
Received January 13, 2018, accepted March 7, 2018, date of publication March 15, 2018, date of current version April 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2816039

An FPGA-Based Hardware Accelerator for
Energy-Efficient Bitmap Index Creation
XUAN-THUAN NGUYEN 1,2, (Member, IEEE), TRONG-THUC HOANG2, (Student Member, IEEE),
HONG-THU NGUYEN2, (Student Member, IEEE), KATSUMI INOUE2,3,
AND CONG-KHA PHAM2, (Member, IEEE)
1Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
2Department of Communication Engineering and Informatics, University of Electro-Communications, Tokyo 182-8585, Japan
3Advanced Original Technologies Company, Chiba 277-0827, Japan

Corresponding author: Xuan-Thuan Nguyen (xuanthuan.nguyen@utoronto.ca)

ABSTRACT Bitmap index is recognized as a promising candidate for online analytics processing systems,
because it effectively supports not only parallel processing but also complex and multi-dimensional queries.
However, bitmap index creation is a time-consuming task. In this paper, by taking full advantage of massive
parallel computing of field-programmable gate array (FPGA), two hardware accelerators of bitmap index
creation, namely BIC64K8 and BIC32K16, are originally proposed. Each of the accelerator contains two
primary components, namely an enhanced content-addressable memory and a query logic array module,
which allow BIC64K8 and BIC32K16 to index 65 536 8-bit words and 32 768 16-bit words in parallel,
at every clock cycle. The experimental results on an Intel Arria V 5ASTFD5 FPGA prove that at 100 MHz,
BIC64K8 and BIC32K16 achieve the approximate indexing throughput of 1.43 GB/s and 1.46 GB/s,
respectively. The throughputs are also proven to be stable, regardless the size of the data sets. More
significantly, BIC32K16 only consumes as low as 6.76% and 3.28% of energy compared to the central-
processing-unit- and graphic-processing-unit-based designs, respectively.

INDEX TERMS Bitmap index, data analytics, FPGA, hardware accelerator, energy efficiency, content-
addressable memory, SRAM-based CAM.

I. INTRODUCTION
There has recently been massive growth in the amount
of global data that is generated from web services, social
media networks, and science experiments, as well as the
‘‘tsunami’’ of Internet-of-Things devices. According to a
Cisco forecast, total data center traffic is projected to hit
15.3 zettabytes, or 15.3×1012 GB, by the end of 2020 [1].
Gaining insight into the enormous ocean of data is very
important because valuable data are the driving force for
business decisions and processes, as well as scientists’ explo-
ration and discovery. However, analyzing such a massive
amount of data is undoubtedly a crucial and time-consuming
task.

As a result of this complexity, the process of data analytics
is composed of many stages. To begin the process, data from
different sources are collected, cleaned, and transformed into
a defined format, so they then can be stored and loaded into
an analytics system, such as a data warehouse. The data index
and data query stage are performed, whenever users want to
query information. The data index stage is usually completed
in advance to reduce the execution time of the data query

stage. Finally, the query results are appropriately visualized to
aid business executives or end users in their decision making.

Efficient approaches to index and query are indispensable
to constructing a high-performance data-analytics system.
Specifically, an efficient index method aims to look any data
up in the database as fast as possible, while an efficient query
method should use the index results to answer all queries
as fast as possible. The concept of indexes in a database
management system (DBMS) is similar to book catalogs in
a library or even an index in a book. Depending on the appli-
cations, several indexing frameworks have been proposed,
such as B-tree index and hash index. Among them, bitmap
index (BI) plays a prominent role in the solutions of highly
complex and multi-dimensional queries, which usually occur
in the online analytics processing systems [2].

BI was first defined by Wong et al. [11] and was later pop-
ularized by O’Neil and Quass [12]. A BI is a bit-level matrix,
where the number of rows and columns are the length and
cardinality of the data sets, respectively. With a BI, answer-
ing multi-dimensional queries becomes a series of bitwise
operators, e.g., AND, OR, XOR, and NOT, on bit columns.

16046
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-3963-8728

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

As a result, a BI has proven to be very useful for solving
complex queries in large enterprise and scientific databases.
More significantly, because of the usage of low-hardware
logical operators, a BI appears to be suitable for advanced
parallel-processing platforms, such as multi-core central pro-
cessing units (CPUs) [13]–[16] and graphics processing
units (GPUs) [17].

Modern field-programmable gate arrays (FPGAs) have
become increasingly important in data analytics because
of their advantages in compute-intensive tasks and energy
consumption. Since 2014, Microsoft has integrated the
FPGAs into 1,632 servers for accelerating the Bing search
engine [21]. The experiments showed that this system
achieved a 95% improvement in throughput at each ranking
server with an equal latency distribution, as compared to
pure software implementation. Another example is a large
scale deep neural network system [22], where a mid-range
FPGA could process around 3.5 and 2.5 times faster than
CPU and GPU, while it consumed less than 20 W, which is
about four and 22 times lower than that of the 80-W CPU and
225-W GPU, respectively.

Based on that observation, this research aims to exploit
the advantages of FPGA to accelerate the creation of BI.
This is because such a task is widely considered as the
most expensive task in query processing. In fact, according
to J. Chou et al. [13], more than two hours were taken to
build the necessary BIs from a 50-TB data set, whereas only
12 seconds were required to answer a query using those
generated BIs. The contribution of our work includes:
• The relation between a random-access-memory-based
content-addressable memory (RAM-based CAM or
R-CAM) and BI. We then propose a methodology to
index data by borrowing the concept of R-CAM.

• The enhanced architecture of R-CAM using the bit-
sliced technique to benefit greatly from the large bus
width of modern systems. Concretely, if the system bus
width is 256 bits, the time to reset CAM and load data
to CAM go down 32 fold.

• The parallel architecture of a query logic array module
containing a set of logic gates and multiplexer. This
module allows the range index of a large number of data,
i.e. 65,536 8-bit words or 32,768 16-bit words, to be
done simultaneously.

• The full design of BI creator (BIC) that can directly
access the DDR3 memory to obtain the data and keys.
After completing the indexing tasks, BIC returns all of
the indexes to DDR3 memory directly and begins the
next indexing tasks.

Two versions of BIC, namely BIC64K8 and BIC32K16,
were implemented in an Intel Arria V FPGA development
board (formerly Altera) [23], which contains two separate
1-GB DDR3 memories and one Arria 5ASTFD5K3F40I3
FPGA. Roughly speaking, BIC64K8 and BIC32K16 could
index as many as 65,536 8-bit words (cardinality =

28 = 256) and 32,768 16-bit words (cardinality = 216 =
65, 536) in parallel, respectively. The R-CAMs are easily

FIGURE 1. The simplified architecture of CAM.

scalable by adding or removing correspondent logic and
memory resources. Various test data and keys were generated
to verify two BIC’s performance. The experimental results
indicated that at 100MHz, BIC64K8 and BIC32K16 produce
the indexing throughput up to 1.43 GB/s and 1.46 GB/s,
respectively. The throughputs are also proven to be stable,
regardless of the size of data sets. More significantly,
the energy consumption of BIC32K16 only holds
about 6.76% of a CPU-based design [16] and 3.28% of a
GPU-based design [17].

The remainder of this paper is organized as follows.
Section II presents the background of R-CAM and BI.
Section III describes in detail the hardware architecture
of BIC. Section IV gives the experimental results of BIC in
an Intel Arria V FPGA development kit. Section V discusses
several limitations of the proposed BIC. Finally, Section VI
concludes this study.

II. BACKGROUND
A. RAM-BASED CAM
1) OVERVIEW
CAM is a particular type of computer memory that is applied
in various search-intensive applications, such as multimedia
processing, data analytics, and data mining [3]. In contrast
to RAM, each input and output of CAM is the content of data
and address of matching data, respectively. Depending on
different applications, either binary CAM (BCAM) or ternary
CAM (TCAM) is used. The former only supports storage and
searching binary bits (zero or one), while the latter allows
a third matching state, called ‘‘X’’ or ‘‘don’t care’’, in its
storage.

Fig. 1 shows a simplified block diagram of a CAM. The
input to the system is the search word that is broadcast onto
the search lines to all CAM cells. Each stored word has a
match line that indicates whether the search word and stored
word are different (mismatched) or identical (matched). The
match lines are fed to a priority encoder to produce the
matching location, or CAM address. In short, the overall

VOLUME 6, 2018 16047

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

function of a CAM is to take a search word and return the
matching address. Taking an example in Fig. 1, if the content
of CAM is {2358, 149, . . . , 7, 149} and the search data is 149,
the match lines, where the stored words are 149, turn into
one (01 . . . 01). The priority encoder then selects the highest
priority matching bit, i.e. words in lower address locations
receiving higher priority, and encodes it into the binary value
(match address = 1).
Although modern FPGAs provide a large number of

embedded RAM blocks, dedicated registers, and lookup
tables, they exclude dedicated CAM blocks, presumably
because of their disadvantages of area and power. Instead,
FPGA vendors propose the methodology to construct a scal-
able binary CAM from the available embedded RAM blocks
of FPGA by performing a special mapping technique to input
data and address [4], [5]. This specific CAM is called as a
RAM-based CAMor R-CAM.Due to themapping technique,
the R-CAM requires 32-bit RAM for every 1-bit CAM and
offers the search rate of one key per clock cycle, or the time
complexity of O(1).

2) RELATED WORKS
Ullah et al. [6] presented a hybrid partitioned RAM-based
TCAM (HP-TCAM) that first dissected the conventional
TCAM table into m×n number of TCAM sub-tables. All
of the sub-tables were then processed to be stored in their
corresponding RAM units. The experiment in a Xilinx
Virtex-5 FPGA proved that the search latency of 512×36
HP-TCAM was five clock cycles in the case of n = 3 and
m = 4. The authors also conducted an enhanced archi-
tecture of HP-TCAM, namely E-TCAM [7], that reduced
33.33% of block RAMs as well as improved 63.03% of
latency. An ASIC implementation of HP-TCAM, namely
Z-TCAM [8], was performed in 180-nm technology and
achieved a search latency of three clock cycles.

Ahmed et al. [9] proposed another architecture called
resource-efficient RAM-based TCAM (REST), which was
partially based on the principle of HP-TCAM. This design
made use of the so-called virtual blocks in the RAM unit
to enhance the emulated TCAM bits at the cost of reduced
throughput. As the number of virtual blocks m increased,
the emulated TCAM bits also increased in REST by exhaus-
tively consuming all bits available in the RAM, thereby max-
imizing the memory efficiency. In fact, a 72×28-bit REST
implemented in a Xilinx Kintex-7 FPGA only required 3.5%
and 25.3% of memory resources, compared with HP-TCAM
and Z-TCAM, respectively. Additionally, the search latency
cost five clock cycles in the case of m = 4.

Abdelhadi and Lemieux [10] also introduced an efficient
and modular technique for constructing BCAM using RAM
block in an FPGA. This method names indirectly indexed
two-dimensional (II2D) BCAM. In contrast to the traditional
approach, the proposed one grouped addresses into sets and
maintained a single pattern match indicator for each set.
The match indicator for every single address was then effi-
ciently regenerated by storing indirect indices for address

FIGURE 2. An example of BI-based multi-dimensional query processing.
(a) The BIs of Age, Address, and Product. (b) The BI-based query
processing.

match indicators. The experimental results confirmed that the
II2D-BCAM could reach 153-bit pattern width for m = 16K
entries in an Intel Stratix V FPGA, which was up to four
times wider than traditional BCAM. Furthermore, the search
latency was four clock cycles in the case of m = 16K.

B. BITMAP INDEX
1) OVERVIEW
BI was originally described by Wong et al. [11] in 1985 and
later popularized by O’Neil and Quass [12] in 1997.
It has proven very to be very useful for solving
multi-dimensional queries in both enterprise databases and
scientific databases. Fig. 2 gives an example of a relational
DBMS that is comprised of a 8-record CUSTOMER relation.
Each record, or row, stores six attributes, namely ID, Name,
Age, Address, Product, and Year. The example query is given
as ‘‘find all 10-year-old customers who are living in Tokyo
and bought product A001’’. BI can be utilized to solve this
three-dimensional query effectively.

Fig. 2(a) illustrates all BIs of three attributes Age, Address,
and Product. To begin indexing, all records in CUSTOMER
relation must be numbered sequentially. For each attribute,
several BIs are then created. A BI is simply an array of
bits. For instance, because both the 0th record and 6th record
contain (Age = {10}), the 0th bit and 6th bit of the BI of
(Age = {10}) turn into ones accordingly. Likewise, the
0th bit of the BI of (Address = {Nagano}) becomes one,
because 0th record contains (Address = {Nagano}). In this
way, up to 14 BIs can be created from those three attributes.

Fig. 2(b) indicates how powerfully BI can cope with the
multi-dimensional query given above. To answer this query,
we fetch the BIs for (Age = {10}), (Address = {Tokyo}), and
(Product = {A001}), and then perform the bitwise logical

16048 VOLUME 6, 2018

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

AND of three BIs. The intersection of three BIs gives the
result of 00000010. Based on the value of the bitmap result,
the 6th record contains the result for the query because of the
value of the 6th bit. In other words, we compute a new bitmap
where ith bit has a value one, if the ith bit of the three BIs are
both one, and has a value zero otherwise. However, this work
only deals with the BI creation because it is considered to be
the most time-consuming task.

2) RELATED WORKS
Blanas et al. [14] introduced a new scientific DBMS on
a supercomputer using three innovations. First, a relational
query interface was specifically designed so that DBMS
could directly access data stored in the HDF5 format with-
out first converting and loading the data. Second, the query
processing could be accelerated by simply requesting more
CPU cores when the batch job was submitted for execution.
Finally, BI was employed to significantly reduce the query
response time. All experiments were conducted in 1,202 com-
puter nodes, each of which contained two Intel quad-core
2.67-GHz CPU. The results proved that the proposed DBMS
outperformed PostgreSQL and was more than ten times
faster than Apache Hive, whenever the number of CPU cores
exceeds 512 cores.

Chong et al. [15] also accelerated the BI construction of
massive astronomical data sets by using a distributed environ-
ment. The distribution of data, hardware configuration, and
network transmission rates were properly configured to min-
imize the indexing time. The experiments were conducted in a
master node and three slave nodes. The master node contains
an Intel quad-core 2.3-GHz CPU, while each slave node has
an Intel 2-core CPU. The results showed that the indexing
throughput reached 62.5 MB/s, which is about 27.9% as high
as that of FastDB, a database system developed by Advanced
Computing and Medical Information Services Engineering
Laboratory.

Hsuan-Te et al. [16] took advantage of the growing
memory capacity on a supercomputer to extend their pre-
vious work [13] to an in-memory query system for scien-
tific data analysis. The system combined four techniques,
namely bitmap indexing, spatial data layout reorganiza-
tion, distributed shared memory, and location-aware paral-
lel execution, for maximizing the processing. Specifically,
first two techniques accelerated queries with range and
spatial constraint across multiple data sets, while the rest
provided the capability of caching and transforming data
sets for data analysis. All experiments were conducted
in 5,576 compute nodes, each of which contained two Intel
12-core 2.4-GHz CPUs. The experimental results showed
that the proposed system achieved a throughput of 28 GB/s
and 510 GB/s, when using 1,250 cores and 20,000 cores,
respectively.

Fusco et al. [17] implemented two compressed BI cre-
ation systems on an NVIDIA Geforce GTX 670 GPU, which
targets the multi-10-Gbps network traffic recorders. In con-
trast to CPUs, which rely on large caches to hide memory

latencies, GPUs are optimized for throughput by distributing
the computation into thousands of hardware threads executed
in parallel. The authors exploited such power by first copying
all numerical data from the host memory to the GPU. The
GPU computed and returned a serialized BI to the host mem-
ory together with the information required to access individ-
ual index columns. Regarding the indexing throughput, the
GPU-based design could index 20 million random 16-bit
numbers within 122.6 µs, or the throughput reached
163 million words/second.

Our previous work [18] combined a R-CAM with a
bit-level transpose matrix module to index a N-record doc-
ument with M keys. In the beginning, record zeroth was
loaded into R-CAM. Subsequently, M keys were dispatched
to R-CAM. The outcome of this phase was a M-bit BI array,
where bit j indicated the existence of key j in the current
record, and vice versa. The process repeated until N records
were completely indexed. Afterwards, theN×M-bit BImatrix
was transposed into a M×N-bit BI matrix, which could be
further processed by a DBMS. The experiments in an Intel
Cyclone V SX FPGA showed that if N = 256 records and
M = 16 keys, the indexing throughput would have reached
5.7 million records per second at 150 MHz. An application-
specific integrated circuit (ASIC) implementation was also
verified successfully in a 65-nm Silicon-On-Thin-Buried-
oxide (SOTB) CMOS process [19].

Our most recent work [20] proposed a regular expression
matching based on BI, instead of finite-state automation, for
text analytics. In the beginning, all text data were loaded
into R-CAM. A N-character query is then sent into R-CAM.
After N clock cycles, the indexes of all matches can be found
in the R-CAM output. The experimental results in an Intel
Arria V ST FPGA proved that our design could process
a 64-character query inside a 64-KB text data within
43.76 µs at 100 MHz, or the throughput reached 11.98 Gbps.

C. MOTIVATION
1) THE NEED FOR AN ENHANCED R-CAM
Most of the previous studies on R-CAM mainly focused
on the improvement of mapping techniques, thereby helping
to reduce the memory utilization [6]–[10]. In spite of the
remarkable achievement in memory reduction, those designs
contained two main drawbacks that fatally affect the high-
throughput indexing system. First, the search latency heavily
counted on the partitioning settings and the R-CAM size,
and took more than one clock cycle to complete. Second,
an effective mechanism for loading data into R-CAM could
not be resolved. In fact, those designs could only receive each
word per clock cycle, so they could not fully exploit the high-
bandwidth bus in the modern systems. For example, if the bus
width contains 256 bits, an R-CAM requires at least 32 clock
cycles to load all of the 32 8-bit words. Such update latency
unquestionably degrades the entire system performance. For
those reasons, an enhanced R-CAM, which can load data at
system-like bandwidth and attain the search rate of one key

VOLUME 6, 2018 16049

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

per clock cycle, is essential for the high-throughput indexing
system.

2) THE NEED FOR AN FPGA-BASED BI CREATION
Since BI creation is widely considered as the most expensive
task in query processing, reducing the indexing time has
attracted researcher’s attention. Although CPU-based sys-
tems [13]–[16] and GPU-based systems [17] can improve
the indexing time due to their parallel processing capabili-
ties, the power consumption increases proportionally to the
resource usage, e.g., the number of used CPU and GPU cores.
Hence, there is an upward trend towards new platforms, such
as FPGAs, with the target of energy efficiency. Energy effi-
ciency is defined as the ability to deliver the same processing
throughput, but consume less power. For instance, the con-
ventional CPUs consume a large amount of energy and cannot
be optimized to suit the target applications. On the other hand,
GPUs are programmable, but use an even higher amount of
energy. FPGAs, however, offer a middle ground among the
platforms with high energy efficiency without sacrificing the
throughput of the application.

Even though the concept of using R-CAM for indexing has
been proposed in our previous work [18]–[20], the aims and
objectives were vastly different. In fact, those works focused
on full-text search applications. In [18] and [19], R-CAM
only returned one or zero, which determined whether a given
text record contain a certain key list. It is different from this
work, where a BI vector was returned for each key value. Each
bit of this vector indicated the presence of matching. In [20],
R-CAMwas employed to speed up the regular express match-
ing process. Despite being originally introduced to improve
the R-CAM loading latency, the detailed description of bit-
sliced technique was not provided. The impact of this tech-
nique on indexing throughput was also not mentioned. This
work, therefore, aims to address those questions. Addition-
ally, an effective BIC architecture, which provides both point
indexes, e.g. BI of (Age = {10}), and range indexes, e.g. BI
of (Age 6= {10, 17, 29}) or BI of (Age ≤ 10), are proposed.

The uncompressed BI is concentrated because the outcome
of BIC will be processed directly by a BI-based query pro-
cessor [27]. In other words, the processor receives the raw
BIs generated by BIC to answer the given multi-dimensional
queries. In case of the example in Fig. 2(b), three BIs of
(Age = {10}), (Address = {Tokyo}), and (Product =
{A001}) are first copied to this processor. The processor then
performs two logical operations and delivers the results at
clock cycle rate. The previous works proved that the pro-
cessor was fully operational at 50 MHz and achieved the
processing throughput of 32-Kbit BI/operation/cycle in an
Intel Arria V ST FPGA.

III. PROPOSED SYSTEM ARCHITECTURE
A. OVERVIEW
Fig. 3 illustrates the block diagram of a BIC used to index
three given attributes (columns), namely Age, Address, and

FIGURE 3. The block diagram of BIC.

Product, of CUSTOMER relation. All of the instructions and
keys are extracted from the queries and initially stored in an
external memory together with all attributes. BIC is com-
posed of four modules operating in parallel, namely a direct
memory access (DMA), a RAM-based CAM, an instruction
memory (IM), and a query logic array (QLA).

For instance, to index attribute Age, all operation/key val-
ues are first transferred to the IM. Subsequently, R-CAMcon-
tinuously receives the values of Age until R-CAM becomes
full. R-CAM then starts using the operation/key (Op/Key)
values from IM to produce the correspondent BIs. Each sep-
arate BI is dispatched to QLA in turn, where an array of logic
gates and an internal register are employed to calculate the
range BIs. Finally, the register values or range indexes are
orderly stored in the external memory. This process repeats
until all values of the current attribute are indexed. The next
two attributes also follow the same process.

B. DIRECT ACCESS MEMORY (DMA)
The Arria V SX FPGA provides the high-throughput memory
controllers so that users can exploit the considerable space of
external memory. Because the currently used DDR3 memory
only supports the theoretical bandwidth of 25.6 Gbps, the bus
data width and the operating frequency of the memory con-
troller are configured 256 bits and 100 MHz, respectively.
The three-channel DMA module is adequately designed so
that BIC can directly access data in DDR3 memory up to the
theoretical bandwidth.

C. RAM-BASED CAM (R-CAM)
1) RELATIONSHIP BETWEEN BITMAP INDEX AND R-CAM
As mentioned earlier, modern FPGAs exclude dedicated
CAMs because of their disadvantages of area and power.

16050 VOLUME 6, 2018

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

FIGURE 4. The block diagram of R-CAM of Address.

Instead, CAMs are built from the embedded RAM blocks of
FPGA by applying a special mapping technique. Fig 4 depicts
a R-CAMof attributeAddress that employs themapping tech-
nique. Each row in the RAM represents one possible mapping
of the input data bits to the R-CAM contents. Concretely,
the value of each cell is set to one, if the data is stored at that
address, and vice versa. Intuitively, R-CAMmentioned in this
example is a transpose of the BIs ofAddress. In fact, the RAM
value at address j is equivalent to a BI vector j, or column j of
BI matrix depicted in Fig. 2(a). For this reason, the concept
of R-CAM is borrowed to construct a BIC.

2) SIMPLIFIED ARCHITECTURE OF R-CAM
This section briefly summarizes the architecture of traditional
R-CAM described in [4] and [5], from which the enhanced
architecture is proposed. An R-CAM is built from the dual-
port memory (DPM). Specifically, the Intel Arria V FPGA
exploits a DPM, where port A is an 8,192×1-bit memory
and port B is 256×32-bit memory, to construct a 32×8-bit
R-CAM, also named as R-CAM unit (CU). One R-CAM
bit, therefore, costs 32 RAM bits. These settings are selected
because 32×8-bit R-CAM is themost efficient R-CAMprim-
itive that can be built from a basic memory block unit M10K
of the Arria V FPGA.

Fig. 5(a) describes the architecture of a CU, whose input
data data and addresses addr enter at port A, while search
data (key) and matching address (index) leave at port B.
R-CAM is scalable by connecting the CUs horizon-
tally or vertically. Fig. 5(b) shows a 32×(8×M)-bit R-CAM,
where the input data are divided into M segments and each
of them enters each correspondent CU simultaneously. The
output can be seen as 32 M-bit groups and each connects
to an M-bit AND gate. Another illustration of a (32×N)×
8-bit R-CAM is shown in Fig. 5(c), where the input data
are put into each CU in turn from CU0 to CUN−1. Finally,
a (32×N)×(8×M)-bit R-CAMcan be obtained by combining
the two architectures above.

With the abundant logic elements and M10K memory
blocks, an Arria V FPGA can afford as large as
65,536×8-bit R-CAM (CAM64K8) or 32,768×16-bit

FIGURE 5. (a) A 32×8-bit R-CAM. (b) A 32×(8×M)-bit R-CAM.
(c) A (32×N)×8-bit R-CAM. (d) The block diagram of cascade R-CAMs.

R-CAM (CAM32K16). As a result of an 8-bit word and
16-bit word, CAM64K8 and CAM32K16 can support cardi-
nality of 256 and 65,536, respectively. In addition, the update
process costs two clock cycles per word, whereas the search
process costs one clock cycle per BI. Take CAM64K8 as an
example, because input data are fed sequentially and as many
as 2×65,536 clock cycles are required to fill up CAM64K8.
In general, the update time reaches O(2N), where N is the
number of R-CAM words. The larger the R-CAM size is,
the longer the update time becomes. Minimizing update time,
therefore, is crucial to maximize the system performance.

3) ENHANCED ARCHITECTURE OF R-CAM
The data bus between DMA and R-CAM is 256 bits wide, due
to the settings of the memory controller mentioned earlier.
If each value of the attribute is eight bits long, DMA can
transfer 256

8 = 32 values to CAM64K8 simultaneously in
every cycle. Accordingly, CAM64K8 is capable of loading
all values within 65,536

32 = 2, 048 cycles. This is achieved
by applying bit-sliced technique in CAM64K8, where all
inputs and outputs of CUs are grouped in a specific order.
Fig. 6 illustrates the architecture, where CAM64K8 is formed

VOLUME 6, 2018 16051

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

FIGURE 6. The enhanced architecture of a 65,536×8-bit R-CAM.

by 64 CU blocks (CBs) and each block consists of 32 CUs.
The number of CUs in each CB is the quotient of data
bus width and value size. The outputs are also arranged
in a specific order. The first 32-bit segment of CB00 is
formed by the zeroth bit of BI of {CU00, . . . ,CU31}.
Likewise, the second 32-bit segment of CB00 matches
the first bits of BI of {CU00, . . . ,CU31} and so on. The
first 1,024-bit BI is obtained by those 32 segments. As a
result of this strategy, CAM64K8 can receive many char-
acters simultaneously, while the order of its 65,536-bit
BI is kept unchanged.

The loading process is summarized as follows. To begin,
the first 32 values are put into the first 32 consecutive
CUs of CB00 concurrently. As soon as the CB00 is full,
the incoming values are sent to the next group of CB01.
This process continues until all data are correctly stored.
Accordingly, the loading time is reduced up to 32 times as
compared to the traditional structure. Furthermore, because
CAM64K8 has to be cleared before receiving the new value,
the update process takes two clock cycles for loading
32 values to CAM64K8, or 4,096 clock cycles for filling
the entire CAM64K8. In general, by employing bit-sliced
technique, the required loading time becomes O(2Nf), where

N and f are the number of R-CAM words and the ratio
of system bus width and R-CAM width, respectively. This
implies that the loading time will sharply decrease as long as
the bus width expands. Another point is that the number of
CUs in each group varies with the width of the data bus and
the value size. For instance, in the case of CAM32K16, each
CB only contains 16 16-bit CUs.

The algorithm of CAM64K8’s loading process is stated
in Algorithm 1. The input includes an 65,536-byte DATA
array and a RESET signal. In fact, RESET = 1 requests

for resetting old data and RESET = 0 requests for loading
new data. The CAM64K8 is expressed as a three-dimensional
array CAM64K8[64][32][32], where the first, second, and
third dimensions correspond to the number of CBs, the num-
ber of CUs in each CB, and the number of words in each CU,
respectively. Two for loops in third and fourth lines emu-
late the selection of CBs, CUs, and CU words. The codes
from the fifth line to seventh line are performed in parallel.
If RESET = 0, the word j of all 32 CUs in CB[i] are reset;
otherwise, all of the CUs receive new data. Their function
calls are described in 12th and 13th lines.

Algorithm 1 Loading Data Into R-CAM
1: function load_process (DATA, RESET)
Input: DATA[65536], RESET
Initialization: CAM64K8[64][32][32], i, j, d

2: d = 0
3: for (i = 0, i < 64, i = i + 1) do
4: for (j = 0, j < 32, j = j + 1) do
5: CAM64K8[i][0][j] = RESET ? 0 : DATA[d + 0]
6: CAM64K8[i][1][j] = RESET ? 0 : DATA[d + 1]

...
7: CAM64K8[i][31][j] = RESET ? 0 : DATA[d + 31]
8: d = d + 32
9: end for
10: end for
11: end function

Functions calls:
12: load_process(old DATA, 1)
13: load_process(new DATA, 0)

D. INSTRUCTION MEMORY (IM)
IM stores the operation/key values extracted from the user’s
query. It is built from embedded RAM blocks and can contain
as many as 4,096 32-bit operations. Larger IM is also easily
constructed by adding more RAM blocks. Each operation
is composed of two parts, as seen in Fig. 7(a). The first
part is a 16-bit key value that supports the highest cardinal-
ity of 65,536. This key value can also easily be expanded
to 24 bits by using the reserved bits. The second part is a
3-bit operation value that supports three operations, namely
OR, NO, and EQ. Except OR and NO, which are the logical
operations, EQ is only asserted whenever we transfer BI to
the external memory. Due to the data width of 256 bits, up
to eight 32-bit operations are loaded into IM at every clock
cycle.

Fig. 7(b) gives an example of translation from a query
to the correspondent operation/key values. Due to the light
workload, the translation is performed in advance, such as
by a computer, and the final binary configuration will be
transferred to the external memory. To begin the translation,
three key values and four operations are obtained from the
given query. Accordingly, five opcodes are required to answer
this query. Specifically, BI of (Age = {10}) is combined with

16052 VOLUME 6, 2018

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

FIGURE 7. The illustration of IM. (a) The structure of an IM word. (b) The
example of query-to-operation/key conversion.

the result by the OR operation. After three OR executions,
the range index is reversed by the NO operation. The result is
finally sent out by the EQ operation. A total of five instruc-
tions are required for this index request. It is noted that the
result is automatically cleared, as soon as BIC is powered
up or the EQ operation is completed.

E. QUERY LOGIC ARRAY (QLA)
QLA is the most compute-intensive module where the range
indexes are calculated. Fig. 8 depicts the scalable architec-
ture of QLA collaborating with CAM64K8 that contains
a 65,536-bit result register and an array of the set of logic
gates, including an inverter gate, an OR gate, and a multi-
plexer. Each bit of R-CAM output is connected with each
logic set numbered from zero to 65,535. The output of each
logic set also enters the result register for temporarily storage.
Taking IM(i) as an example, the 16-bit key value selects the
proper BI vector in CAM64K8, while the 3-bit operation
configures the multiplexers and DMA. As a result of the
simplicity of the logic sets, each logical operation can be
solved within one clock cycle. However, the execution time
of the EQ operation varies with the register size. For example,
in the case of CAM64K8, it takes at least 256 cycles to
transfer a 65,536-bit result to the external memory. Simi-
larly, in the case of CAM32K16, because the size of the
register and logic gates are halved, only 128 cycles are
needed.

The main advantage of QLA is that range indexing can
be done at the rate of the clock cycle. For instance, we can

FIGURE 8. The block diagram of QLA.

TABLE 1. Notation of two proposed designs.

obtain the BI of (Age 6= {10, 17, 29}) of 65,536 values only
within four clock cycles, or 40 ns in the case of 100-MHz
operating frequency. Similarly, the BI of (Age ≤ 10) is
calculated within ten clock cycles with the assumption that
the smallest Age is one and Age is in integer value. Con-
cretely, the BI of (Age ≤ 10) is obtained by performing
BI(Age = 0) OR BI(Age = 1) OR ... BI(Age = 10).
On the other hand, the BI of (Age > 10) can be cal-
culated by putting the bitwise logical NOT after the BI
of (Age ≤ 10).
A FIFO is used to enhance the parallelism between the

indexing and transfer process. If EQ is asserted, the range
index result enters this FIFO. When the result register is
fully stored in the FIFO, the next indexing process is started
immediately. Unless the FIFO is empty, the DMA transfers
data from FIFO to external memory. As a result, the indexing
and transfer process can be operated in parallel to save the
whole indexing time. Through those achievements, the pro-
posed BIC is likely to be far better than that implemented in
software.

IV. PERFORMANCE ANALYSIS
The performance is evaluated by the hardware utilization,
processing throughput, and energy efficiency of BIC when
indexing a large data set under various scenarios. Table 1
summarizes the notation that is used.

VOLUME 6, 2018 16053

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

TABLE 2. The synthetic data sets.

A. TESTBEDS
We conducted all of the experiments on an Arria V
SoC development kit [23], which contains an Arria V
5ASTFD5K3F40I3 FPGA chip and two 1-GB 533-MHz
DDR3 memories. The FPGA contains several hard memory
controllers that allow the FPGA to access those DDR3memo-
ries at the theoretical bandwidth of 25.6 Gbps. Hence, to fully
exploit the memory bandwidth, the data bus width w and
the frequency of each controller are configured as 256 bits
and 100 MHz, respectively. The FPGA communicates with
a host computer via a PCI-Express interface, whose effective
bandwidth reaches as high as 11.6 Gbps.

Each experiment follows four main steps: (1) all test
operation/key values and data are transferred from a host
computer to DDR3 memory via a PCI-Express interface;
(2) DMA copies all operation/key values and data from this
DDR3 memory to IM and R-CAM, respectively; (3) BIC
indexes data using given operation/key values and then sends
all generated BIs to the DDR3 memory; (4) all of the results
are returned to the host computer for verification. Because
the step (1) is for initialization and step (4) is for verification,
the indexing process only counts (2) and (3), whose execu-
tion time is calculated by several internal counters integrated
into BIC.

1) DATA SETS
The data sets are derived from the CUSTOMER and
LINEITEM tables of the TPC-H database [24] with
the scale factor of one. The attribute c_nationkey of
CUSTOMER, which contains 25 unique values represent-
ing different country names, is used to verify BIC64K8
(cardinality of 256). The attribute l_suppkey of LINEITEM,
which consists of 10,000 unique values symbolizing differ-
ent supplier names, is used to verify BIC32K16 (cardinality
of 65,536). Due to the scale factor of one, c_nationkey and
l_suppkey contain as many as 150,000 and 6,001,215 words,
respectively. To fix them to a 64-KB R-CAM, those data
have to be divided into smaller batches. Concretely, each
8-bit batch is created by randomly selecting 65,536 words
out of 150,000 words. Similarly, each 16-bit batch is created
by randomly selecting 32,768 words out of 6,001,215 words.
In our test, the number of batches varies from one to 8,192,
corresponding to 64-KB to 512-MB data sets. Table 2 sum-
marizes five data sets for BIC64K8 and BIC32K16, namely
DSx(8) and DSx(16), where x ranges from one to five.

2) INSTRUCTION SETS
The synthetic instruction sets, numbered from IS1 to IS4,
for point-index and range-index experiments are shown
in Table 3. The point-index experiment returns the index

TABLE 3. The synthetic instruction sets.

TABLE 4. The hardware utilization of two BICs.

of one key value only, whereas the range-index experiment
returns the index of a set of keys. Suppose that K denotes
the given keys, in the point-index experiment such as IS1,
K contains one random key value from zero to 255. How-
ever, in the range-index experiment like IS3, K contains a
set of 1,024 distinct keys or 1,024 sequential keys, whose
values range from zero to 65,536. Only IS1 and IS2 are
used to evaluate BIC64K8 performance, because the 8-bit
keys are expected to be in the range of zero to 255. In the
case of BIC32K16, all four instruction sets are employed.
However, since BIC can index data at the rate of one
key/cycle, the indexing throughput is entirely independent of
the key value. The experimental results below will prove this
statement.

B. HARDWARE UTILIZATION
The place-and-route compilation was done by Quartus II
16.0 design software with the compiler setting of aggres-
sive performance mode. This mode causes the compiler to
target increased positive timing margin, increase the timing
optimization effort applied during placement and routing,
and enable timing-related physical synthesis optimizations to
maximize design performance at a potential increase to logic
area.

Table 4 shows the hardware consumption of BIC64K8 and
BIC32K16. Adaptive logic modules (ALMs), a fundamental
building block of Arria V FPGA, together with memory
bits, are used to evaluate the resource utilization. Each
ALM is composed of one 8-input combinational look-up
table with four dedicated registers. The identical memory
utilization of both designs is due to the similarity of the
R-CAM size. Because one R-CAM bit costs 32 RAM bits,
therefor 16-Mbit memory is required to build an entire 64-KB
R-CAM. The other modules, such as IM and QLA, utilize the
remaining 0.14-Mbit memory. Although BIC32K16 requires
32,768ANDgates for CAM32K16, its ALMs are still smaller
than that of the BIC64K8 because of the reduction of its
QLA module. The operating frequency of 118.3 MHz and
129.5 MHz were obtained by TimeQuest timing analyzer
provided by Quartus 16.0. Nonetheless, the timing analysis

16054 VOLUME 6, 2018

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

TABLE 5. The execution time of each BIC module.

results suggested that both designs could be integrated in a
100-MHz system without any problem.

C. PROCESSING THROUGHPUT
1) PREDICTION MODEL
To prepare for the evaluation of processing throughput,
the formulas to calculate the execution time of all individual
modules are first constructed, as shown in Table 5. Specifi-
cally, tIM is the time to load the whole 32-bit instructions from
theDDR3memory to IM, tCAM is the time to reset and load all
data sets from the DDR3memory to R-CAM, tQLA is the time
to process all instructions, tOUT is the time to return the BIs to
the DDR3memory, and Ttheo is the theoretical indexing time.
Becausewe have to eliminate the old values in R-CAMbefore
loading new data, tCAM is the sum of resetting and loading
time. Moreover, the resetting and loading time are identical,
therefore tCAM is twice the loading time N×M

w . The theoretical
indexing throughput (THRtheo) is then defined as the number
of words that can be processed at every second.

2) POINT-INDEX AND RANGE-INDEX EXPERIMENTS
Fig. 9(a) shows the practical indexing throughput (THRprac)
of BIC64K8 when the data sets vary from DS1(8) (64 KB)
to DS5(8) (512 MB) and the instruction sets vary from
IS1 (point index) to IS2 (range index). At DS1(8) and IS1,
because the execution time is 45.7 µs, THRprac reaches
approximately 1.43 billion words/second. Additionally,
THRprac slightly increased by 0.2% when the data size varies
from 64 KB to 512 MB. At DS1(8) and IS2, THRprac reaches
approximately 1.39 billion words/second due to the execution
time of 47.2 µs. Similarly, THRprac at DS5(8) is slightly
higher than that of DS1(8). Moreover, THRprac of IS2 is
around 2.9% as small as that of IS1, due to the difference
in the number of instructions, i.e. IM1 and IM2 contain one
and 129 instructions, respectively.

Fig. 9(b) illustrates the difference between THRtheo and
THRprac of BIC64K8 for different data sets and instruction
sets. THRtheo is calculated based on the formula in Table 5.
Two main findings are obtained from this figure. First, when
the data sets vary from DS1(8) to DS5(8), the difference is
slightly reduced from 4.8% to 4.3%. Second, with the same
data set, the difference at IS2 is slightly smaller than that
at IS1. To find out the reason for this difference, the execution
times of each stage are carefully analyzed.

Fig. 9(c) depicts the share of tIM , tCAM , tQLA, and tOUT in
the practical indexing time (Tprac) at two instruction sets and
data set DS1(8). Because tQLA produces each BI per clock
cycle, tQLA only depends on the number of instructions Ni.
Taking IS2 as an example, 129 clock cycles are required to
calculate the final BI. However, tIM , tCAM , and tOUT reply
on the access time between FPGA and the DDR3 memory.
Among them, tCAM contributes the highest portion.
The difference between theoretical and practical band-

width is due to two reasons. The first reason is the latency
of transition stage, which causes nearly 1% of the difference.
The second reason is the memory access latency. Generally
speaking, DDR3 memory is constructed by several mem-
ory banks, each one containing many columns and rows.
To read or write data in DDR3, the memory controller first
opens a specific row in a particular bank. The entire row of
the memory array is then transferred into the corresponding
row buffer. On completion, a column access command is
performed to read or write data from or to row buffer. Finally,
the row buffer must be written back to the memory array
by a precharge command so that this bank is available for
a subsequent row activation. When data sets and instruction
sets increase, the memory controller optimizes the access
requests, thereby slightly reducing the access time. Accord-
ing to the prediction model presented in Table 5, tQLA is also
equal to Ni. In other words, tQLA is independent from the
access of DDR3 memory. Hence, the increase in Ni causes
the decrease in the difference of IS2, as compared to IS1.
Moreover, when B increase, the difference is reduced because
BIC accesses memory more frequently, therefore the waiting
stage of DDR3 memory is reduced correspondingly. That
small difference allows us to predict the access time by using
the proposed prediction model.

Fig. 9(d) depicts THRprac of BIC32K16 at five data
sets, from DS1(16) to DS5(16), and four instructions sets,
from IS1 to IS4. It can be seen that the throughput is
halved because the word size is doubled, from eight bits
to 16 bits. It can be seen that THRprac are approximately
0.73, 0.71, 0.58, and 0.36 billion words/second at IS1, IS2,
IS3, and IS4, respectively. As similar to BIC64K8, THRprac
slightly increases when the sizes of the data sets increase.
This can be seen clearly in Fig. 9(e), where the difference
between THRtheo and THRprac is slightly reduced. The dif-
ference of IS4 is the smallest because of the largest value
of Ni. In fact, at DS5(16) and IS4, the difference comes
closer to 2%. Fig. 9(f) illustrates the distribution of tIM ,
tCAM , tQLA, and tOUT at DS1(16) and four instruction sets.
At IS4, tQLA is almost equal to tCAM , due to a large number of
instructions.

In summary, the experiments above proved that at
a 100-MHz operating frequency BIC64K8 and BIC32K16
achieved the maximum throughput of 1.43 billion and
0.73 billion words/second, or 1.43 GB/s and 1.46 GB/s,
respectively. Moreover, because the indexing throughput was
almost stable regardless the size of data sets, they can be
estimated using the prediction model.

VOLUME 6, 2018 16055

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

FIGURE 9. The results of point-index and full-index experiments. (a) The indexing throughput of BIC64K8. (b) The difference between theoretical and
practical throughput of BIC64K8. (c) The time distribution of indexing process of BIC64K8. (d) The indexing throughput of BIC32K16. (e) The difference
between theoretical and practical throughput of BIC32K16.

3) FULL-INDEX EXPERIMENTS
The full-index experiment is defined as the creation of all
available BIs. Specifically, 256 BIs and 65,536 BIs are gen-
erated when evaluating the 8-bit and 16-bit data sets, respec-
tively. Taking the 8-bit data set as an example, the indexing
process of full-index creation includes: (1) the zeroth batch
is copied to BIC64K8, (2) key zero is put into BIC64K8 to
obtain the corresponding BI, (3) BI is sent back to the
DDR3 memory, (4) the next batch is processed until all of the
batches are completed, (5) key one is put into BIC64K8 and
the process repeats until 256 keys are indexed. As many
as 512 instructions and 131,072 instructions are required
to fully index the 8-bit and 16-bit data sets, respectively.
Because IM can only store 4,096 instructions at one time,
the large instruction sets are divided into 4,096 segments,
each of which is processed sequentially. At DS1(8), THRprac
reach 90.3 million words/s, which is 3.2% less than THRtheo.
At DS1(16), the THRprac reach 0.37million words/s, which is
4.3% less than THRtheo. The difference between THRprac and
THRtheo is mainly caused by the DDR3 access latency added
into tCAM and tOUT . Nonetheless, full-index creation is rarely
performed in real applications, due to the cost of storage.

D. ENERGY CONSUMPTION
Fig. 10 shows the comparison of energy consumption (in
decimal logarithm) between BIC32K16 and two platforms,
which were implemented in CPU [16] and GPU [17], respec-
tively. The energy consumption (J/GB) is calculated as a quo-
tient of power dissipation (W or J/s) and practical indexing

FIGURE 10. The comparison of energy consumption. (a) Ref. [16] vs.
BIC32K16 (IS2). (b) Ref. [17] vs. BIC32K16 (IS1).

throughput (GB/s). The power dissipation parameters of
CPU and GPU are extracted from the product specifica-
tions provided by the corresponding vendors, while that of
BIC32K16 was estimated by the PowerPlay Power Analyzer
tool of Quartus 16.0.

Ref. [16] proposes a CPU-based query system, where all
data sets are entirely stored in the DDR3 memories. The data
sets included an attribute called energy, whose values were
always larger than zero. To prepare for the query processing,
the authors used Fastbit to generate the BI of (energy > 1.2)
with a binning precision of two. According to [2] and [25],
binning is a special technique that reduces the number of
BIs of a high-cardinality attribute by binning some values in
this attribute and then producing one bitmap for each bin.

16056 VOLUME 6, 2018

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

TABLE 6. The platform description.

Moreover, the binning precision of two indicates that the
values would be rounded to a two-significant-digit number
before being indexed. For example, (energy = 1.152) and
(energy = 1.1527) possess the same BI as (energy = 1.15).
The indexing throughput reached 510 GB/s in case
of 834 Intel CPUs core usage. Since the energy is posi-
tive, the expression of (energy > 1.2) can be rewritten as
NOT(energy ≤ 1.2). To answer this request, BIC32K16 per-
forms the OR operations of BI of (energy = 0.00) to BI
of (energy = 1.20), and then reverse the result by NOT
operation. A total of 123 instructions are needed for this index
request. As a result, IS2 is selected for the comparison due to
the similarity in the number of instructions usage.

Reference [17] proposed a GPU-based index system,
where all data sets were randomly generated and stored
in the CPU memory in advance. To prepare for the index
processing, data sets were offloaded from CPU to the
GPU. As soon as GPU completed the index tasks, the BIs
were returned to CPU for further processing. According to
the authors, the indexing throughput reached 163 million
words/second, which included the transfer time back and
forth between CPU and GPU. To make a fair comparison
between BIC32K16 and [17], the process time was extracted
from the total measured time. The processing throughput
of [17] achieved 223 million words/second, or 0.45 GB/s.
Since this design produced a point index, IS1 is selected for
the comparison.

The summary of hardware utilization and indexing
throughput of all designs is shown in Table 6. Specif-
ically, [16] exploited 20,000 cores in 834 Intel CPUs
for solving a range index request. Since each CPU con-
sumed 115 W, the total power consumption of 834 CPUs
became around 95.9 KW, which led to the energy consump-
tion of 188 J/GB. Reference [17] employed a 1,344-core
NVIDIA GPU for indexing a set of random data. Because
the GPU required 170-W power, the energy consumption
became approximately 377 J/GB. According to the Pow-
erPlay Power Analyzer tool, BIC32K16 consumes 18.2 W
in the worst case. Therefore, the energy consumption of
BIC32K16 (IS2) and BIC32K16 (IS1) were 12.7 J/GB and
12.4 J/GB, respectively. As seen in Fig. 10, to index 1-GB
data, BIC32K16 only requires 6.76% and 3.28% of energy
compared to [16] and [17], respectively.

V. DISCUSSION
Although the proposed BICs outperform CPU- and GPU-
based designs in terms of energy efficiency, they have the
following restrictions.

FIGURE 11. The variation of indexing throughput.

• First, the indexing throughput THRprac depends largely
on both tCAM and tOUT , or specifically the data bus width w.
In fact, the bottleneck between FPGA chip and DDR3 mem-
ory is widely recognized as a major problem in the intensive-
bandwidth applications. New FPGA architectures are dealing
with this problem. For instance, Manish et al. [26] suggested
an enhanced FPGA-to-DRAM architecture for data center
and analytics applications, where memory bandwidth can
reach as high as 1,024 GB/s (320 times higher than currently
utilized bandwidth of 25.6 Gbps). The performance of BIC,
thus, will be improved significantly as new FPGA-DRAM
architecture is likely to sharply reduce both tCAM and tOUT .
• Second, the ratio of N (the number of R-CAM words) to

Ni (the number of instructions) also strongly influences the
indexing throughput. Fig. 11 gives the simulation of THRtheo
based on the formulas in Table 5, when M = 16, N ranges
from 8,192 (8K) to 262,144 (256K) words and Ni ranges
from one to 4,096 instructions. If Ni is much smaller than N,
e.g., Ni = 128 and N = 64K, THRtheo is almost a straight
line, because the domination of tCAM over tQLA. On the other
hand, if Ni increases, THRtheo decreases corresponding to
the magnitude of N. For example, at Ni = 4, 096, THRtheo
drops up to 4.4 times when N varies from 256K to 8K. The
maximum THRtheo can be broken through, only if the bus
width w is extended.
• Third, the size of R-CAM relies heavily on the number

of memory blocks of a certain FPGA. Due to the mapping
technique, the RAM-CAM ratio reaches 32, or 1-bit CAM
costs 32-bit RAM. During the operation, up to 64-Kbit BI is
also obtained from R-CAM in parallel, which leads to the
huge power consumption in the aspect of the hardware accel-
erators. This is considered as an inevitable trade-off between
performance and power.
• Fourth, the proposed BICs utilized a large number of

lookup tables, registers, and embedded memory blocks to
maximize the indexing throughput. The current place-and-
route compilations were mainly based on the strength of the
compiler, especially the optimization setting of aggressive
performance mode. However, if the BIC size keeps increas-
ing, the congestion of the routing may severely degrade
the performance. One possible solution is to employ the

VOLUME 6, 2018 16057

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

incremental compilation feature provided by Quartus 16.0.
This feature allows us to divide a large-sized BIC into sub-
partitions, then compile and optimize each partition, and
finally combine them into a single project. We can, therefore,
achieve the timing closure for a particular partition that does
not meet timing requirements, while preserving the compila-
tion results for partitions that have met design requirements.
In other words, the incremental compilation can significantly
reduce design iteration time and guarantee the whole timing
of a large design.

VI. CONCLUSION
This paper originally exploits the hardware parallelism to
construct BIC64K8 and BIC32K16, which can index as
many as 65,536 8-bit words and 32,768 16-bit words in
parallel, respectively. All processes are fully completed by
dedicated hardware to maximize the indexing throughput.
When being integrated into a 256-bit system that operates
at a 100-MHz frequency, BIC64K8 and a BIC32K16 can
index up to 1.43 GB/s and 1.46 GB/s, respectively. Those
indexing throughputs were stable, regardless of the size
of the data sets. More significantly, the energy consump-
tion of BIC32K16 was 6.76% of CPU-based and 3.28% of
GPU-based designs. This achievement confirms the advan-
tages of FPGAs as a prominent solution for energy-efficient
compute-intensive emerging applications.

ACKNOWLEDGMENT
X.-T. Nguyen was with the University of Electro-
Communications, Tokyo, Japan.

REFERENCES
[1] Cisco. Global Cloud Index: Forecast and Methodology, 2015–2020.

Accessed: Oct. 2017. [Online]. Available: http://www.cisco.com/
c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-
gci/white-paper-c11-738085.pdf

[2] K. Stockinger and K. Wu, ‘‘Bitmap indices for data warehouses,’’ in Data
Warehouses OLAP: Concepts, Architectures Solutions. Hershey, PA, USA:
IGI Global, 2007, pp. 157–178.

[3] R. Karam, R. Puri, S. Ghosh, and S. Bhunia, ‘‘Emerging trends in design
and applications of memory-based computing and content-addressable
memories,’’ Proc. IEEE, vol. 103, no. 8, pp. 1311–1330, Aug. 2015.

[4] ‘‘Implementing high-speed search applications with Altera CAM,’’ Altera,
San Jose, CA, USA, Appl. Note 119, 2001, pp. 1–50.

[5] L. Kyle, ‘‘Parameterizable content-addressablememory,’’ Xilinx, San Jose,
CA, USA, Appl. Note 1151, 2011, pp. 1–31.

[6] Z. Ullah, K. Ilgon, and S. Baeg, ‘‘Hybrid partitioned SRAM-based ternary
content addressable memory,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 59, no. 12, pp. 2969–2979, Dec. 2012.

[7] Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, ‘‘E-TCAM: An efficient
SRAM-based architecture for TCAM,’’ Circuits, Syst. Signal Process.,
vol. 33, no. 10, pp. 3123–3144, Oct. 2014.

[8] Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, ‘‘Z-TCAM: An SRAM-
based architecture for TCAM,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 23, no. 2, pp. 402–406, Feb. 2015.

[9] A. Ahmed, K. Park, and S. Baeg, ‘‘Resource-efficient SRAM-based ternary
content addressable memory,’’ IEEE Trans. Very Large Scale Integr. Syst.,
vol. 25, no. 4, pp. 1583–1587, Apr. 2017.

[10] A. M. S. Abdelhadi and G. G. F. Lemieux, ‘‘Modular SRAM-based binary
content-addressable memories,’’ in Proc. IEEE 23rd Annu. Int. Symp.
Field-Programm. Custom Comput. Mach., May 2015, pp. 207–214.

[11] H. Wong, H.-F. Liu, F. Olken, D. Rotem, and L. Wong, ‘‘Bit transposed
files,’’ in Proc. 11th Int. Conf. Very Large Data Bases, 1985, pp. 448–457.

[12] P. O’Neil and D. Quass, ‘‘Improved query performance with variant
indexes,’’ ACM SIGMOD Rec., vol. 26, no. 2, pp. 38–49, 1997.

[13] J. Chou et al., ‘‘Parallel index and query for large scale data analysis,’’ in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal. (SC), 2011,
pp. 1–11.

[14] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani, ‘‘Parallel data
analysis directly on scientific file formats,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD), 2014, pp. 385–396.

[15] G. Chong, H. Li, M. Chen, and M. Zhu, ‘‘Accelerate bitmap indexing
construction with massive scientific data,’’ in Proc. Int. Conf. Comput. Sci.
Netw. Technol. (ICCSNT), 2016, pp. 229–233.

[16] C. Hsuan-Te, J. Chou, V. Vishwanath, andW. Kesheng, ‘‘In-memory query
system for scientific dataseis,’’ in Proc. IEEE 21st Int. Conf. Parallel
Distrib. Syst. (ICPADS), Dec. 2015, pp. 362–371.

[17] F. Fusco, M. Vlachos, X. Dimitropoulos, and L. Deri, ‘‘Indexing mil-
lion of packets per second using GPUs,’’ in Proc. Conf. Internet Meas.
Conf. (IMC), 2013, pp. 327–332.

[18] X.-T. Nguyen, H.-T. Nguyen, and C.-K. Pham, ‘‘An FPGA approach for
fast bitmap indexing,’’ IEICE Electron. Exp., vol. 13, no. 4, pp. 1–9, 2016.

[19] X.-T. Nguyen, H.-T. Nguyen, and C.-K. Pham, ‘‘A high-throughput and
low-power design for bitmap indexing on 65-nm SOTB CMOS process,’’
in Proc. Int. Conf. IC Design Technol. (ICICDT), pp. 1–4, 2016.

[20] X.-T. Nguyen, H.-T. Nguyen, K. Inoue, O. Shimojo, and C.-K. Pham,
‘‘Highly parallel bitmap-index-based regular expression matching for text
analytics,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017,
pp. 2667–2670.

[21] A. Putnam et al., ‘‘A reconfigurable fabric for accelerating large-scale
datacenter services,’’ in Proc. ACM/IEEE 41st Int. Symp. Comput. Archi-
tecture (ISCA), Oct. 2014, pp. 13–24.

[22] O. Jian, L. Shiding, Q.Wei, W. Yong, Y. Bo, and J. Song, ‘‘SDA: Software-
defined accelerator for large-scale DNN systems,’’ in Proc. IEEE Hot
Chips Symp. (HCS), Aug. 2014, pp. 1–23.

[23] Arria V SoC Development Kit. Accessed: Oct. 2017. [Online]. Available:
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-
arria-v-soc.html

[24] TPC-H Benchmark (Decision Support) Standard Specification Revi-
sion 2.17.3. Accessed: Dec. 2017. [Online]. Available: http://www.tpc.
org/tpc_documents_current_versions/current_specifications.asp

[25] Options for Building Bitmap Indexes. Accessed: Dec. 2017. [Online].
Available: https://sdm.lbl.gov/fastbit/doc/indexSpec.html

[26] D. Manish, S. Jeffrey, and B. Lance, ‘‘Intel stratix 10 MX devices solve the
memory bandwidth challenge,’’ Intel, Santa Clara, CA, USA,White Paper,
2016.

[27] X.-T. Nguyen et al., ‘‘An efficient FPGA-based database processor for
fast database analytics,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2016, pp. 1758–1761.

XUAN-THUAN NGUYEN (S’15–M’17) received
the B.Sc. degree (Hons.) in electronics and
telecommunications and the M.Sc. degree in
microelectronics and VLSI design from the Uni-
versity of Science, Ho Chi Minh City, Viet-
nam, in 2010 and 2013, respectively, and the
Ph.D. degree from the University of Electro-
Communications, Tokyo, Japan, in 2017. He is
currently a Post-Doctoral Fellow with the Depart-
ment of Electrical Computer Engineering, Univer-

sity of Toronto, Toronto, ON, Canada. He was a co-recipient of the Best Stu-
dent Paper Award Honorable Mention at the 2017 International Symposium
on Circuits and Systems Conference. His research interests include energy-
efficient hardware approaches to data analytics, artificial intelligence, and
embedded systems.

16058 VOLUME 6, 2018

X.-T. Nguyen et al.: FPGA-Based Hardware Accelerator for Energy-Efficient BI Creation

TRONG-THUC HOANG (S’17) received the B.Sc.
degree in electronics and telecommunications
and the M.Sc. degree in microelectronics from
the University of Science, Ho Chi Minh City,
Vietnam, in 2012 and 2017, respectively. He is cur-
rently pursuing the Ph.D. degree with the Univer-
sity of Electro-Communication, Tokyo, Japan. His
research field is digital signal processing, image
processing, and neural networks.

HONG-THU NGUYEN (S’14) received the B.Sc.
and M.Sc. degrees in electronics and telecommu-
nications from the University of Science, Ho Chi
Minh City, Vietnam, in 2011 and 2014, respec-
tively. She is currently pursuing the Ph.D. degree
with the University of Electro-Communications,
Tokyo, Japan. Her research interests focus on
improving communication techniques (MIMO,
OFDM, and so on) and designing digital systems
using integrated circuits.

KATSUMI INOUE graduated from Tokyo Denki
University Tokyo Japan in 1969. He developed
Hi-Vision monitors at Ikegami Tsushinki from
1969 to 1973. He established Green Systems in
Tokyo for developing micro-computer systems
in 1976. He was on the board of UMC Electron-
ics Saitama development division from 1995 to
2007. He established Advanced Original Tech-
nologies Co, Ltd. Chiba in 2010. Since 2018,
he has been a Ph.D. student at the University of

Electro-Communication, Tokyo, Japan. His research interests include the
memory-based architecture devices for information detection.

CONG-KHA PHAM (M’91) received the B.S.,
M.S., and Ph.D. degrees in electronics engineer-
ing from Sophia University, Tokyo, Japan. He
is currently a Professor with the Department of
Network Engineering and Informatics, University
of Electro-Communications, Tokyo, Japan. His
research interests include the design of analog and
digital systems using integrated circuits.

VOLUME 6, 2018 16059

	INTRODUCTION
	BACKGROUND
	RAM-BASED CAM
	OVERVIEW
	RELATED WORKS

	BITMAP INDEX
	OVERVIEW
	RELATED WORKS

	MOTIVATION
	THE NEED FOR AN ENHANCED R-CAM
	THE NEED FOR AN FPGA-BASED BI CREATION

	PROPOSED SYSTEM ARCHITECTURE
	OVERVIEW
	DIRECT ACCESS MEMORY (DMA)
	RAM-BASED CAM (R-CAM)
	RELATIONSHIP BETWEEN BITMAP INDEX AND R-CAM
	SIMPLIFIED ARCHITECTURE OF R-CAM
	ENHANCED ARCHITECTURE OF R-CAM

	INSTRUCTION MEMORY (IM)
	QUERY LOGIC ARRAY (QLA)

	PERFORMANCE ANALYSIS
	TESTBEDS
	DATA SETS
	INSTRUCTION SETS

	HARDWARE UTILIZATION
	PROCESSING THROUGHPUT
	PREDICTION MODEL
	POINT-INDEX AND RANGE-INDEX EXPERIMENTS
	FULL-INDEX EXPERIMENTS

	ENERGY CONSUMPTION

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	XUAN-THUAN NGUYEN
	TRONG-THUC HOANG
	HONG-THU NGUYEN
	KATSUMI INOUE
	CONG-KHA PHAM

