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ABSTRACT While enjoying the convenience of location-based services (LBSs) in everyday life, wireless
device users could also put their location privacy at risk. An untrusted LBS provider can store mobile users’
data on its server, track users in various ways or share users location data to the third parties. To protect LBS
users’ privacy, many position confusion algorithms were proposed, but those algorithms often have difficulty
balancing the utility-privacy tradeoffs. In this paper, we propose a new cognitive approach that enables near-
complete privacy protection for LBS users by leveraging existing social network resources. We introduce a
heterogeneous multi-server architecture that cuts off the direct connection between the LBS queries and the
query issuers, and an auction-based incentive mechanism guaranteed user participation, which is critical for
the success of the proposed architecture. A simulation system and a smartphone application were developed,
and our evaluation results show that the proposed method can not only achieve the near-total privacy
protection for LBS users, but also significantly improve the quality of the services.

INDEX TERMS Privacy, location, data, social, mobile.

I. INTRODUCTION
Nowadays, smart mobile devices (such as smart phones,
tablets, wearable smart devices) play an important role in
our life. Technology advances and fast development in smart
devices enrich our daily life in various aspects. A lot of con-
venience has been brought by smart mobile devices and the
rich applications available on smart mobile devices. Among
which, one of the most important and popular services that
being extensively explored are the services obtained from
location based applications. We can find a large number of
location based applications that can simply collect users’
location information through the embedded GPS module on
smart mobile devices. Because of that, users can use map
applications to report or obtain road condition such as traffic
and accident by a simple click. Based on the participation of a
large group of users, road condition can be analyzed and the
best route or alternative good routes will be recommended
to users. Another example, it is pretty common to see that
public transportation vehicles equipped with smart devices,
which allow them to report their accurate location. Based on
the report, a more accurate arriving time can be computed
so that users can better schedule their trip. With the help

of LBS, we can also get good recommendations on food,
entertainment, hotels and so on. A report from Marketsand-
Markets1 shows that the market of location-based service is
going to reach $54.95 billion by 2020. However, like every
coin has two sides [1]. The benefits and convenience brought
by LBS comes with a risk that users’ private information
which may include current and historical locations can no
longer be preserved [2]–[5]. For example, based on a user’s
regular report of road condition, it is easy to figure out
sensitive location information (such as home address, office
address, and regular route) of a commuter. Such informa-
tion could be compromised when a user submit a query
with sensitive information to a LSB server. Privacy leak-
age may also happen when a LSB server contains sensitive
information get hacked. The dilemma is: the more loca-
tion data we share, the better service we may get from
LBS. On the one hand, the more location data users share,
the better service they may get from LBS. On the other
hand, the more location data collected from users and the
broader that those data being used, the higher possibility users

1http://www.marketsandmarkets.com/
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privacy could get compromised. How to balance the expec-
tation of obtaining better service from a LBS and achieving
lower chance of privacy leakage attracts extensive interest
recently [6]–[8].

During the past several years, many studies [9]–[11]
focused on addressing how to protect privacy in LBS. One
popular strategy is to employ well-known privacy met-
rics such as k-anonymity and differential privacy [12]–[14].
In k-anonymity, users send their queries to a trusted third-
party server, after that, a centralized location anonymizer
(most of time is the LBS server itself) is required to coordinate
all the queries [15]–[18]. It protects location privacy from the
LBS server by hiding user’s location to other k − 1 dummy
locations. The differential privacy requires that the difference
between the probabilities that two answers from a query on
value v to a data base D1 and that probability obtained from
the adjacent data base D2 should be within a bound eε . The
effectiveness of those strategies highly relies on the trustiness
of the LBS server. Overall, most of the up-to-date proposed
technology could only provide privacy protection with a cer-
tain probability [19], [20]. If the adversary integrates and
utilizes some side information, and digs into data correlation,
certain privacy protection could be easily broken [21]–[23].
That is, if a LBS server got compromised, the adversary party
has the chance to distinguish the real location from the k − 1
dummy locations based on rich side information that kept at
the server end.

The other challenges that we are facing on protecting sensi-
tive location information in LBS applications include: 1) The
risk of losing privacy is due to users’ expectation for obtaining
better services. In order to get a better service such as obtain
accurate and good recommendations for the nearest restau-
rants, hotels, or shopping centers, you have to share your
accurate location information with the server. To improve the
query result, such as get a recommendation based on personal
preferences, it is usually necessary to share more side infor-
mation with the server. 2) The traditional privacy protection
techniques can not totally hide the real location. Such as the
technique which employs dummy locations or fake locations,
the real location and the real query issuer have to be included
in the queries so that the LBS server can observe enough
information so that provide service. In this situation, it could
be not difficult for the adversary to crack the protection with
the help of side information. 3) The algorithms proposed in
existing research articles often have high complexity which is
either impractical or costly. Even though they may prove the
effectiveness of the proposed solution on privacy protection
theoretically. The frustration is that it is very difficult to apply
their method to real life applications which hard to satisfy all
required pre-defined assumptions.

In this work, we investigate how to balance the efficiency
of the query and the privacy concern of the users in a more
effective way. To be specific, the target is to develop a simple
effective solution with low complexity. With all above men-
tioned concerns, a social based cognitive approach to achieve
a near-complete privacy protection strategy is proposed.

Different from existing approaches, the proposed solution
aims at separating the LBS query issuer from the query itself.
That is, the accurate query issuer’s information will not be
included in the query that sent to the LBS server. We try to
take advantage of the extensively used existing social media
to help the submission of LBS queries. A user will no longer
directly send a query to the LBS server or third party. Instead,
he/she will seek for help from his/her social friends to ask
them to send the query to the LBS server. The query result
will be returned to the social friends and then passed to the
user through a trusted third-party (social networks). For a
new product, you may doubt that establish a communica-
tion channel independently for a LBS application (app) is
also a challenge. This concern can be easily resolved when
existing popular social media, such as Facebook, Google+,
etc. can be used. Popular social media (such as Google,
Twitter, and Facebook, etc.) all capable of providing login
interfaces to support user’s login to a new app without extra
required registered new account. Through existing accounts,
the app could also access more authorized information to do
more activities. A success example is the AR mobile game
Pokémon GO,2 which achieved more than 9.55 million total
daily U.S. users after one month since its release. The conve-
nience and trusted login system of Google contributes to this
achievement.

Benefiting from the existing popular social media and
APIs, we propose to employ the existing social media and
account system to establish an independent communication
channel for our LBS application in this paper. The idea is to
let their social friends to help users submit the LBS query and
receive the response. Since the query is not issued directly
from the query issuer but from friends of that issuer, it breaks
the connection among the queries, side information and the
issuer identity. Furthermore, in order to handle the situation
that the adversary might collect historical data and social
information through the system as well, a practical differen-
tial privacy mechanism is proposed. This strategy guarantees
that our approach could still limit the chance of privacy loss
extremely low even when the social media release several
information regarding the query issuer and her helps. It is
hard to ensure the number of active friends of a query issues
on the social media system is always greater than k − 1. The
k-anonymity privacy objective can not be reached in this case.
As a compromise, we try to recruit strangers on the social
media system to help. The major technical contributions of
this paper are as follows.
• We propose a novel architecture for the location-based
service to protect query issuers’ privacy (such as loca-
tions and identities) against adversary. The major prop-
erty of this architecture is to distribute the location based
query and the query issuer to different servers.

• A differential privacy mechanism is proposed to handle
the situation that if the LBS server knows can obtain the
query issuer’s history activities or social connections.

2http://pokemongo.nianticlabs.com/en/
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The differential privacy mechanism could guarantee a
quite good privacy level in case of side information
leakage.

• To stimulate more user on social media system to par-
ticipate in helping others to perform queries. A game-
theory-based auction model followed by an incentive
mechanism are proposed, which includes fair query task
assignments and price calculation.

• The performance of the proposed methods are evalu-
ated through comprehensive experiments. Besides that,
a practical Android App is implemented to demonstrate
the usage and effectiveness of our proposed architecture
and mechanism.

The rest of the paper is organized as follows. The related
work is summarized in Section II. Section III introduces pre-
liminaries, including basic concepts, adversary model, moti-
vation and the basic idea of our resolution. The detailed novel
architecture and the implementation foundation are discussed
in Section IV. Section VI demonstrates the evaluation results
and introduces the Android App implementation. We discuss
the conclusion in Section VII.

II. RELATED WORK
The investigation on privacy protection of location-based
services is crucial to many related data privacy problems
regarding data mining and analyzing in mobile social net-
works [24]–[26]. There existing literature can be classified
into two categories. One category mainly focuses on the
metrics of location privacy. It tries to evaluate how accu-
rate an adversary could infer users’ coordinate based on
the collected data and side information. The other category
interests in the investigation of location privacy protection,
among which, two popular strategies are k-anonymity and
differential privacy based privacy protection. In this section,
we first discuss the exiting research work in-depth, and then
extend the discussion to how our work contribute to the
field.

A. LOCATION PRIVACY METRICS
To evaluate the effectiveness of a protection mechanism, it is
very important for the researchers to get a clear idea that
how accurate an adversary might infer the location based
on collected information and side information. For this pur-
pose, several location privacy metrics have been proposed.
Most of the existing literatures are probability-based., They
use a probability (between 0 to 1) to indicate the chance
that privacy information may be compromised citeChow-
1164, where the probability also reflects the privacy
level [27]–[29]. To measure the adversary’s ability on differ-
entiating a real query issuer from other anonymity set, [30]
proposed a very classical metrics. For example, the size of
the anonymity set k is a straightforward parameter that can be
used to evaluate the privacy level. On the other side, by incor-
porating social users’ spatiotemporal data and semantic infor-
mation, Yin et al. [31] proposed a community discovery
approach [32].

B. LOCATION PRIVACY PROTECTION MECHANISM
1) k-ANONYMITY
Gruteser et al. introduced the k-anonymity into loca-
tion privacy in the earlier days, which protected location
privacy from the LBS server by hiding user’s location to other
k − 1 dummy locations [30]. Then, [15] was proposed which
allowed users to adjust the anonymity level in their protection
model. To achieve [11] k-anonymity in privacy-aware LBS,
Niu, Li, et al. proposed a method which choose dummy
locations based on the entropy metric, and tried to enlarge
the cloaking region while keeping a well privacy level [33].,

C. LOCATION PRIVACY PROTECTION MECHANISM
Unfortunately, most of these k-anonymity models are relying
on a location anonymizer to enlarge the queried location
into a more noised room, and the anonymizer becomes the
bottleneck of the performance. Different from k-anonymity,
which applied dummy locations and hide the real location in
many candidates, our work use the social media being the
bridge between the query processing and query issuer. The
real query issuer will not communicate to the LBS server.

1) DIFFERENTIAL PRIVACY
In research area of statistical database, differential privacy
is a classical notion [12]. Differential privacy limited the
modification of a single query issuers data [7], [34], so that
have a negligible effect on the query result. Specifically,
differential privacy requires that the difference between the
probabilities that two answers from a query on value v to a
data base D1 and that probability obtained from the adjacent
data base D2 should be within a bound eε . Reference [35]
applied differential privacy to location privacy. The authors
proposed a synthetic data generation techniques to publish
statistical information related to commuting patterns. While
a quadtree spatial decomposition technique proposed by [36]
tried to ensure the differential privacy with location pat-
tern mining capabilities. Reference [37] presented a protocol
of interactions between the service and query issuers that
has remarkable optimality properties. That is, no inference
algorithm can be successfully used to infer a query issuers
private attribute with a probability better than random guess-
ing. No other privacy-preserving protocol improves rating
prediction. It involves a minimal disclosure. However, only
relying on the differential privacy cannot completely handle
the adversarys referring by exhausted query since differen-
tial privacy only protects the data with a specific threshold
probability [38], [39].

2) INCENTIVE MECHANISM
Auction model is a popular tool to make the task assignment
and payment calculation in incentive mechanism design.
Yang et al. [40] proposed two types of incentive mech-
anisms: platform-centric incentive mechanisms and user-
centric incentive mechanisms. The platform-centric incentive
mechanism is based on the Stackelberg game where the MCS
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platform decides the budget as well as control the auction
process and users can only adjust their strategies to maximize
their utilizes [28], [41]. In user-centric incentive mechanism,
each query issuer reports the lowest price for selling a service
to the MCS platform. Duan et al. [43] designed a reward-
based collaboration mechanism, in which the reward of a
client is shared among collaborators. If there are enough
query issuers’ participating, the collaboration is successful.
To attract query issuers’ participating, [43] proposed a novel
Reverse Auction-based Dynamic Price (RADP) incentive
mechanism, in which query issuers can sell their sensing data
to a service provider according the claimed cost. Singla and
Krause [44] deigned a budget feasible auction.

FIGURE 1. System model of our work.

Different from existing method, we take full advantage
of existing social networks. The proposed approach could
further protect the location and identity of the query issuer.
Unlike the existing approaches, we take a lead in proposing
the methodology and application to the best of our knowl-
edge. Such methodology and application able to separate the
utility and privacy, achieving a cognitive optimal resolution
by employing the social network associated with a LBS. The
system model of our work is illustrated in Figure 1, which
proceeds in five steps:
• Step 1: The query issuer request the services through
their social channel to their friends.

• Step 2: Social partners (the freinds who get the request)
will send the query directly to the location service
provide with their ID and the original query issuer’s
location.

• Step 3: The corresponding answer to the query return to
multiple social partners.

• Step 4: The original query issuer get feedback from
her/is social partners through the social channel.

• Step 5: According to all the data collected, the query
issuer caculate the final location-based query’s answer.

Table 1 lists frequently used notations.

III. PRELIMINARIES
In this section, the adversary model, background concepts,
motivation, and basic idea of our approach are presented.

A. ADVERSARY MODEL
We assume that an adversary is targeting at obtain-
ing sensitive information about a particular query issuer.

TABLE 1. Table of notations.

The adversary may be a general adversary or a positive
adversary. If the adversary is a general adversary, he/she will
try to obtain the query issuer’s sensitive information through
monitoring and eavesdroping on the communication channel
between the LBS server and the query issuer. On the other
hand, if the adversary is a positive adversary, he/she would
not only monitor but also try to compromise the privacy based
on collecting enough side information. Generally speaking,
the positive adversary is more dangerous than general adver-
sary. Because positive adversary usually collects a lot histor-
ical information and side information of all queries, which
results in a potential to crack more sensitive information
related to the query issuers in a LBS. In this work, we consider
the privacy protection under both adversary models.

B. BASIC CONCEPTS
Based on the conclusion obtained in existing literature,
we find out that: to evaluate the level of privacy, the mea-
sure of anonymity could be one of the straightforward ways.
However, to measure the uncertainty, entropy is a more useful
metric. Thus, entropy is chosen in this work to measure
the anonymity which could be considered as the uncertainty
of the probability on determining the real location from all
candidate locations [17]. Assume each possible location of
the query issuer has a probability denoted by pi of being
queried historically. Because the query issuer is the target user
for the adversary, the probability that it will get monitored
is 1. Thus, the summation of all probabilities pi is equals to 1.
The entropy S is defined as

S = −
k∑
i=1

pi · log2 pi (1)

where S represents the uncertainty for the adversary to iden-
tify the query issuer’s accurate location from all the candidate
locations. Equation 1 shows that, the larger the uncertainty,
the better we can protect our privacy. Therefore, our target is
to find out a solution that can maximize the entropy, which
also represent the hardness for the adversary to refer our
privacy.
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C. MOTIVATION AND BASIC IDEA
Existing privacy protection mechanisms are all based on the
idea that hides sensitive information among noisy data to
make it is difficult for the adversary to identify the real
sensitive information. However, since the real information is
still included, the connection between a query issuer and the
query itself is still exposed to the adversary no matter how
good the protection mechanism design is. When referring to
more side information, the adversary could have a certain
probability to guess and compromise the privacy of a query
issuer. That motivates us to think about this problem from a
different direction. The basic idea in our work takes advan-
tage of the social connection from social media, in which
location queries and corresponding results are sent through
social media. It can be summarized as follows.
In the proposed mechanism, we introduce a different archi-

tecture which introduce the friends of the query issuer to be
the intermediary. The query issuer will not send the query to
the LBS server but to one of its social friends instead. The
friends from social networks of a query issuer then will help
the issuer to submit a query to the LBS server. In this archi-
tecture, the original query issuer would not communicate with
the LBS server directly at all. So that the actual query issuer’s
identification can be hidden from the LBS server.

In this way, the near-complete privacy protection can be
achieved. However, the positive adversary may be able to
track the historical data and social connections of our query
issuer. It is possible for the positive adversary to analyze
the regularity of a LBS query and compromise the identity.
To avoid this, a differential privacy mechanism is further
applied to incorporate the possibility of the participation of
query issuer to further protect our query issuers.

FIGURE 2. Verification mechanism of social network’s API.

The implementation principle is based on the existing
social media system and their open account APIs. These
social media system could be employed as the foundation
of our cognitive network independent to the LBS server.
For example, as shown in Fig. 2, Google’s service-account
require applications to create and cryptographically sign

JSONWeb Tokens (JWTs).3 Through Token, the application
could directly call social media’s API to do instant message,
Email, and communication etc.

IV. COGNITIVE ARCHITECTURE AND DIFFERENTIAL
PRIVACY MECHANISM
In this section, we discuss the cognitive architecture and
differential privacy mechanism of our proposed privacy
protection in detail.

A. COGNITIVE ARCHITECTURE FOR PRIVACY PROTECTION
The key idea of the cognitive architecture is to build a mech-
anism to let query issuer’s friends help the query issuer to
communicate with the LBS server. In this paper, we will
try two different strategies on different scenarios. In one
situation, the query issuer is completely hidden from the LBS
server by not participating in the query interaction with the
LBS server. In this case, the query issuer is not going to send
the query to the LBS server but will send all queries to his/her
social friends, instead. In the other situation, the query issuer
will participates the query process and interactive with the
LBS server with his/her social friends. The query issuer will
also receive query result from the LBS server directly. Our
objective is, to hide the query issuer among his/her social
friends so that it can not be identified easily. To be specific,
we aims to limit the probability that the real query issuer can
be identified within 1/(2k) (k is the number of friends of the
query issuer).

1) COMPLETE PROTECTION
The complete protection is achieved in the way that the real
query issuer will not attempt to submit a query at all. Instead,
his/her social will help her/him to interact with the LBS
server, including submit queries and receive query results. For
example, if a query issuer γ wants to get recommendation for
the restaurant near location l. He will chose some of his/her
social friends γ1, γ2, . . . from u’s friend set F(u) and let
them know about his/her need. Then, those selected friends
would send the query Q(l, ‘‘restaurant’’) to the LBS server.
During this process, for the LBS server, the query it received
is from query issuer γ1 and γ2. Since the location information
is very accurate and specific, the answer to this query could
be ultimately optimized. On the other hand, because the
actual query issuer is not involved in the location-based query
process, the privacy is near-complete protected.

2) QUERY ISSUER INVOLVED PROTECTION
If the adversary is a positive adversary that interested in
collecting query history data and side information related
to all queries it monitored, the complete protection may not
work as effective as we expect. For example, if the adversary
can figure out the strategy and the relationships among the
query issuers who obtained services from the LBS server
based on its collected data. The adversary has the chance to

3https://developers.google.com/identity/protocols/OAuth2#libraries
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check all query regarding the same location l from different
query issuer γ1, γ2, etc. and find out the real query issuer
u′ by analyzing the common friend of those query issuers.
In this case, there is a very high probability that real query
issuer u′ will be identified. What make the situation even
worse is that all queries submitted to the LBS server contains
accurate location information. If the adversary could com-
promise the query and corresponding identity, the accurate
location privacy is going to be lost completely. Therefore,
to provide a complete privacy protection system, we proposed
the differential privacy mechanism for the situation that when
the query issuer is involved in the query. It guarantees that
under the case there is a positive adversary, and the adversary
collects a lot of historical data and side information related
to our query issuers, we solution still achieve a very good
privacy protection level.

B. DIFFERENTIAL PRIVACY MECHANISM
The differential privacy mechanism is proposed to protect
the situation that the adversary positively collects the query
information and side information to analyze the identity of
the query issuer. As illustrated, we actually do not need to
worry if there is no or few social information leakage at
the the LBS server end. For example, the LBS server does
not keep query history or side information. In this case,
our LBS query architecture could preserve a near-complete
privacy protection. However, in reality, during the service life
of the LBS, it is natural for the service provider to collect
user’s historical query and side information (for providing
better or more customized recommendation for most of the
time). Because of that, there is a certain probability for the
adversary to break the real identity and location privacy of
the query issuer. To address this issue, we develop a differ-
ential privacy mechanism to protect privacy with theoretical
guarantees.

In order to more clearly introduce the proposed mecha-
nism, the following definition is proposed.
Definition 1 (ε-Differential Privacy): Given a random-

ized function F, it gives ε-differential privacy if and only if
all data sets D1 and D2 differing on at most one element, and
all X ∈ Range(F)

Pr[F(D1) ∈ X ] ≤ exp(ε)× Pr[F(D2) ∈ X ] (2)

In Equation 2, parameter ε is a public parameter that
usually obtained from experience or experiment in practice.
Typically, the value of ε is selected from 0.01, 0.1, ln2 or ln3,
etc. Which one is the best fit is not our focus in this work
so the discussion on ε is beyond the scope of our work.
Differential privacy model introduce a randomized function
F to model users’ behavior, which is independent of any
other side information related to adversary or users. Thus,
the privacy level of a mechanism considering if it satisfies
this definition or not will not be influenced by the status of
the adversary.

The key point of differential privacy mechanism is to add
noise to the true answer so that could preserving the privacy.

Let a query be a function q(·), the database stored at the
LBS server is denoted as D, the corresponding query result
returned from the server is denoted as a value of q(D). In
the differential privacy mechanism, a randomized function F
is generated to add appropriately noise to the true answer to
produce a final response. The following definition of sensitive
function q(·) is introduced to evaluate the privacy protection
degree.
Definition 2 (Sensitivity of q(·)): For all adjacent

database D1, D2 differing in at most one element, the sen-
sitivity of q(·) is:

i
q = max

D1,D2
‖ q(D1)− q(D2) ‖k (3)

Specifically, if parameter k equals to 1, function q(·) actu-
ally achieve a maximum difference in the values that the
function q could take on a pair of databases that differer in
only one element.

V. INCENTIVE MECHANISM
To guarantee the k-anonymity of a query issuer, it requires
the query issuer obtain help from at least k−1 social friends.
However, it is possible that a query issuer can not find k − 1
friends who would like to provide help at a specific time.
There are two reasons: i) a query issuer may have few friends
who own their account on existing social media system, it is
hard to find k − 1 friends of the query issuer to provide
help; ii) at a specific time, like midnight, most of the friends’
social media system of a query issuer is offline. Therefore,
for each LBS query of a query issuer, we recruit both friends
and strangers from the social media system to help to query.
If a user of a social media system helps to query, the user
should first install related app which supports the general
interest query based on the search result on his or her device.
Helping to query brings cost to users of a social media system
such as battery resource, computational resource, and storage
resource. Some users may reject participating in helping to
query. To attract enough users of social media systems to
participate in query, the query issuer should make monetary
reward for them. We model this problem as an auction pro-
cess, in which each query from a query issuer is regarded
as a query task [21], [45], [46]. The query issuer acts as an
auctioneer and a buyer to control the auction process and buy
query service from users of social media systems. Besides,
users of social media systems are sellers who can sell their
query service to query issuers.

The auction process have five phases, which are briefly
summarized in the following:
• Phase 1: Publish task information. In the beginning,
the query issuer announces query task set on the plat-
form.

• Phase 2: Submit bidding information.After obtaining
the query tasks’ information, each user on the social
media system submits its cost and the set of query tasks
to the query issuer.

• Phase 3: Publish auction results. The query issuer
collects users’ information, determine task assignments,
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and calculate payment. The query issuer publish the
auction results on the platform.

• Phase 4: Help to query. These winner users help to
query each assigned task at the required time.

• Phase 5: Make payments. The query issuer makes the
payments to the winning users.

The working process is shown in Figure 11. We proposed
an auction-based incentive mechanism in Phase 3.

A. AUCTION MODEL FORMULATION
Generally, more than one query will be launched when
a query issuer arrives at a new place. We use 5 =

{π1, π2, . . . , πm} to denote the set of queries of a query
issuer. Each query task πi ∈ 5 has two attributes, which can
be represented as

πi = (ti, ki),

where ti is the time the query launched and ki points out that
howmany times the πi should be queried by other users in the
social media system. The value of ki is related to the privacy
target of the πi. 0 = {γ1, γ2, . . . , γn} represents the set of
users from the social media systems who agree on helping to
query. Each γj ∈ 0’s attributes can be represented as

γj = (Sj, cj),

where Sj ⊆ 5 denotes the subset of query tasks can be done
by πj. cj is the cost of πj helping to query all query tasks in Sj.
Each user γj can help to query a task in Sj at most one time.

An binary variable xij is used to show the query task
assignment results. If user γj is assigned to work for query
task πi, xij = 1. Otherwise, xij = 0. γj can help to query
one or query tasks in Si. pj represents the payment of the γj
from the query issuer. If γj is not assigned to any query task
in 5, the cost of γj is 0 and pj = 0. Otherwise, the cost of γj
is cj and the pj ≥ 0.

The objective of the query issuer is to recruit users in
0 which can complete the query tasks which can achieve
k-anonymity as well as minimum cost. The task assignment
and price calculation problem can be formalized as

min
n∑
j=1

pj, (4a)

s.t.
n∑
j=1

xij ≥ ki, ∀ i ∈ [1,m], (4b)

m∑
i=1

xij ≤ |Sj|, ∀j ∈ [1, n], (4c)

pj ≥ cj
m∑
i=1

xij, (4d)

xij ∈ {0, 1}, (4e)

In Eq. 4, the query issuer aims to minimize the cost such that
the following conditions should hold: (i) Eq. 4b indicates how
many times a query should be helped by users in the social

media system; (ii) Eq. 4c represents the number of queries
assigned to any user γj of the social media system can not
exceed the number of query tasks in Sj; (iii) Eq. 4d requires
that the payment of of a user can not be smaller than his or her
cost; (iv) Eq. 4e shows the range of assignment variable.
We consider three properties when designing incentive

mechanism:

• Individual rationality.We define the utility of a user as
the difference between received payment and the cost.
No MUD obtains a negative utility.

• Price truthfulness. It indicates that no user can improve
its received utility via lying on his or her cost.

• Computational efficiency. The results of the
mechanism can be done in real time.

B. INCENTIVE MECHANISM DESIGN
Our objective is to design a mechanism that approximately
minimize the cost while guaranteeing k-anonymity as well
as the three properties. Generally, there are two phases in an
auction-based incentive mechanisms: winner determination
and payment calculation. The detailed algorithms are shown
as follows.
WinnerDetermination:WeuseW as thewinner set of users

and initial value is empty.

Algorithm 1Winner Determination
1: Input: 5, 0
2: Output:W
3: Set W = ∅, {δj} = {0}
4: Find the user with the largest marginal contribution
5: Set δ∗ = 0, j∗ = 0
6: Winner determination
7: for Each γj ∈ 0/ W do
8: δj =

|Sj|
cj

9: if δj > δ∗ then
10: δ∗ = δj/, j∗ = j, W = W ∪ γj∗
11: end if
12: end for
13: while ∃ πi ∈ 5,

∑
j′:γj′∈W ,πi∈Sj′

1 < ki do

14: Set δ∗ = 0, j∗ = 0
15: for Each γj ∈ 0/ W do
16: δj = |Sj|/cj
17: if δj > δ∗ then
18: δ∗ = δj, j∗ = j, W = W ∪ γj∗
19: end if
20: end for
21: end while

In Algorithm 1, we greedily select winners accord-
ing to the ratio of users’ marginal contribution over
costs.
Price Calculation: After winners are identified, query

issuer calculates the payment for each winner γj ∈ W via
identifying γj’s critical neighbor, which is defined to be the
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FIGURE 3. Probability of User’s real location release.

user who could lead to the failure of the γj. Detailed way to
calculate the payments is shown in Algorithm 2.

Algorithm 2 Price Calculation
1: Input: 5, 0, W
2: Output: {pj}
3: Set {pj} = {0}
4: for Each winner γw ∈ W do
5: Set 0−γw = 0/γw
6: end for
7: Set δ∗ = 0, j∗ = 0, W−γw = ∅
8: for Each γw ∈ 0−γw/ W−γw do
9: for Each πi ∈ 5 do
10: δj = δj + δ(i, j,W−γw )
11: end for
12: if δj/cj > δ∗ then
13: δ∗ = δj/cj, j∗ = j, W−γw = W−γw ∪ γj∗
14: end if
15: if ∀πi ∈ Sw,

∑
j′:γj′∈W−λw ,πi∈Sj′

1 ≥ ki then

16: pi =
|Sw|
|Sj∗ |

cj∗
17: end if
18: while ∃ πi ∈ 5,

∑
j′:γj′∈W ,πi∈Sj′

1 < ki do

19: Set δ∗ = 0, j∗ = 0
20: for Each γj ∈ 0/ W−γw do
21: δj = |Sj|/cj
22: if δj > δ∗ then
23: δ∗ = δj, j∗ = j, W−γw = W−γw ∪ γj∗
24: end if
25: end for
26: end while
27: if ∀πi ∈ Sw,

∑
j′:γj′∈W−λw ,πi∈Sj′

1 ≥ ki then

28: pi =
|Sw|
|Sj∗ |

cj∗
29: end if
30: end for

C. PROPERTIES ANALYSIS
Lemma 1: The winner MUDs set selection provided in

Algorithm 1 is monotonic.

FIGURE 4. Entropy of our resolution VS random scheme.

FIGURE 5. Login interface.

FIGURE 6. App login.

Proof: If γj is selected as a winner with cj and Sj, its
contribution is δj =

|Sj|
cj
. We set c′j ≤ cj, we should prove
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FIGURE 7. App message.

FIGURE 8. Welcome message.

that γj can still win with c′j and Sj. The new contribution is

δ′j =
|Sj|
c′j
. Since δ′j ≤ δj, γj is still selected as winner

Algorithm 1. Next, we can see that γj will become winner
with cj and S ′j , where S

′
j ⊇ Sj.

Lemma 2: The payment pj to each γj ∈ W is the critical
value.

Proof: Each winner γj’s payment is pi =
|Sw|
|Sj∗ |

cj∗ ,
in which Sj∗ and cj∗ are submiited by the the critical user of
γj, if the cj >

|Sw|
|Sj∗ |

cj∗ , the γj would not be selected as winner.
Thus, pi is critical value.
Theorem 1: The incentive mechanism designed in this

paper is truthful.
Theorem 2: The incentive mechanism designed in this

paper is individual rational.
Proof: According to the theorem 2, a user γj would

be loser if cj >
|Sw|
|Sj∗ |

cj∗ . For each winner γj, the

FIGURE 9. Result map.

payment is pi =
|Sw|
|Sj∗ |

cj∗ . Thus, individual rationality is
guaranteed.
Theorem 3: The incentive mechanism designed in this

paper is computationally efficient.
Proof: The time complexity of Algorithm 1 is n2.

The time complexity of Algorithm 2 is n2. Thus, the incen-
tive mechanism designed in this paper is computationally
efficient.

VI. PERFORMANCE EVALUATIONS
A. EXPERIMENT SETUP
The general idea of our solution is to optimize the selection of
friends of the query issuer, then to protect the adversary may
exploit some side information to compromise the privacy of
query issuer.

As shown in Fig. 3, it indicates the probability of finding
the user’s real location by the LBS server from all user’s
friends requests. The random scheme and the optimal scheme
is significantly different. Next, we evaluate the entropy with
a different number of user’s friends evolved in the location-
based request. In Fig. 4, the performance of the optimal
scheme is much better than the random one which is because
all friends who helped the query user have the same proba-
bility to be targeted as the real user’s, which actually hidden
the real target in a better way.

B. APPLICATION IMPLEMENTATION
To illustrate and verify our novel architecture for privacy
preservation, we implemented one Android app PrivacyMes-
sage(PM), which could support the general interest query
based on the search result of Yelp,4 and implement the
communication through Facebook API. Yelp is one of
the largest information integration provider includes both

4https://www.yelp.com/developers/documentation/v2/overview
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FIGURE 10. Result list.

FIGURE 11. The auction process.

website and Android mobile App that connects people with
the local business found in 2004. In the second quarter
of 2016, the average monthly mobile App unique users have
reached 23 million, and more than 72% search queries are
coming from mobile devices users.5 On another hand, Face-
book as one of the world largest social media provides API for
developers to implement their customized functions based on
the authorization of each users.6 Through the API provided
by Facebook, we could let the user of our QuerySafer login
through Facebook directly, and request all the location-based
query from their facebook friends who are using the same
service. And all query and answer data are transparently to
the location-based services provide Yelp on this occasion.

As shown in Fig. 5 require the user to the login in our
App through their Facebook account. Fig. 6 demonstrates the
interface when the user login our App with their Facebook
account. During the time they are logging into the system,
our App could retrieve the user’s friends and the basic profile
under their authorization. Our prototype App sends the mes-
sage through the Facebook message, as shown in Figure 7,
and another user who gets the LBS query through themessage
could sent the query out to the LBS server in order to collect

5https://www.yelp.com/factsheet
6https://developers.facebook.com/products/login

answer for the original query issuer. And this just provides
the feasibility to implement our privacy safe architecture.

Fig. 8 is the welcome page after authorization. All message
and location query is going to be sent through Facebook
connection to one user’s friends first, how many friends and
messages need to sent out is according to the social activity of
the social cycle for each users. Then Fig. 9 and Fig. 10 show
the returned result of queries.

VII. CONCLUSION
In this paper, we proposed a novel architecture to achieve
a near-complete location privacy protection. By employing
the nature connection of popular social network, we are pur-
suing one resolution for location based services with sep-
arated query issuer and query itself. Since we cut off the
connection the LBS query and the query issuer, untrusted
LBS server or any other adversary could not get the location
privacy anymore. We also proposed an enhanced differential
privacy mechanism in case the social network releasing their
users’ behavior pattern. According to our mechanism, even
the LBS or social network collect much side information to
refer users’ identity, the algorithm could still guarantee the
leakage of privacy is quite few or even deflectable. Further-
more, we tested our architecture, mechanismwith convincing
data and developed an open source Android App as a practical
application based on Yelp and Facebook APIs to practice our
contribution in real mobile device App market.
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