

due to the existence of unknown system input. Therefore,
we need to estimate the unknown input in the sense of the
MVU in (11), and then use it to obtain the unbiased state
estimation x̂ ik|k

∗ in (12). Finally, (13) minimizes the variance
of x̂ ik|k

∗ with regard to the l1 matrix norm.

Matrices M ii
k and M ij

k , which are used in order to obtain
the unbiased and MVU estimates of the unknown input are
presented in Section 4. Gain matrices K ii

k and K ij
k that obtain

the unbiased and MVU estimation of the state are computed
in Section 5.

IV. UNKNOWN INPUT ESTIMATION
In this section, the estimation of unknown input is investi-
gated. In Subsection A, matricesM ii

k andM ij
k are determined

such that (11) is an unbiased estimator of dk−1. In Subsec-
tion B, we extend this computation to the multi-agent system
with time-varying topology. In Subsection C, we consider
the condition of the multi-agent system having time-invariant
topology; however, we select M ii

k and M ij
k such that (11)

is an MVU estimator of dk−1. In Subsection D, we extend
this computation to the multi-agent system with time-varying
topology.

A. UNBIASED UNKNOWN INPUT ESTIMATION
UNDER TIME-INVARIANT TOPOLOGY
First, we define the compact formulation for the multi-agent
system as one consisting of n agents:

Xk+1 = BkXk + Gkdk +Wk (14)

Yk = CkXk + Vk (15)
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where

Xk =
[
x1Tk , x2Tk , · · · , xnTk

]T
, Yk=

[
y1Tk , y2Tk , · · · , y

nT
k

]T
,

Wk =

[
ω1Tk , ω2Tk , · · · , ω

nT
k

]T
, Vk=

[
v1Tk , v2Tk , · · · , v

nT
k

]T
,

Bk = diag(B1k ,B
2
k , · · · ,B

n
k ),

Ck = diag(C1k ,C
2
k , · · · ,C

n
k ), Gk=

[
G1Tk ,G2Tk , · · · , G

nT
k

]T
.

Define Qk = diag(Q1
k ,Q

2
k , · · · ,Q

n
k ),Rk = diag(R1k ,R

2
k ,

· · · ,Rnk ).
Then, by writing (10) to (13) in the form of augmented

multi-agent system, we can obtain a distributed cooperative
filter in the following form.

X̂k|k−1=Bk−1X̂ k−1|k−1 (16)

D̂k−1= (In+A)⊗ 1(m∗p). ∗M k (Yk−Ck X̂k|k−1) (17)

X̂∗k|k = X̂k|k−1+G
′

k−1D̂k−1 (18)

X̂k|k = X̂∗k|k+(In+A)⊗ 1(q∗p). ∗ K k (Yk−Ck X̂∗k|k ) (19)

where

X̂k|k−1 =
[
x̂1k|k−1

T , x̂2k|k−1
T , · · · , x̂nk|k−1

T
]T
,

X̂k−1|k−1 =
[
x̂1k−1|k−1

T , x̂2k−1|k−1
T , · · · , x̂nk−1|k−1

T
]T
,

D̂k−1 =
[
d̂1k−1

T , d̂2k−1
T , · · · , d̂nk−1

T
]T
,

G
′

k = diag(G1
k ,G

2
k , · · · ,G

n
k ),

M k =


M11
k M12

k · · · M1n
k

M21
k M22

k · · · M2n
k

...
...

. . .
...

Mn1
k Mn2

k · · · Mnn
k


mn∗pn

,

X̂∗k|k =
[
x̂1k|k
∗T , x̂2k|k

∗T , · · · , x̂nk|k
∗T
]T
,

X̂k|k =
[
x̂1k|k

T , x̂2k|k
T , · · · , x̂1k|k

T
]T
,

K k =


K 11
k K 12

k · · · K 1n
k

K 21
k K 22

k · · · K 2n
k

...
...

. . .
...

K n1
k K n2

k · · · K nn
k


qn∗pn

.

A is the adjacency matrix of system graph G, and 1(q∗q)
denotes the q-order square matrix, whose elements are all
one. The operation. ∗ means that the corresponding ele-
ments of the two matrices with the same dimension multiply
together directly. The operation. ∗ means that the correspond-
ing elements of the two matrices with the same dimension
multiply together directly. The operation ⊗ means the Kro-
necter product.
Remark 2: Note that matrices Gk and G

′

k have different
demission. The reason is that, in our filter, every agent can
only use its own estimator of d̂ ik−1 in order to estimate x̂ ik|k

∗.
However, every agent in the multi-agent system has the
same unknown input dk in (14). Although there is only

one unknown input, different agents estimate it differently.
Hence, system matrix Gk can be written as this form.

Subsequently, we consider the estimation of the unknown
input. Ỹk as follows:

Ỹk = Yk − Ck X̂k|k−1 (20)

From (14) and (15), one obtains:

Ỹk = CkGk−1dk−1 + Ek (21)

where Ek is given by:

Ek = Ck (Bk−1X̃k−1 +Wk−1)+ Vk (22)

with X̃k = Xk − X̂k|k .
Now we assume that X̂ k−1|k−1 is unbiased, which means

that E
(
Ek
)
= 0. Then it follows from (22) and conse-

quently (21) that:

E
[
Ỹk
]
= CkGk−1dk−1 (23)

From Equation (23), one can achieve an unbiased estimation
of the unknown input dk−1.
By substituting (21) into (17), one can obtain the following

formula.

D̂k−1 = (In + A)⊗ 1(m∗p). ∗M k (CkGk−1dk−1 + Ek ) (24)

Then one obtains:

E[D̂k−1] = (In + A)⊗ 1(m∗p). ∗M kCkGk−1E[dk−1] (25)

Since D̂k−1 ∈ R(m∗n)∗1, dk−1 ∈ Rm∗1, (In + A) ⊗ 1m. ∗
M kCkGk−1 ∈ R(m∗n)∗m, therefore, if one wants to obtain the
unbiased estimation of dk−1, one obtains:

(In + A)⊗ 1(m∗p). ∗M kCkGk−1 = 1n ⊗ Im (26)

where 1n denotes the n-dimensional column vector, of which
all elements are one.

Then, from Equation (26), one can obtain the following
equation:

M
i
kC

i
kG

i
k−1 = Im (27)

holds for all agents, where i denotes the i-th agent and the
definitions of the matrix that we need to use bellow are as
follows.

X ik =
[
x1Tk , x2Tk , · · · , x ik

T
]T
,

Y ik =
[
y1Tk , y2Tk , · · · , y

jT
k

]T
,

W i
k =

[
ω1T
k , ω2T

k , · · · , ω
jT
k

]T
,

V i
k =

[
v1Tk , v2Tk , · · · , v

jT
k

]T
,

B
i
k = diag(B1k ,B

2
k , · · · ,B

j
k ),

C
i
k = diag(C1

k ,C
2
k , · · · ,C

n
k ),

G
i
k =

[
G1T
k ,G2T

k , · · · , G
jT
k

]T
,

M
i
k =

[
M i1
k M i2

k · · · M
ij
k

]m∗pj
,
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K
i
k =

[
K i1
k K i2

k · · · K ij
k

]m∗pj
,

X̂ ik|k−1 =
[
x̂1k|k−1

T , x̂2k|k−1
T , · · · , x̂ jTk|k−1

]T
,

X̂ ik−1|k−1 =
[
x̂1k−1|k−1

T , x̂2k−1|k−1
T , · · · , x̂ jTk−1|k−1

]T
,

X̂ ik|k
∗
=

[
x̂1k|k
∗T , x̂2k|k

∗T , · · · , x̂ jk|k
∗T
]T
,

X̂ ik|k =
[
x̂1k|k

T , x̂2Tk|k , · · · , x̂
jT
k|k

]T
,

Q
i
k = diag(Q1

k ,Q
2
k , · · · ,Q

j
k ),

R
i
k = diag(R1k ,R

2
k , · · · ,R

j
k ), j ∈ N

i.

Theorem 1: Given that X̂ k−1|k−1 is unbiased, there exists a
gain matrix M k such that (16)-(17) is an unbiased estimator
of dk−1, if and only if

rank
(
C
i
kG

i
k−1

)
= m (28)

holds for all agents i.
Proof: Equation (27) indicates that D̂k−1 is unbiased if

and only if M
i
k satisfies M

i
kC

i
kG

i
k−1 = Im.

Sufficiency:First, it is obvious thatmatrixG
iT
k−1C

iT
k C

i
kG

i
k−1

is reversible. Then, one can see that when M
i
k =

(G
iT
k−1C

iT
k C

i
kG

i
k−1)

−1G
iT
k−1C

iT
k and rank

(
C
i
kG

i
k−1

)
= m,

M
i
kC

i
kG

i
k−1 = Im, then E

[
d̂ ik
]
= dk .

This concludes the proof.
Necessity: Because E [Ek ] = 0, when E

[
d̂ ik
]
= dk , one

can see that M
i
kC

i
kG

i
k−1 = Im.

If M
i
kC

i
kG

i
k−1 = Im, because M

i
k ∈ Rm∗(p∗j),C

i
k ∈

R(p∗j)∗(q∗j)G
i
k−1 ∈ R(q∗j)∗m, then p ∗ j > m; therefore,

rank
(
C
i
kG

i
k−1

)
= m.

This concludes the proof.
For convenience, (28) is termed as a cooperative exist-

ing condition. One can find that the cooperative existing
condition is much more relaxed than the conventional filter
rank

(
C i
kG

i
k−1

)
= m that holds for all i, which means that it is

not required that every agent satisfies condition (7). Only the
augmented multi-agent system needs to satisfy (28). This is a
significantly relaxed condition, which means that every agent
in the system does not need to satisfy the rank condition, but
rather only the augmentedmulti-agent system needs to satisfy
the rank condition.
Remark 3: From the perspective of physical significance,

one can easily understand the importance of this study.
rank

(
C i
kG

i
k−1

)
= mmeans that every dimension of unknown

input dk−1 can be shown in ỹik . Under this assumption,
one can easily estimate the unknown input dk−1. However,
for systems (8) to (9), this condition does not need to be
satisfied since the agent can use the information from its
neighbors in order to estimate the unknown input dk−1.
rank

(
C
i
kG

i
k−1

)
= m means that as long as all the dimen-

sions of unknown input dk−1 can be shown in Ỹk once, we can
obtain the unbiased estimation of dk−1. This is the fundamen-
tal reason for why we can obtain this relaxed condition.

Although we have obtained the unbiased estimation of
unknown input dk−1,Ek does not have a unit variance. There-
fore, (21) does not satisfy the assumptions of the Gauss-
Markov theorem, and thus, we still do not obtain the MVU
estimator of dk−1. However, the variance of Ek can be calcu-
lated from the covariance matrices of state estimation.

In Subsection C, we propose the MVU estimator of dk−1
by using the matrix

(
E [Ek ETk

])−1 through weighted least-
squares (WLS) estimation.

B. UNBIASED UNKNOWN INPUT ESTIMATION
UNDER TIME-VARYING TOPOLOGY
In this subsection, we extend the former result to the multi-
agent system with time-varying topology.

For the multi-agent system with time-varying topology,
system equations (14) to (15) are the same, with regard to the
distributed cooperative filter (10) to (13). The only difference
is that when we substitute (10) to (13) into (14) and (15),
we obtain a different augmented form of the distributed coop-
eratives (29) to (32).

X̂k|k−1 = Bk−1X̂ k−1|k−1 (29)

D̂k−1 = (In + Ak )⊗ 1(m∗p). ∗M k (Yk − Ck X̂k|k−1) (30)

X̂∗k|k = X̂k|k−1 + G
′

k−1D̂k−1 (31)

X̂k|k = X̂∗k|k+(In+Ak )⊗1(q∗p). ∗ K k (Yk−Ck X̂∗k|k ) (32)

where Ak is the adjacency matrix of system graphG at time k .
Then, one can obtain the new form of D̂k−1.

D̂k−1 = (In + Ak )⊗ 1(m∗p). ∗M k (CkGk−1dk−1 + Ek )

Then one obtains:

E[D̂k−1] = (In + Ak )⊗ 1(m∗p). ∗M kCkGk−1E[dk−1]

and if one wants to obtain the unbiased estimation of dk−1,
one can obtain:

(In + Ak )⊗ 1(m∗p). ∗M kCkGk−1 = 1n ⊗ Im (33)

Then from equation (33), one can obtain the same result (28)
as a time-invariant one. The only difference is that the neigh-
bors of agent i are time-varying.
Remark 4: Note that, unlike many studies on time-varying

multi-agent systems, the presented result does not need the
union of system graph G over the connection period. The
reason is that, although the proposed filters are distributed,
for agent i at time k , the necessary and sufficient condition
for the unbiased estimation of the filter is that X̂ ik−1|k−1 is
unbiased, and that the system matrix satisfies the condition
rank

(
C
i
kG

i
k−1

)
= m. For agent i, at time k+1, the necessary

and sufficient condition for the unbiased estimation of the
filter is that X̂ ik|k is unbiased and that the system matrix

satisfies the condition rank
(
C
i
k+1G

i
k

)
= m. Therefore, one

can see that there is no neighbor connection for agent i
between time k − 1 and time k . In other words, as long as
agent i satisfies the necessary and sufficient condition for the
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unbiased estimation of the filter, the neighbors of agent i at
time k and time k + 1 can be completely different. However,
at every time point, agent i only uses the information of itself
and its neighbors. It has been pointed out in [31] that the
distributed filter means that the computations for the estima-
tion of the filters are shared among the agents. According
to this definition, the proposed new filter is distributed. This
is the reason for the proposed distributed cooperative filter
not needing the union of system graph G over the connection
period.

C. MINIMUM-VARIANCE UNBIASED UNKNOWN INPUT
ESTIMATION UNDER TIME-INVARIANT TOPOLOGY
Similarly with the definition of M

i
k in (27), we now define

Ỹ ik ,E
i
k and R̃

i
k .

Ỹ ik = Y ik − C
i
k X̂

i
k|k−1

E ik = C
i
k (B

i
k−1X̃

i
k−1 +W

i
k−1)+ V

i
k (34)

where X̃ ik = X ik − X̂
i
k|k .

By denoting the variance of E ik as R̃ik , a straightforward
calculation yields:

R̃ik=E
[
E ik E

iT
k

]
=C

i
k (B

i
k−1P

i
k−1|k−1B

iT
k−1+Q

i
k )C

iT
k +R

i
k

(35)

where Pik|k = E
[
X̃ ik X̃

iT
k

]
.

For convenience, we also define Ỹk ,Ek , and R̃k .

Ỹk = Yk − Ck X̂k|k−1
Ek = Ck (Bk−1X̃k−1 +Wk−1)+ Vk

where X̃k = Xk − X̂k|k|.
By denoting the variance of Ek as R̃k , a straightforward

calculation yields:

R̃k=E [Ek ETk
]
=Ck (Bk−1Pk−1|k−1Bk−1T+Qk )C

T
k +Rk

(36)

where Pk|k = E
[
X̃k X̃Tk

]
.

Furthermore, by defining

Pik|k−1 = B
i
k−1P

i
k−1|k−1B

iT
k−1 + Q

i
k−1,

It can be rewritten as

R̃ik = C
i
kP

i
k|k−1C

iT
k + R

i
k

The MVU estimation of unknown input is then obtained as
follows.
Theorem 2: Given that X̂k−1|k−1 is unbiased and R̃ik is

positive definite. We define M
i
k as follows:

M
i
k = (F iTk (R̃ik )

−1F ik )
−1F iTk (R̃ik )

−1 (37)

where F ik = C
i
kG

i
k−1. Then, given the innovation Ỹ ik , (17)

is the MVU estimator of dk−1. The variance of the unknown
input estimate is given by (F iTk (R̃ik )

−1F ik )
−1.

Proof: One can always find an invertible matrix satis-
fying S̃ ik S̃

iT
k = R̃ik under the assumption that R̃ik is positive

definite. Cholesky factorization is one example of how we
can achieve this. Then, one can transform (34) to:

(S̃ ik )
−1Ỹ ik = (S̃ ik )

−1C
i
kG

i
k−1dk−1 + (S̃ ik )

−1E ik (38)

Under the assumption that (S̃ ik )
−1C

i
kG

i
k−1 has full column

rank, the least-squares (LS) solution of (38) is:

d̂ ik−1 = (F iTk (R̃ik )
−1F ik )

−1F iTk (R̃ik )
−1Ỹ ik (39)

This completes the proof.
Once one have the optimal gain matrixM

i
k for agent i, one

can obtain the extended optimal gain matrixM k for the multi-
agent system.

It should be noted that solving (38) by using LS esti-
mation is equivalent to solving (34) by using WLS estima-
tion with the weighting matrix (R̃ik )

−1. Furthermore, because
the weighting matrix is chosen such that (S̃ ik )

−1E ik has unit
variance, Equation (39) satisfies the assumptions of the
Gauss-Markov theorem. Therefore, (39) is theMVU estimate
of dk−1. The variance of the WLS solution (39) is given
by (F iTk (R̃ik )

−1F ik )
−1.

D. MINIMUM-VARIANCE UNBIASED UNKNOWN INPUT
ESTIMATION UNDER TIME-VARYING TOPOLOGY
Based on subsection B, we can obtain the MVU estimation
of dk . Since we can obtain the unbiased estimation of dk ,
according to Theorem 2, we can obtain the MVU estimation
of dk as long as X̂k−1|k−1 is unbiased and R̃ik is positive
definite.

The proof is shown in Subsection B. The only difference
is that the graph of the multi-agent system is time-varying.
Similarly, we also do not need the union of system graph G
over the connection period. The reason is that as long as
we can guarantee the unbiasedness of the X̂ k−1|k−1 and the
positivity of R̃ik , we can always obtain the MVU estimation
of dk . In other words, if at time k−1 agent i has a connection
with agent j, and from time k to infinity agent i does not have
a connection with agent j, agent i can also obtain an MVU
estimation of dk . The reason is that at time k − 1 agent i has
obtained the unbiased estimation of x̂ ik−1|k−1; therefore, the
subsequent estimation is also unbiased.

According to Theorem 2, one can also obtain the MVU
estimation of dk under a multi-agent system with time-
varying topology.

V. STATE ESTIMATION
Consider a state estimator of system (14) and (15) that takes
the recursive form (16) to (19) (in the cases of time-varying
topology (29) to (32)). In Subsection A, one calculate the gain
matrix K k in order to obtain the unbiased estimator of Xk
in (19). In Subsection B, we extend this result to a multi-
agent system with time-varying topology. In Subsection C,
we obtain the MVU estimation of Xk . In Subsection D,
we extend this result to a multi-agent system with time-
varying topology.
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A. UNBIASED STATE ESTIMATION UNDER
TIME-INVARIANT TOPOLOGY
By defining X̃∗k = Xk − X̂∗k|k , it follows from (14) to (16)
and (18) that:

X̃∗k = Bk−1X̃k−1 + Gk−1D̃k−1 +Wk−1 (40)

where D̃k = Dk− D̂k ,Dk−1 = [dk−1T , dk−1T ,· · ·, dk−1T ]T .
The following theorem is a direct consequence of (39).
Theorem 3: Given that X̂k−1|k−1 and D̂k−1 are unbiased

estimations, (18) to (19) are unbiased estimators of Xk for
any value of K k .

Proof: Substituting (17) and (18) in (19), yields:

X̂k|k = X̂k|k−1 + (In + A)⊗ 1(q∗p). ∗ K k Ỹk

+ [Iqn − (In + A)⊗ 1(q∗p). ∗ K kCk ]G
′

k−1D̂k−1 (41)

= X̂k|k−1 + (In + A)⊗ 1(q∗p). ∗ K k Ỹk

+ [Iqn − (In + A)⊗ 1(q∗p). ∗ K kCk ]

∗G
′

k−1(In + A)⊗ 1(m∗p). ∗M k Ỹk (42)

By defining

Lk = (In+A)⊗ 1(q∗p). ∗ K k

+ [Iqn−(In+A)⊗ 1(q∗p). ∗ K kCk ]G
′

k−1(In + A)

⊗ 1(m∗p). ∗M k

Eq. (41) is rewritten as follows:

X̂k|k = X̂k|k−1 + Lk (Yk − Ck X̂k|k−1) (43)

which is the kind of update considered in [23].
This completes the proof.

B. UNBIASED STATE ESTIMATION UNDER
TIME-VARYING TOPOLOGY
In this subsection, we extend the former result to a case where
the multi-agent system has time-varying topology. As was
done in subsection A, we defined X̃∗k and now we simply
introduce the theorem.
Theorem 4: Given that X̂k−1|k−1 and D̂k−1 are unbiased,

(31) to (32) are unbiased estimators of Xk for any value ofK k .
Proof: Substituting (30) and (31) in (32) yields:

X̂k|k = X̂k|k−1+(In+Ak )⊗ 1(q∗p). ∗ K k Ỹk

+[Iqn−(In+Ak )⊗ 1(q∗p). ∗ K kCk ]G
′

k−1D̂k−1 (44)

= X̂k|k−1+(In+Ak )⊗ 1(q∗p). ∗ K k Ỹk

+[Iqn−(In+Ak )⊗ 1(q∗p). ∗ K kCk ]

∗G
′

k−1(In+Ak )⊗ 1(m∗p). ∗M k Ỹk (45)

By defining

Lk = (In+Ak )⊗ 1(q∗p). ∗ K k

+ [Iqn−(In+Ak )⊗1(q∗p). ∗ K kCk ]G
′

k−1(In + Ak )

⊗ 1(m∗p). ∗M k

Eq. (45) is rewritten as follows:

X̂k|k = X̂k|k−1 + Lk (Yk − Ck X̂k|k−1)

which is the kind of update considered in [23].
This completes the proof.

C. MINIMUM-VARIANCE UNBIASED STATE ESTIMATION
UNDER TIME-INVARIANT TOPOLOGY
In this subsection, we compute the optimal gain matrix K k
based on the previously obtainedmatrixM k . Specifically, any
matrix M k satisfying (26) and used in (17) can be used in
order to obtain the optimal gain matrix K k , and furthermore
in order to obtain the MVU estimate X̂k|k of Xk . First, we cal-
culate matrix D̃k−1. From (17) and (21) to (22), we obtain:

D̃k−1 = Dk−1 − ((In + A)⊗ 1(m∗p). ∗M kCkGk−1)dk−1
− (In + A)⊗ 1(m∗p). ∗M kEk

= (1n ⊗ Im − (In + A)⊗ 1(m∗p). ∗M kCkGk−1)dk−1
− (In + A)⊗ 1(m∗p). ∗M kEk

= −(In + A)⊗ 1(m∗p). ∗M kEk (46)

which also proves that the unknown input estimator is unbi-
ased. Substituting (46) in (40) yields:

X̃∗k = B
∗

k−1X̃k−1 +W
∗

k−1 (47)

where

B
∗

k−1 = (Iqn − G
′

k−1(In + A)⊗ 1(m∗p)M kCk )Bk−1 (48)

W ∗k−1 = (Iqn − G
′

k−1(In + A)⊗ 1(m∗p). ∗M kCk )Wk−1

−G
′

k−1(In + A)⊗ 1(m∗p). ∗M kVk (49)

Then, one can obtain the error covariance matrix P∗k|k =

E
[
X̃∗k X̃k∗T

]
from (47) to (49),

P∗k|k = B
∗

k−1Pk−1|k−1Bk−1
∗T
+ Q

∗

k−1

= (Iqn − G
′

k−1(In + A)⊗ 1(m∗p). ∗M kCk ) ∗ Pk|k−1

∗ (Iqn − G
′

k−1(In + A)⊗ 1(m∗p). ∗M kCk )T

+G
′

k−1(In + A)⊗ 1(m∗p). ∗M kRk

∗ [(In + A)⊗ 1(m∗p). ∗M k ]TG
′T
k−1 (50)

where Q
∗

k = E
[
W ∗k Wk

∗T
]
.

Subsequently, we calculate the error covariancematrixPk|k .
It follows from (19) that:

X̃k = (Iqn − (In + A)⊗ 1(q∗p). ∗ K kCk )X̃∗k
− (In + A)⊗ 1(q∗p). ∗ K kVk (51)

Substituting (47) in (51) yields:

X̃k = (Iqn − (In + A)⊗ 1(q∗p). ∗ K kCk )

×(B
∗

k−1X̃k−1+W
∗

k−1)−(In+A)⊗ 1(q∗p). ∗ K kVk (52)

where

E
[
W ∗k−1 V

T
k

]
= −G

′

k−1(In + A)⊗ 1(m∗p). ∗M kRk .
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It should be noted that (52) is closely related to the Kalman
filter. This result denotes the dynamic evolution of the state
estimation error for a Kalman filter with a gain matrix K k
for system (B

∗

k ,Ck ), where process noise W ∗k−1 is correlated
with measurement noise Vk . Therefore, the computation of
matrix K k can be transformed into a standard Kalman filter
problem.

From (51) and (50), we can obtain the error covariance
matrix Pk|k

Pk|k = (In + A)⊗ 1(q∗p). ∗ K k R̃∗k [(In + A)⊗ 1(q∗p). ∗ K k ]T

−V ∗k [(In + A)⊗ 1(q∗p). ∗ K k ]T

− [(In + A)⊗ 1(q∗p). ∗ K k ]V ∗Tk + Pk|k
∗ (53)

where

R̃∗k = CkP∗k|kC
T
k + Rk + CkS∗k + S

∗T
k C

T
k

V ∗k = P∗k|kCk + S∗k

S∗k = E
[
X̃∗k V T

k

]
=−G

′

k−1(In + A)⊗1(m∗p). ∗M kRk (54)

Note that R̃∗k is equal to the variance of the zero-mean signal

Ỹ ∗k , R̃
∗
k = E

[
Ỹ ∗k Ỹk∗T

]
where

Ỹ ∗k = Yk − Ck X̂∗k|k

= (Ipn − CkG
′

k−1(In + A)⊗ 1(m∗p). ∗M k )Ek (55)

By using (55) and (36), (54) can be rewritten as follows:

R̃∗k = (Ipn − CkG
′

k−1(In + A)⊗ 1(m∗p). ∗M k ) ∗

R̃k (Ipn − CkG
′

k−1(In + A)⊗ 1(m∗p). ∗M k )T .

We define:

(In + A)⊗ 1(q∗p). ∗ K k = K
′

k (56)

and also define the optimal gain matrix as K
′′

k .
FromKalman filtering theory, we know that the uniqueness

of the optimal gain matrix K
′′

k requires that R̃∗k is invertible.
However, we find that rank(Ipn−CkG

′

k−1(In+A)⊗1(m∗p).∗
M k ) ≤ pn; therefore, rank(R̃∗k ) ≤ pn. For example, when
there is only one agent in the system and at this time themulti-
agent system changes to one single system, [26] proves that:

rank(Ipn − CkG
′

k−1(In + A)⊗ 1(m∗p). ∗M k )

= (p− m) ∗ n = p− m

Therefore, the optimal gain matrix K
′′

k is not unique. Let r be
the rank of R̃∗k ; then, we propose a gain matrix K

′′

k in the
following form:

K
′′

k =
˜K
′′

kαk (57)

where ˜K
′′

k ∈ R
(pn)∗r and αk ∈ Rr∗(pn) is a matrix that makes

matrix αk R̃∗kα
T
k have a full rank. The optimal gain matrix ˜K

′′

k
is presented below.

Theorem 5: IfM k satisfies (In+A)⊗1(m∗p).∗M kCkGk−1 =
1n ⊗ Im, then the following gain matrix K

′′

k can minimize the
variance of X̂k|k :

K
′′

k = (P∗k|kC
T
k + S

∗
k )α

T
k (αk R̃

∗
kα

T
k )
−1αk (58)

where r = rank(R̃∗k ) and αk ∈ R
r∗(p∗n) is an arbitrary matrix

that makes matrix αk R̃∗kα
T
k have a full rank.

Proof: Substituting (57) in (53) andminimizing the trace

of Pk|k over
˜K
′′

k yields (58). By substituting (58) in (53), one
obtains the error covariance matrix,

Pk|k = P∗k|k − K
′′

k (P
∗

k|kC
T
k + S

∗
k )
T (59)

which is the same result as that in [24].
This completes the proof.
It should be noted that expression (58) depends only on

matrix M k . According to equation (26) and Theorem 1,
the matrix M k satisfies the condition (In + A) ⊗ 1(m∗p). ∗
M kCkGk−1 = 1n ⊗ Im means that the estimation of the
unknown input D̂k−1 is unbiased. We obtain gain matrix K

′′

k
in the form of (58) by minimizing the variance of X̂k|k based
on matrix M k used in (17).

Since we obtained the optimal gain matrix K
′

k in the form
of (56), we know that once the matrix M k is determined,
we can obtain K

′′

k by (58). However, the form of the gain
matrix is defined as (56). From graph theory we know that
if and only if all nodes in graph G are connected to all other
nodes in graph G, all the elements of matrix K

′

k can be
nonzero. Otherwise, there will always be some elements in
matrix K

′

k that must be zero. This can be easily understood in
the physical sense. Some elements can be zero in matrix K

′

k
and this means that agent i could only receive information
from its neighbors instead of all the other agents in the system.
However, the result obtained from (58) needs all the elements
of matrix K

′′

k in order to be nonzero; therefore, we cannot
realize the condition obtained from (58), and thus, we can
only use the sub-optimal gain matrix K

′

k in order to obtain
the MVU estimate X̂k|k of Xk . Then, we can use the l1 matrix
norm in order to obtain the sub-optimal gain matrix K

′

k .
First, we define matrix T = K

′′

k − K
′

k , then we obtain the
l1 matrix norm of T in the following form:

‖T‖1 =
m∑
i=1

n∑
j=1

∣∣tij∣∣
where tij is the elements of matrix T .

Since we know that the only differences between K
′′

k and
K
′

k is that some elements of K
′

k must be zero and that the
corresponding elements in K

′′

k must be nonzero, therefore,
we can obtain the following form of K

′

k in order to minimize
the l1 matrix norm of T , as follows:

K
′

k = (In + A)⊗ 1(m∗p). ∗ K
′′

k (60)

Theorem 6: IfM k satisfies (In+A)⊗1(m∗p).∗M kCkGk−1 =
1n ⊗ Im, then the following gain matrix K

′

k can minimize
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the variance of X̂k|k with regard to the l1 matrix norm,
as follows:

K
′

k = (In + A)⊗ 1m∗p. ∗ (P∗k|kC
T
k + S

∗
k )

∗αTk (αk R̃
∗
kα

T
k )
−1αk (61)

where r = rank(R̃∗k ) and αk ∈ R
r∗(p∗n) is an arbitrary matrix,

which makes the matrix αk R̃∗kα
T
k have a full rank.

This proof is similar to the proof of Theorem 5.
D. MINIMUM-VARIANCE UNBIASED STATE ESTIMATION
UNDER TIME-VARYING TOPOLOGY
In subsection D, we compute the optimal gain matrix K k
based onmatrixM k that we obtained previously. Specifically,
any matrix M k satisfying (33) and used in (30) can be used
to obtain the optimal gain matrix K k , and furthermore to
obtain the MVU estimate X̂k|k of Xk . First, we search for an
expression of D̃k−1 follows from (30) and (21) to (22) that:

D̃k−1 = (Im∗n − (In + Ak )⊗ 1(m∗p). ∗M kCkG
′

k−1)Dk−1
− (In + Ak )⊗ 1(m∗p). ∗M kEk

= (1n ⊗ Im − (In + Ak )1(m∗p). ∗M kCk )dk−1
− (In + Ak )⊗ 1(m∗p). ∗M kEk

= −(In + Ak )⊗ 1(m∗p). ∗M kEk (62)

which also proves that the unknown input estimator is
unbiased. Substituting (62) in (40) yields:

X̃∗
′

k = B
′

k−1X̃k−1 +W
′

k−1 (63)

where

B
′

k−1 = (Iqn − G
′

k−1(In + Ak )⊗ 1(m∗p)M kCk )Bk−1 (64)

W ′k−1 = (Iqn − G
′

k−1(In + Ak )⊗ 1(m∗p).M kCk )Wk−1

−G
′

k−1(In + Ak )⊗ 1(m∗p).M kVk (65)

Then, we can obtain the error covariance matrix P∗k|k
from (63) to (65), as follows:

P∗
′

k|k = B
′

k−1Pk−1|k−1B
′T
k−1 + Q

′

k−1

= (Iqn − G
′

k−1(In + Ak )⊗ 1(m∗p).M kCk )

∗Pk|k−1 ∗ (Iqn − G
′

k−1(In + Ak )⊗ 1(m∗p).M kCk )T

+G
′

k−1(In + Ak )⊗ 1(m∗p).M kRk [(In + Ak )

⊗ 1(m∗p).M k ]TG
′T
k−1

where Q
′

k = E
[
W ′k W

′T
k

]
.

Next, we calculate the error covariance matrix Pk|k . From
Equation (32) we obtain:

X̃ ′k = (Iqn − (In + Ak )⊗ 1(q∗p). ∗ K kCk )X̃∗
′

k

− (In + Ak )⊗ 1(q∗p). ∗ K kVk (66)

Substituting (63) in (66) yields:

X̃ ′k = (Iqn−(In+Ak )⊗1(q∗p). ∗ K kCk )

∗ (B
′

k−1X̃k−1+W
′

k−1)−(In+Ak )⊗1(q∗p). ∗ K kVk (67)

where E
[
W ′k−1 V

T
k

]
= −G

′

k−1(In + Ak )⊗ 1(m∗p). ∗M kRk .

It should be noted that (67) is closely related to the
Kalman filter, which was discussed in Subsection C. There-
fore, the computation of matrix K k can be transformed into a
standard Kalman filtering problem.

From (67) and (66), we can obtain the error covariance
matrix Pk|k , as follows:

P′k|k = (In + Ak )⊗ IqK k R̃′k [(In + Ak )⊗ IqK k ]T

−V ′k [(In + Ak )⊗ IqK k ]T − [(In + Ak )⊗ IqK k ]V ′Tk

+P∗
′

k|k (68)

where

R̃′k = CkP∗k|kC
T
k + Rk + CkS ′k + S

′T
k C

T
k

V ′k = P∗k|kCk + S ′k

S ′k = E
[
X̃∗k V T

k

]
= −G

′

k−1(In + Ak )⊗ ImM kRk (69)

Note that R̃′k equals to the variance of the zero-mean signal

Ỹ ∗
′

k , R̃
∗
′

k = E
[
Ỹ ∗
′

k Ỹ ∗
′T

k

]
, where

Ỹ ∗
′

k = Yk − Ck X̂∗k|k

= (Ipn − CkG
′

k−1(In + Ak )⊗ ImM k )Ek (70)

By using (70) and (36), (69) can be rewritten as follows:

R̃′k = (Ipn − CkG
′

k−1(In + Ak )⊗ ImM k )

∗R̃k (Ipn−CkG
′

k−1(In+Ak )⊗ImM k )T .

We define

(In + Ak )⊗ 1(q∗q). ∗ K k = K
′

k (71)

and define the optimal gain matrix as K
′′

k .
FromKalman filtering theory, we know that the uniqueness

of the optimal gain matrix K
′′

k requires that R̃′k is invertible.
However, in subsection C we showed that R̃′k is singular.

Therefore, the optimal gain matrix K
′′

k is not unique. Let

r ′ be the rank of R̃′k . Then, we propose a gain matrix K
′′

k in
the form of:

K
′′

k =
˜
K
′′

kα
′
k (72)

where
˜
K
′′

k ∈ R
(pn)∗r and α′k ∈ R

r∗(pn) are arbitrary matrices
that make matrix α′k R̃

∗
′

k α
′T
k have a full rank. The optimal gain

matrix
˜
K
′′

k is then provided by the following theorem.
Theorem 7: If M k satisfies (In + Ak ) ⊗ 1(m∗m). ∗

M kCkGk−1 = 1n ⊗ Im, then the following gain matrix K
′′

k
can minimize the variance of X̂k|k , as follows:

K
′′

k = (P∗
′

k|kC
T
k + S

′
k )α
′T
k (α′k R̃

′
kα
′T
k )−1α′k (73)

where r ′ = rank(R̃′k ) and α
′
k ∈ R

r∗(p∗n) is an arbitrary matrix
that makes matrix α′k R̃

′
kα
′T
k have a full rank.
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Proof: Substituting (72) in (68) andminimizing the trace

of Pk|k over K
′′

k yields (73). By substituting (73) in (68),
we obtain the error covariance matrix, as follows:

Pk|k = P∗
′

k|k − K
′′

k (P
∗
′

k|kC
T
k + S

′
k )
T (74)

which is the same result as the result in [8].
This completes the proof.
It should be noted that expression (73) depends only on the

choice of M k . According to equation (33) and Theorem 1,
the matrix M k satisfies (In + A) ⊗ 1(m∗m). ∗ M kCkGk−1 =
1n⊗ Im means that the estimation of the unknown input D̂k−1
is unbiased. We can obtain the gain matrix K

′′

k in the form
expressed in (73), whichminimizes the variance of X̂k|k based
on the matrix M k used in (30).
As we have shown in subsection C, we cannot use K

′′

k ;
therefore, we provide the following theorem in order to show

the gain matrix K
′

k that we are able to use.
Theorem 8: If M k satisfies
(In + Ak ) ⊗ 1(m∗p). ∗ M kCkGk−1 = 1n ⊗ Im, then,

the following gain matrix K
′

k can minimize the variance of
X̂k|k with regard to the l1 matrix norm,

K
′

k = (In + Ak )⊗ 1(m∗p). ∗ (P∗
′

k|kC
T
k + S

′
k )

∗α′Tk (α′k R̃
′
kα
′T
k )−1α′k (75)

where r ′ = rank(R̃′k ) and α
′
k ∈ R

r∗(p∗n) are arbitrary matrices
that make matrix α′k R̃

′
kα
′T
k have full rank.

The proof is similar to the proof of Theorem 5.

VI. MAIN RESULT
In Sections 4 and 5, we presented the results of the unknown
MVU input and state estimations, respectively, under a time-
invariant and time-varying multi-agent system. Now, we can
just come to a conclusion with regard the former results
and summarize them to one theorem in order to make the
conclusion clear.

Subsection A provides the results for the multi-agent sys-
tem under time-invariant topology. Subsection B provides
the results of the multi-agent system under time-varying
topology.

A. MINIMUM-VARIANCE UNBIASED UNKNOWN
INPUT AND STATE ESTIMATIONS UNDER
TIME-INVARIANT TOPOLOGY
Theorem 9: If and only if multi-agent system (14) to (15)
satisfies condition (28), the distributed cooperative filters (16)
to (19) can achieve theMVU estimation of the unknown input
and state, where the gain matrices M k and K k are given as
Equations (37) and (61), respectively.

Proof: Theorem 1 means that if and only if the system
matrix satisfies condition (28), we can obtain the unbiased
estimation of the unknown input for multi-agent system dk .
Theorem 2 indicates that whenM k has a specific form,we can
obtain the MVU estimation of dk . Theorem 3 shows that
if and only if X̂k−1|k−1 and D̂k−1 are unbiased. Then (18)

to (19) are the unbiased estimators of Xk for any value of K k .
Theorem 5 and Theorem 6 show that when K k has a specific
form we can obtain the MVU estimation of Xk .

This completes the proof.

B. MINIMUM-VARIANCE UNBIASED UNKNOWN INPUT
AND STATE ESTIMATION UNDER TIME-VARYING
TOPOLOGY
Theorem 10: If and only if the multi-agent systems (14) to
(15) satisfy condition (28), the distributed cooperative filters
(29) to (32) can achieve the MVU estimation of the unknown
input and state, where the gain matricesM k and K k are given
as Equations (37) and(61), respectively.

Proof: Theorem 1 means that if and only if the sys-
tem matrix satisfies condition (28), then we can obtain an
unbiased estimation for the unknown input of the multi-
agent system dk . Theorem 2 indicates that when M k has
a specific form, we can obtain the MVU estimation of dk .
Theorem 4 shows that if and only if X̂k−1|k−1 and D̂k−1 are
unbiased, then, (31) to (32) are unbiased estimators of Xk for
any value of K k . Theorems 7 and 8 show that when K k has a
specific form, we can obtain the MVU estimation of Xk .
This completes the proof.

VII. SIMULATION
In this section, a numerical example is provided in order to
demonstrate that our filter is considerably better than the
conventional decentralized filter. Subsection A provides a
numerical example in order to verify the proposed method.
Subsection B provides a practical example.

FIGURE 1. Topology of Graph G.

A. NUMERICAL EXAMPLE
In this subsection, we consider a multi-agent system with
four agents and time-invariant topology. Graph G is shown
in Fig. 1. The system matrix is presented below. We find that
none of the agents satisfy the conventional existing condi-
tion(7); however, the augmented multi-agent system satisfies
the relaxed existing condition (28). Fig. 2 shows the state
estimation error using the proposed distributed cooperative
filters. Fig. 3 shows the estimation error of the unknown
inputs using the proposed distributed cooperative filters.
Fig. 4 shows the state estimation error using the conventional
decentralized filters. Fig. 5 shows the estimation error of the
unknown inputs using the conventional decentralized filters.
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FIGURE 2. State estimation error X using distributed cooperative filters.

FIGURE 3. Estimation error of unknown input d using distributed
cooperative filters.

FIGURE 4. State estimation error X using conventional decentralized
filters.

In the simulation,

B1k =
[
1 0
0 sin(k)+ 1

]
, B2k =

[
1 0
0 cos(k)+ 1

]
,

B3k =
[
1 0
0 − sin(k)− 1

]
, B4k =

[
1 0
0 − cos(k)− 1

]
.

C1
k =

[
2 sin(k)

sin(k) 2

]
, C2

k =

[
3 cos(k)

cos(k) 3

]
,

FIGURE 5. Estimation error of unknown input d using conventional
decentralized filters.

C3
k =

[
4 sin(k)

sin(k) 4

]
, C4

k =

[
5 cos(k)

cos(k) 5

]
.

G1
k =

[
1 1+ sin(k)
0 0

]
, G2

k =

[
0 0

1+ sin(k) 1

]
,

G3
k =

[
1+ cos(k) 0

1 0

]
, G4

k =

[
0 1
0 1+ cos(k)

]
.

d1 = k and d2 = sin(k).
Model noise and measurement noise are:

w11,w12,w21,w22,w31,w32,w41,w42
∼ N (0, 0.1),

v11, v12, v21, v22, v31, v32, v41, v42 ∼ N (0, 0.01).

In Figures 2 to 5, xeij = x̂ij − xij, where x̂ij and xij denote
the estimation and the true value for the j-th dimension state
of the i-th agent, respectively. The definition of deij is similar
to that of xeij.

From the systemmatrices, we can see that rank(C i
kG

i
k−1)=

1 6= 2; however, rank(CkGk−1) = 2. In other words, even
though an agent does not satisfy the existing condition(7),
the augmentedmulti-agent systemwill satisfy the cooperative
existing condition(28). From Figures 2 and 3, one can see that
the distributed cooperative filter can estimate the unknown
input and the state correctly. Whereas, form Figures 4 and 5,
one can see that the conventional decentralized filter can-
not estimate the unknown input and the state correctly,
which proves that our result is a significantly looser existing
condition, in comparison to the conventional decentralized
condition.

B. PRACTICAL EXAMPLE
In this subsection, we consider a linearized dynamic model
of a vertical takeoff and landing aircraft in the vertical
plane [35]. In [35], the states are defined as follows:

x =


horizontal velocity[in knots]
vertical velocity[in knots]

pitch rate[in degrees per second]
pitch angle[in degrees]

.
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FIGURE 6. State estimation error X .

FIGURE 7. Estimation error of unknown input d .

For convenience, we chose the first two state dimensions
and simplified this problem as planar rather than spatial.
The states of the system are defined as follows:

x =
[
horizontal velocity[in knots]
vertical velocity[in knots]

]
The unknown input d was chosen as the wind power that
influences the velocity of the aircraft.

The state matrix was as follows:

B =
[
−0.0366 0.0271
0.0482 −1.0100

]
, C =

[
1 0
0 1

]
Hence, we set the system matrix of the four agents as

follows:

B1k = B2k = B3k = B4k =
[
−0.0366 0.0271
0.0482 −1.0100

]
.

C1
k = C2

k = C3
k = C4

k =

[
1 0
0 1

]
.

It is clear that C i
kB

i
k was observable.

FIGURE 8. State estimation error X using conventional decentralized
filters.

FIGURE 9. Estimation error of unknown input d using conventional
decentralized filters.

The other parameters such asGik and d were the same as the
numerical example. Fig. 6 shows the state estimation error.
Fig. 7 shows the estimation error of unknown input.

From Figures 6 and 7, one can see that the distributed
cooperative filter can estimate the unknown input and the
state correctly. Form Figures 8 and 9, one can see that the con-
ventional decentralized filter cannot estimate the unknown
input and the state correctly. From the results, one can
see that compared to the conventional decentralized filters,
the distributed cooperative filter can estimate the states and
unknown input correctly, which proves that our filter can also
work in practice.

VIII. CONCLUSION
A distributed cooperative filter was developed, with regard
to the MVU, which simultaneously estimates the unknown
inputs and states of a linear discrete-time heterogeneous
multi-agent system. The estimate of the unknown inputs was

VOLUME 6, 2018 18139



C. Liu et al.: MVU Unknown Input and State Estimation for Multi-Agent Systems by Distributed Cooperative Filters

obtained by innovating on LS estimation. The problem of
state estimation was transformed into a standard Kalman
filtering problem for a system with a correlated process and
measurement noise. Most significantly, the proposed filter
had a looser existing condition, in comparison to the conven-
tional filter. The presented numerical example demonstrates
the effectiveness of the proposed filter. In the future, multi-
agent system could be studied in two-dimensional system
framework [36], [37].
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