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ABSTRACT As the secondary widely used battery, lithium-ion batteries (LIBs) have become the core
component of the energy supply for most devices. Accurately predicting the current cycle time of LIBs
is of great importance to ensure the reliability and safety of the equipment. In this paper, considering the
nonlinear and non-Gaussian capacity degradation characteristics of LIBs, a remaining useful life (RUL)
prediction method based on the exponential model and the particle filter is proposed. The cycle life test
data of LIBs published by prognostics center of excellence in national aeronautics and space administration
were exponentially experiencing the rule of degradation. And then the extrapolation method was used to get
the quantitative expression of the uncertainty of life expectancy of LIBs, i.e. the prediction mean and the
probability distribution histogram. The prognostic horizon index and the new specific accuracy index were
applied to evaluate the prediction performance. Moreover, the prediction error under different prediction
starting points is given. Compared with other methods such as the auto-regressive integrated moving average
model, the fusion nonlinear degradation autoregressive model and the regularized particle filter algorithm,
the proposed algorithm has a better prediction performance. According to the accuracy index, the proposed
prediction method has better prediction accuracy and convergence. The RUL prediction for LIBs can provide
a better decision support for the maintenance and support systems to optimize maintenance strategies, and
reduce maintenance costs.

INDEX TERMS Lithium-ion batteries (LIBs), exponential model, particle filter (PF), remaining useful
life (RUL) prediction.

I. INTRODUCTION
Lithium-ion batteries (LIBs) have been widely used in elec-
tric vehicles because of its energy density, small weight, long
life, and nomemory effect [1]–[4]. However, due to operating
conditions and the impact of aging, the performance of LIBs
will degrade and lead to failure [5]; some security incidents
and even catastrophic accidents will occur in the event of
failure because of a large energy density [6], [7]. For many
applications of LIBs in the fully charged state, the end of
life of LIBs can be defined as the point when the actual
capacity declined 70∼80% of the nominal capacity or the
actual internal resistance increased to 1.6∼2 times of the
initial internal resistance [8].

A remaining useful life (RUL) prediction is critical to the
implementation of condition based maintenance (CBM) and

prognostics and health management (PHM) [9]. In recent
years, in order to make the system of LIBs operation more
reliable and safe, the battery management system (BMS)
with independent health management function has become
the direction for future research and development [10]. So it
is important to find a reliable and accurate method to predict
RUL to provide maintenance and replacement of the BMS in
a timely manner [11], [12].

Now, scholars have carried out extensive efforts on
the research of RUL prediction methods for LIBs.
Zhang, et al. [13] focused on a battery capacity prognos-
tic approach using the empirical mode decomposition
(EMD) denoising method and the multiple kernel rele-
vance vector machine (MKRVM) approach, and the pro-
posed MKRVM approach can predict the battery’s future

VOLUME 6, 2018 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 17729

https://orcid.org/0000-0002-5273-6867


L. Zhang et al.: RUL Prediction for LIBs Based on Exponential Model and PF

capacity precisely. Andre, et al. [14] proposed a priori
knowledge-based structured neural network (SNN) method,
and established voltage, current and impedance of the mathe-
matical expression according to the equivalent circuit model
of LIBs. The ensemble monotonic echo state networks
(En_MONESN) algorithm [15] and the Gaussian process
regression (GPR) algorithm [16] were proposed for RUL of
LIBs. Long, et al. [17] used the autoregressive (AR) model
to track the degradation trend of the capacity of LIBs, and
then used the particle swarm optimization algorithm to deter-
mine the order of the AR model for achieving the RUL
prediction of LIBs. In Zhou’s research [18], the capacity
degradation process of LIBs is regarded as amulti-component
mixed signal. The support vector machine (SVM) algo-
rithm [19], [20] was introduced to LIBs. Wang, et al. [11]
and Liu, et al. [21] estimated the capacity of LIBs using a
relevance vector machine (RVM) algorithm and a conditional
three-parameter capacity degradationmodel. Peng, et al. [22]
proposed a method based on the adaptive unscented Kalman
filter (AUKF) with a noise statistics estimator to estimate
accurately state of charge (SOC) of battery energy stor-
age systems, and the proposed method can achieve the
better SOC estimation accuracy when the noise statistics
of battery energy storage systems are unknown or inac-
curate. And there are also some fusion methods on state-
of-health prediction and management of LIBs in the
literature [23]–[25].

A particle filter (PF) is a typical used method to determine
the RUL uncertainty of LIBs. From the literature, the life
expectancy of the PF has a very good prospect because of
its strong nonlinear, non-Gaussian processing capacity [26].
But the PF itself has two main problems: particle degrada-
tion and sample deprivation [27]. Although resampling can
reduce particle degradation to a certain extent, it can also
lead to a lack of sample particles. Miao, et al. [28] used the
unscented PF and Wang, et al. [29] used the sphere cubes PF
on tackling the disadvantages about lack of sample particles.
Based on the Markov Chain Monte Carlo (MCMC) algo-
rithm, the unscented PF has been improved to enhance the
diversity of particles in the process of resampling [30], [31].

However, the prediction accuracy based on the PF is con-
trolled by the influence of the shortcomings of the algorithm
itself, and in addition, it still depends on the state space model
of the degradation process of LIBs. Based on the charac-
teristics of capacity degradation of LIBs, Yang, et al. [32]
proposed a fusion model of exponential and polynomials, and
then the PF algorithm is used to update the model parameters
online. Based on the characteristics of the capacity degra-
dation of Li(NiMnCo)O2 LIBs, Wang, et al. [33] proposed
a double logarithmic degradation model, and then the PF
algorithm was used to study the parameters. Gustafsson [34]
proposed a novel incremental capacity analysis (ICA)method
for state of health (SOH) estimation to optimize the model
parameters for better prediction accuracy and enhance its
applicability in realistic BMS, and the effectiveness of the
proposed model was validated by experimentation. In this

paper, the RUL prediction for LIBs based on the exponential
model and the PF will be future researched.

This paper is structured as follows: Section II studies the
theoretical derivation of the PF method in life prediction.
The capacity degradation state space model of LIBs is estab-
lished in Section III. In section IV, the prediction method
based on the PF and the exponential degeneration model
is studied. And experimental data of the capacity degrada-
tion of LIBs, which were published by Prognostics Center
of Excellence (PCoE) in National Aeronautics and Space
Administration (NASA), are analyzed to verify the validity
and reliability of the proposed algorithm. Section V gives a
more reasonable evaluation of the prediction performance.
Finally, Section VI concludes the paper.

II. BASIC PRINCIPLE OF PARTICLE FILTER METHOD
As a machine learning algorithm, the PF has a strong ability
to deal with nonlinear and non-Gaussian problems and has
been widely used in various fields [11], [35]–[37]. There-
fore, the research on the PF in life prediction applications has
important theoretical and practical significance.

A. PARTICLE FILTER
The PF is a general algorithm based on the Bayesian estima-
tion, which uses the Monte Carlo method to draw particles
from a posterior distribution and assigns a weight to each
particle [37].

The implementation of the PF algorithm [26], [35], [38]
consists of the following three steps, as shown in Fig. 1. First,
the algorithm generates an initial particle division, and then
updates the weight of each particle, and finally re-samples in
accordance with the requirements.

FIGURE 1. The PF implementation scheme.

(1) Initializing (k = 0): the generation of particles. The
weight of all particles is assigned as w̃(i)

0 = 1/N , and a priori
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probability density function P(x0) generates a set of sampled
particles {x(i)0 }

N
i=1.

(2) Updating the weight at the time k:

w(i)
k = w(i)

k−1

p
(
zk |x

(i)
k

)
p(x(i)k |x

(i)
k−1)

q
(
x(i)k |x

(i)
k−1, z1:k

) (1)

Normalizing particle weights:

w̃(i)
k =

w(i)
k

N∑
j=1

w(j)
k

(2)

(3) Re-sampling: Calculating the number of valid samples:

N̂eff =
1

N∑
i=1

(w(i)
t )2

(3)

If
{
x(i)0:k ,w

(i)
k

}N
i=1

, the algorithm re-samples are according

to the importance weights to obtain a new set of particles
{x(i)k , 1/N }; otherwise, no resampling.
State estimation:

x̂k =
N∑
i=1

x(i)k w
(i)
k (4)

P̂k =
N∑
i=1

w(i)
k (x(i)k − x̂k )(x

(i)
k − x̂k )

T (5)

B. SPACE MODEL OF DYNAMIC SYSTEM STATE
Using a suitable model to describe a real problem is important
for analyzing and solving the problem [27]. The state space
model is such a very important analytical model that most of
the problems can be described in many practical engineering
applications such as signal processing, statistics and com-
munications radar sonar. Specifically, the construction of a
dynamic spatial model is mainly expressed by two equations
as following:

xk = f (xk−1, θk , vk ) (6)

zk = h(xk ,wk ) (7)

where: k = 1, 2, 3. . . represents a discrete time series;
xk represents the system state variable or parameter at
time k; f represents the state transfer function of the system;
wk represents the process noise sequence; zk represents the
measurement of the system at time k; h represents the obser-
vation function of the system; vk represents the measurement
noise sequence.

Equation (6) describes a dynamic process in which the state
of a system evolves over time, and it is therefore commonly
referred to as a state transition equation which represents the
system according to the Markov process with the dynamic
evolution at time k . Equation (7) describes state-dependent
noise variables, also is called measurement equations.

FIGURE 2. The model diagram of the dynamic system space.

The model diagram of the dynamic system space is shown
as Fig. 2.

It supposes that transfer equation xk follows the first-order
Markov process and is independent of the measured value
zk , and the initial probability density function p(x0) of the
state xk is known as a priori knowledge. Then the statistical
description of the dynamic system state of space model is as
following.

Corresponding to the state transition model, the state
transition probability density of the system is p(xk |xk−1).
Corresponding to the observation model, the observation
probability density of the system states is p(zk |xk ).

III. ALGORITHM FLOW AND DEGRADATION MODELING
In this section, the model of the capacity degradation of LIBs
is established. The PF algorithm is used to study the model
parameters nonlinearly, and then the probability distribution
of the model parameters is obtained. The probability density
distribution of the life prediction can be given by an extrapo-
lation method with counting the life value of each particle.

A. FRAMEWORK AND ALGORITHM FLOW OF REMAINING
LIFE PREDICTION OF LITHIUM-ION BATTERIES
In this paper, the PF algorithm selects the priori probability
density function as an important density function, that is:

q
(
x(i)k |x

(i)
k−1, z1:k

)
= p(x(i)k |x

(i)
k−1) (8)

The importance weight is simplified calculated as follows:

w(i)
k = w(i)

k−1

p
(
zk |x

(i)
k

)
p(x(i)k |x

(i)
k−1)

q
(
x(i)k |x

(i)
k−1, z1:k

) = w(i)
k−1p

(
zk |x

(i)
k

)
(9)

The framework of the PF algorithm consists of four parts:
the data preprocessing, the model parameter determination,
the capacity status prediction, and the cycle life calculation.
There are some parameters: b is defined as the unknown
parameter of the empirical model in the capacity degradation
of LIBs, T is defined as the starting point in the algorithm
implementation, N is defined as the number of particles, s is
defined as the standard deviation of the measured noise, U
is defined as the capacity threshold at the end of the battery
life, z is defined as the real value of the capacity degradation
of LIBs, x is defined as the capacity prediction output value
in the each step iterative process, and cycle is defined as the
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charge and discharge cycle number. The detailed steps of the
algorithm are given as below.

(1) Extracting the battery capacity data z from the NASA
PCoE battery test data, preprocessing the data, such as data
reduction and remove outliers.

(2) Setting the predicted starting point T . The data before
the starting point T are defined as the known historical data,
and used as the training data parameters to update model
parameters.

(3) Initializing the PF algorithm to set some parameters in
the life prediction process: N, x, s, b, U.
(4) Using the PF algorithm to track the battery capacity

data before the starting point T , updating the state parameters
x, b and s in the degradation process of LIBs. The flow of the
training algorithm is as follows:

Step 1: Initializing the particle set: k = 0, getting particle

set {x(i)0 }
N
i=1 and weight w̃

(i)
0 = 1/N ;

Step 2: Updating weight w(i)
k = w(i)

k−1p
(
zk |x

(i)
k

)
, normal-

izing weight w̃(i)
k ;

Step 3: Performing resample to obtain a new particle set
after resampling {x(i)∗0:k ,w

(i)
k , }

N
i=1;

Step 4: Outputting the battery capacity Ĉk =
N∑
i=1

x(i)k w̃
(i)
k ;

Step 5: Repeating the above steps in sequence at k = k+1
until k = T , that is, all training data are used up.

(5) Achieving the purpose of prediction: k = T + 1.
According to the state transition function, x of each particle is
iterated and it is determined whether or not x reachesU . If all
are not reached, the unimplemented particles are extrapolated
until all particles are reached.

(6) Calculating the RUL of each particle and doing statisti-
cal analysis to obtain the RUL distribution histogram of LIBs
if all particles reach the threshold and end iteration.

In summary, Fig. 3 shows the flow chart of the algorithm
that describes the method of RUL prediction for LIBs based
on the exponential model and the PF.

B. LITHIUM-ION BATTERY CYCLE LIFE
DEGRADATION MODELING
According to the PF algorithm, a state transition matrix or
function of the capacity degradation of LIBs is estab-
lished. In this paper, based on the experience fitting method,
the mathematical relationship model between the number of
cycles and the capacity is established, and then the residual
life is predicted by the PF algorithm.

According to the PF algorithm and the empirical degra-
dation model of LIBs, the degradation process can be rep-
resented by the following state space model:

xk = f (xk−1, θ,wk ) = exp(−bk1t)xk−1 + wk (10)

Qk = xk + vk (11)

According to the Monte Carlo integral algorithm, the pos-
terior probability density function can be approximated by N
sampling values, so the capacity Q can be calculated by the

FIGURE 3. The RUL algorithm flow chart based on the exponential model
and the PF.

following equation:

Qk ≈
N∑
i=1

w(i)
k δ(xk − x

(i)
k ) (12)

where δ(·) represents the Dirac Delta function, w(i)
k represents

the particle weight.
When the number of cycle is k , the p-step prediction results

of each particle can be calculated by the following equation:

Q(i)
k+p = Q(i)

k exp(−bkp) (13)

When the capacity of LIBs dropped to 70% of the initial
rated capacity, its life reaches the end value. So, the number
of charge and discharge cycles can be calculated by the
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following equation:

0.7Qrated = Q(i)
k exp(−bk l

(i)
k ) (14)

If the initial capacity of the battery and the previous k-cycle
capacity data (Q1,Q2, . . . ,Qk ) are known, themodel of the PF
is used to study the model parameters, the probability density
and distribution function after the p-step prediction for the
capacity of LIBs can be calculated by the following equation:

p(lp|Q0:k ) ≈
N∑
i=1

w(i)
k δ(lk+p − l

(i)
k+p) (15)

IV. REMAINING USEFUL LIFE PREDICTION
FOR LITHIUM-ION BATTERIES
Combining with the capacity degradation of the actual char-
acteristics, this section focuses on the cycle life prediction
method of LIBs. A large number of case studies and experi-
mental data set on the capacity degradation which was pub-
lished by the NASA PCoE were analyzed in order to verify
the effectiveness and reliability of the proposed algorithm.

A. DATA SET OF BATTERIES DEGRADATION
The experimental data set [38], which is published by PCoE
inNASA, is based on the battery specification for commercial
18650.

Through the initial analysis on the battery capacity
degradation data and experimental conditions, Battery005,
Battery006 and Battery018 are selected to verify the effec-
tiveness of the proposed algorithm based on the exponential
model and the PF.

As these three batteries of its nominal rated capacity
of 2 Ah (only slightly different cycle discharge conditions),
and the failure criteria of capacity is 0.7 times the initial rated,
so the life termination point of the capacity threshold is set to
U = 1.4 Ah.

The experimental conditions of batteries cycle life are
described below:

Step 1, charging with the constant current 1.5 A, changing
charge model with constant voltage when the charge limit
voltage reaches 4.2 V, and then stopping charging when the
current is reduced to 20 mA, at last, standing time indefinite;

Step 2, discharging with constant current 2 A, stopping
discharging when the voltage drops 2.7 V or 2.5 V, and at
last, standing time indefinite;

Step 3, repeating the above steps, getting the data from the
cycle performance degradation of LIBs.

Three single batteries were subjected to a general degra-
dation performance test at room temperature. The capacity
degradation curve was shown in Fig. 4 during the whole
experiment.

As shown in Fig. 5, the nonlinear least squares method
is used to exponentially quantify the capacity degradation
data of LIBs. It can be seen from Fig. 5, the index model
in the overall can be better to fit the data about the capacity
degradation, the overall trend of the capacity attenuation can
be better to basically response the rules.

FIGURE 4. The capacity degradation curves.

If Q is used to represent the capacity of LIBs during
degradation, the empirical model of its degradation can be
written as:

Q = a · exp(−b · k) (16)

where a and b represent the model parameters and k repre-
sents the number of charge and discharge cycles.

B. UNCERTAINTY QUANTITATIVE EXPRESSION
OF BATTERY CYCLE LIFE PREDICTION RESULTS
Taking the Battery005 as an example, this section illustrates
how to use the algorithm proposed in this paper to predict the
cycle life of LIBs.

Experimental data of Battery005 have a total 168 cycle
life sample points. In order to obtain better prediction effect,
the number of cycles representing the end of life is chosen
as the starting point of prediction, that is, T = 100, and the
PF with nonlinear and non-Gaussian learning ability is used
to track the training for the first 100 samples. After the
final parameter value of the exponential prediction model is
obtained, the life expectancy prediction is achieved by the
extrapolation method, and the life probability of each particle
is calculated to give the predicted life probability density
distribution.

In the example of Battery005, setting some necessary
parameters for the algorithm to run and initialize: the number
of particles N = 5000, through a large number of exper-
iments to determine the optimal parameters of the value
range is: the initial value of the state x ∼ U (1.7, 2.1),
B∼U (0, 0.02), s∼U (0.01, 0.1).
After the initialization is complete, running the PF algo-

rithm to update the state initial value: starting from T = 100,
the parameter values of the battery are updated according to
the updated state value and the state transition equation, and
each particle is subjected to the iterative extrapolation.

At the same time, it is judged whether or not the capac-
ity state value x of each particle reaches the set capacity
threshold. If each particle reaches a preset capacity threshold,
the recursive iteration process is ended, and the cycle life
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FIGURE 5. The capacity degeneration curves and its exponential fitting
curves. (a) Battery005. (b) Battery006. (c) Battery018.

value of each particle is output according to the difference
between the number of iterations of each particle and the
predicted starting point T .

The final RUL prediction results and their distribution his-
tograms, which are statistical analysis of the lifetime values
of all particles, are shown in Fig. 6.

The RUL prediction results and their distribution his-
tograms at the starting point of Battery005, that is,

FIGURE 6. The RUL prediction results of Battery005 at the starting point
T = 100. (a) The capacity degeneration curve. (b) The RUL distribution
histogram.

T = 80, are shown in Fig. 7. And the RUL prediction of
Battery006 and Battery018 are also drawn in Figs. 8 and 9
respectively.

In order to evaluate the accuracy of the prediction results
simply, an equation for predicting error that is the difference
between the actual RUL value and the predicted RUL value
is defined as shown in the following.

RULe = RULt − RULp (17)

where RULt represents the actual number of remaining useful
life cycles, and RULp represents the predicted number of
remaining useful life cycles predicted by the algorithm in the
paper.

According to the above definition, as shown in Fig. 7,
it can be seen that the actual end of life cycle of the Bat-
tery005 is 126, and the average life cycle number predicted
by the method proposed in this paper is 138. When the
prediction starting point is set to T = 80, the actual remain-
ing life is RULt = 46 and the predicted remaining life is
RULp = 58, so the prediction error of the algorithm RULe =
RULp-RULt = 12. When the prediction starting point is set
to T = 60 and T = 100 respectively, the prediction error of
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FIGURE 7. The RUL prediction results of Battery005 at the starting point
T = 80. (a) The capacity degeneration curve. (b) The RUL distribution
histogram.

TABLE 1. The RUL prediction error of Battery005 at the different starting
point.

the algorithm is also obtained. Table 1 shows the prediction
error of the Battery005 at different prediction starting points.

C. RUL PREDICTION RESULTS OF DIFFERENT
CONDITIONS ON FORECAST STARTING POINTS
The Battery018 experiment chooses the number of cycles in
the early, middle and end of life as the starting point, that
is, the prediction starting points are T = 40, T = 60 and
T = 80 respectively. Algorithms according to the process
steps mentioned above are performed prediction process and

FIGURE 8. The RUL prediction results of Battery006 at the starting point
T = 80. (a) The capacity degeneration curve. (b) The RUL distribution
histogram.

the learning process, and the average capacity degradation
curves were obtained and compared with the actual end of
the life. According to the prediction model based on the
exponential model and the PF, Battery018 is predicted and
the capacity degradation path and curve at different starting
points is shown in Fig. 10. In the Battery006 experiment, the
prediction starting points T are 60, 80 and 100 respectively,
and the capacity degradation path and curve at different start-
ing points is shown in Fig. 11.

The RUL predictive error quantification of three batteries
at different prediction starting point was shown in Table 2.
For Battery005, when the starting point for prediction T is
set as 60, 80 and 100 respectively, the predicted average life
expectancy termination points are 155, 138 and 134 respec-
tively, which are gradually close to its actual life of 126. The
same is for Battery006 and Battery018. In Table 2, from the
overall trends reflected by these three batteries, it can be seen
that as the prediction starting point continues to be pushed
back, the prediction error becomes closer to zero, which is
in good agreement with the actual application. It also shows
that the algorithm has convergence. With the pushback of the
starting point for prediction, more and more capacity data can
be used for learning, and more rich degradation information
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FIGURE 9. The RUL prediction results of Battery018 at the starting point
T = 60. (a) The capacity degeneration curve. (b) The RUL distribution
histogram.

FIGURE 10. The RUL prediction results of Battery018 at the different
starting point.

and features are contained. Therefore, the prediction error is
smaller in the backward direction.

It can be seen from many examples in this section that
the residual life prediction method based on the PF requires

FIGURE 11. The RUL prediction results of Battery006 at the different
starting point.

TABLE 2. The contrast of the RUL prediction error of LIBs at the different
starting point.

less prior information for individuals and is therefore more
convenient to implement. The algorithm can adapt to the
degradation difference between different samples, and at the
same time it gives a relatively accurate residual life prediction
value of individual battery capacity degradation, more and
more prediction data are available with the passage of time,
and the prediction error also gradually decreases. And the
algorithm can realize the indefinite expression of the predic-
tion result. Compared with the point estimation, the interval
estimation of the probability density has a greater reference
value for the maintenance strategy because the uncertainty
factor always exists, and the probability density function is a
good solution.

The RUL prediction errors calculated by the auto-
regressive integrated moving average (ARIMA) prediction
algorithm in [36] and the fusion nonlinear degradation autore-
gressive model and the regularized particle filter (AR-RPF)
prediction algorithm in [26] are shown in Table 3. From the
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TABLE 3. The comparision of the RUL prediction error of LIBs.

error of prediction results, the prediction method based on
the exponential model and the PF proposed in this paper has
better prediction accuracy and good convergence than other
prediction methods.

V. RESULTS AND DISCUSSION
The algorithm proposed in this paper will be evaluated
according to the general evaluation index proposed by the
relevant scholars, and the quantitative representation of the
histogram will be quantified.

A. PREDICTION ALGORITHM PERFORMANCE
EVALUATION INDEX
In this paper two performance evaluation indictors, the prog-
nostic horizon and the precision index, are presented for the
prediction algorithm.

1) PROGNOSTIC HORIZON (PH) INDEX
First, whenwe evaluate a prediction algorithm, the prognostic
horizon can be defined as the time between the indices of
the time i and the end of life interval when the prediction
error of the algorithm satisfies the pre-given prediction error
requirement for the first time, as following equation.

PH = EOL − i (18)

According to the above description of the PH index,
as shown in Figs. 12 and 13, PH results with 10% errormargin
of Battery006 and Battery018 were 58, 38 respectively. It can
be seen from Fig. 13 that the PH index does not guarantee
that the subsequent prediction error is within a given error
range. For example, the Battery018 meets the requirement
of 10% error at T = 40 at the first time, but the prediction
error is greater than the given error range of 10% when
T = 60. It can be found that the PH index does not guide
significance to the convergence of the prediction algorithm.
Therefore, more demanding indexes are needed to evaluate
the prediction performance of the prediction algorithm.

FIGURE 12. The RUL prediction results of PH with 10% error margin of
Battery006.

FIGURE 13. The RUL prediction results of PH with 10% error margin of
Battery018.

2) PRECISION INDEX (α − λ)
The PH index cannot evaluate the prediction algorithm, and
the weak point leads to a new indicator: α−λ accuracy, which
denotes that the prediction algorithm reaches a specified error
level or accuracy over a specified time period, and can be
defined as following:

(1− α)r(t) ≤ r(tλ) ≤ (1+ α)r(t) (19)

where α indicates a predetermined error accuracy, and λ
indicates a time window.

According to the above definition, the different starting
point prediction results and α−λ accuracy of Battery006 and
Battery018 shown in Figs. 14 and 15 respectively. It can
be seen from the figures that the accuracy of the prediction
algorithm is more stringent than that of the PH index, and
its prediction accuracy is more stringent with the passage of
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FIGURE 14. The RUL prediction results of α − λ accurate indicators of
Battery006.

FIGURE 15. The RUL prediction results of α − λ accurate indicators of
Battery018.

time, which is also consistent with the actual requirement,
because at the period of end the more precise prediction error,
the higher prediction accuracy requirements. It can be seen
that Battery006 satisfies the given α−λ accuracy requirement
after T = 60, and Battery018 satisfies the given α − λ

accuracy requirement after T = 80, so the former is better
than the latter.

B. THE PREDICTION RESULTS OF UNCERTAINTIES
In the engineering practice, engineers are not likely to use a
distribution histogram as a basis for making a maintenance
decision. In order to give the maintenance decision-making
scientific basis, this section expresses the RUL histogram,
and gives an uncertainty quantification expression.

1) CONFIDENCE INTERVAL
The confidence interval is the statistical evaluation index,
and the specific definition is as follows: given a general

parameter θ for an overall and two parameters θL , θU for
two samples, the formula (θL , θU ) denotes the confidence
interval with parameter θ and confidence 1 − α if a for-
mula is established as follows for some significant level
α(0 < α < 1):

P(θL ≤ α ≤ θU ) = 1− α (20)

For the standard Normal distribution, according to the
significant level the confidence interval can be obtained by
simple empirical formula calculation.

When we use the Monte Carlo method to obtain a param-
eter value estimation of distribution, the confidence interval
calculation steps are as follows: first of all, the samples for
all parameters are sorted in ascending order according to the
size of their estimated value.

When the significant level is set to α = 0.1, the upper limit
θU of the confidence interval is equal to that value where is
located at 95% position after sorting, and the corresponding
lower limit θL of the confidence interval is equal to that value
where is located at 5% position after sorting. Similarly, when
the significant level is set to α= 0.05 and α= 0.01 respec-
tively, the upper limit θU is equal to that valuewhere is located
at 97.5% and 99.5% position respectively after sorting, and
the lower limit θL is equal to that value where is located
at 2.5% and 0.5% respectively after sorting.

According to the sorting method, the confidence intervals
for the prediction of the RUL can be calculated, and the his-
togram distribution diagram based on PF is shown in Fig. 16.

FIGURE 16. The RUL prediction results with confidence interval 90%.

It can be seen from the figure that the confidence inter-
val (θL , θU ) = (22, 54), when a confidence level is equal
to 1−α = 90%, namely the RUL of LIBs has a 90% proba-
bility of falling in the interval.

2) DISTRIBUTION HYPOTHESIS TEST
The K-S test is a method of statistics that is commonly used
to analyze a set of data distribution, and its basic idea is to
calculate the cumulative distribution function through a set of
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data for testing and to compare with a standard distribution,
and it accepts the test or rejects the hypothesis under a given
confidence level.

Therefore, the life distribution of the histogram will also
use the K-S test by the prediction test. Through the K-S test in
MATLAB, it is found that the Battery018 prediction results of
the probability distribution histogram conform to the Weibull
distribution under the 90% confidence level. According to the
Weibull density function fitting prediction of life distribution
histogram, the fitting effect with the original histogram is
shown in Fig. 17.

FIGURE 17. The distribution histogram of RUL prediction results and
Weibull distribution.

The Weibull distribution accords with the life distribution
of the most mechanics parts, and it verifies that the proposed
prediction algorithm is reasonable and effective. We also
study the Normal distribution and other common Poisson
distribution, and it does not comply with these common under
the same 90% confidence level.

VI. CONCLUSION
In this paper, the algorithm framework based on the expo-
nential model and the PF for predicting the remaining life of
LIBs is proposed. And the NASA PCoE battery test data are
analyzed with a large number of cases. Each case is given to
predict average degradation path and the final life probability
distribution histogram. The prediction results show that the
proposed prediction algorithm has quite good forecast effect.
The main research achievements are as following.
(1) The PF algorithm based on the framework for pre-

dicting the remaining life prediction of LIBs was
established. Combined with a large number of cases,
it gives the prediction error under the condition of
different prediction. Compared with other papers in the
ARIMA prediction algorithm and the AR-RPF algo-
rithm, the results show that the proposed algorithm
has a better prediction performance. The results show
that the proposed algorithm has a better prediction
performance.

(2) The use of the PH index and the α − λ preci-
sion index are used to evaluate the prediction perfor-
mance of the proposed algorithm. Sometimes, The PH
index cannot evaluate the prediction algorithm, and
the α − λ precision index denotes the specified error
level or accuracy successfully. From the calculation
results of these indicators, this exponential model and
the prediction method have better prediction accuracy
and convergence.

(3) According to the prediction residual life distribu-
tion histogram, confidence intervals are calculated
and examined on the Weibull distribution assumption.
From the experiments, the prediction results of prob-
ability distribution histogram conform to the Weibull
distribution under the 90% confidence level. The pre-
diction result of post-processing is more conducive to
the maintenance personnel for optimizing the mainte-
nance strategy.
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