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ABSTRACT To improve the efficiency of blur kernel estimation based on prior knowledge, a method of
deblurring an image based on rich edge region extraction using a gray-level co-occurrence matrix is proposed
in this paper. First, the relationship between the image edge information and the related coefficients of a
gray-level co-occurrence matrix is analyzed, based on which an index representing the amount of image
edge information is proposed. Next, high-frequency layer information is extracted from the blurred image
to be processed with a bilinear interpolation method in the luminance channel. Subsequently, the high-
frequency layer image is divided into nine regions, based on a sliding window, and the rich edge region
index of each region is calculated; then, the region with the richest edge information is extracted. Finally,
the extracted rich edge region, instead of the entire motion blurred image, is used to estimate the blur kernel
with L0-regularized intensity and gradient prior, and the blurred image is blindly restored. An image quality
evaluation function and the operation time are used to evaluate the performance of the proposed method.
Experimental results show that the proposed method can improve the recovery efficiency while ensuring the
recovery quality as well.

INDEX TERMS Image processing, image restoration, image quality, motion blurred image, gray-level
co-occurrence matrix, rich edge region.

I. INTRODUCTION
Motion blur in images is a common phenomenon and
the restoration of motion blurred images has always been
a research hotspot in the computer vision field. The
blind restoration of a single image has significant prac-
tical and research value [1], [2]. However, due to the
lack of information, single image restoration is a difficult
task [3], [4].

The restoration of a single blurred image is a serious ill
posed problem, and the most practical solution is to use prior
knowledge of the image [5]. Krishnan et al. [6] introduced
a novel scale invariant image prior. The algorithm is appli-
cable to different blur formation models and has achieved
successful results. However, several shortcomings still exist.
First, when the blurred image contains a rich tiny structure,
this method is limited in the blur kernel estimation process.
Second, the algorithm is not efficient enough because of the
models’ complexity and too many iterations in the kernel
estimation process.

Assuming that the blur kernel and the clear image are
sparse in the curvelet and framelet domains, respectively,
Cai presented an approach to remove motion blurring from
a single image by formulating the blind blurring model as
a new joint optimization problem [7]. The method removed
the ambiguity between the blur kernel and the clear image.
However, it was very time consuming. Fergus et al. [8] pro-
posed a blind motion- deblurring method using prior image
knowledge. The method used a mixed Gaussian model to
fit the heavy tail distribution of the natural image gradi-
ent, and estimated the blur kernel and clear image with a
variational Bayesian algorithm. The algorithm improved the
restoration effect to a great extent. However, the ringing
effects were obvious and extensive computationwas required.
Shan et al. [9] proposed the idea of using a piecewise func-
tion to fit the distribution of the natural image gradient.
The algorithm suppressed the ringing phenomenon; however,
the computation was still extensive and the running speed was
still slow.
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FIGURE 1. Framework of the proposed method.

Pan et al. [10] proposed an algorithm for deblurring text
images via L0-regularized intensity and gradient prior. Using
prior knowledge of the intensity and gradient, the method
obtained a blur kernel based on recursive constraints and
cleared the blurred text images. The prior knowledge can be
used for kernel estimation of blurred text images, as well
as natural blurred images. However, this restoration with
prior knowledge is an iterative method and has high time
complexity [11]. Cho and Lee [12] proposed a fast deblurring
algorithm. In the blur kernel estimation process, the retained
gradient value was greater than the threshold, and the opti-
mization function was established using the image gradient.
The algorithm’s deblurring effect improved greatly; however,
the recovery results were not always ideal, especially for
images with rich details.

To improve the algorithm efficiency and guarantee the
accuracy of the point spread function, it is possible to use
a local image region instead of the entire blurred image to
estimate the point spread function [13]. A newmotion blurred
image restoration method, based on rich edge region extrac-
tion using a gray-level co-occurrence matrix, is proposed in
this paper, as shown in Figure 1.

First, an index representing the amount of image edge
information is defined, based on the relationship between
the image edge information and the related coefficients of
the gray-level co-occurrence matrix [14], [15]. Next, high-
frequency layer information is extracted from the blurred
image with bilinear interpolation in the luminance chan-
nel. Subsequently, the high-frequency layer image is divided
into nine regions based on a sliding window, and the rich
edge region index of each region is calculated. Finally, the
region with the richest edge information is extracted to
estimate the blur kernel, and the blurred image is blindly
restored.

II. EVALUATION CRITERION OF THE RICH EDGE REGION
A. GRAY-LEVEL CO-OCCURRENCE MATRIX
When estimating the motion kernel based on the
L0-regularized intensity and gradient prior, the rich edge
region is more likely to be affected by motion blur, and often
contains more information that can improve the accuracy of
the motion kernel. To improve the blurred image restoration
efficiency, part of the image can be selected to estimate the
blur kernel, instead of the entire image. The characteristics of
the gray-level co-occurrence matrix can be used to automati-
cally select the rich edge regions in the image.

A gray-level co-occurrence matrix can be obtained from
the gray image, and its characteristics can be used to represent
some image texture features. The inverse difference moment
represents the local homogeneity of an image. A large inverse
difference moment indicates that the image texture regions
differ only slightly and the local homogeneity is very uniform.
The moment of inertia, also known as the contrast ratio,
measures the local change in an image and reveals the depth
of the image’s texture. A large moment of inertia indicates
that the texture of a groove is deep.

A group of images with gradually increasing edge regions
are shown in Figure 2. Equations (1) and (2) are used to
calculate the sum of the inverse difference moment and the
sum of the moment of inertia in the 0◦, 45◦, 90◦, and 135◦

directions, respectively.

Mc = M0
c +M

45
c +M

90
c +M

135
c (1)

Md = M0
d +M

45
d +M

90
d +M

135
d (2)

where M θ
c and M θ

d are the moment of inertia and the inverse
difference moment in the θ direction, respectively.

Figure 3 shows the definition of the directions. A is the
current pixel and Ai is the angle i degrees from A. The results
are shown in Figure 4 and Figure 5. It can be seen from the two
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FIGURE 2. Images with incrementing edge information.

FIGURE 3. Direction definition.

FIGURE 4. Inverse difference moments of Fig. 2 (a), (b), (c), (d), and (e).

figures that, with the increase of the image’s edge, the value
of the inverse difference moment decreases, while the value
of the moment of inertia gradually increases.

B. INDEX OF RICH EDGE REGION
The index of the rich edge region is defined to evaluate the
edge information of a single region, and is calculated as
Equation (3).

R = Mc −Md (3)

where R is the rich edge index of an image and Mc and Md
are defined in Equations (1) and (2), respectively.

FIGURE 5. Moments of inertia of Fig. 2 (a), (b), (c), (d), and (e).

FIGURE 6. Rich edge region index of Fig. 2 (a), (b), (c), (d), and (e).

The rich edge index values of Figure 2 are shown
in Figure 6. From Figure 6, we can see that the index values
increase with the edge information. The index can be used to
extract rich edge regions.

III. IMAGE RESTORATION BASED ON RICH
EDGE REGION EXTRACTION
When using prior information to iteratively estimate the blur
kernel, the high time complexity is an unavoidable problem.
To improve the image restoration efficiency, it is possible
to select part of the image instead of the entire image for
the point spread function estimation. Image deblurring based
on rich edge region extraction is composed of two main
steps: Rich edge region extraction based on a gray-level
co-occurrence matrix and the blur kernel estimation of the
rich edge region.

A. RICH EDGE REGION EXTRACTION
The edges and details of an image are usually the regions
with severe transformations and correspond to the high-
frequency components in the frequency domain; the smooth
parts of the image correspond to the low-frequency compo-
nents. The high-frequency layer of a motion blurred image
is extracted, using the following steps to obtain the rich edge
regions.

Firstly, the original image is transformed from the RGB
color space to the YCbCr color space, using Equation (4) to
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extract the value of the Y channel.

Y = 0.257× R+ 0.564× G+ 0.098× B+ 16 (4)

where R, G, and B are the values of the three color channels,
and Y is the luminance channel value.

Secondly, the Y channel is down-sampled by a factor of
2 and then bilinear interpolation is used to up-sample it by a
factor of 2, which is shown as Equation (5).

Y ′ = B2(Y (2 : 2 : m, 2 : 2 : n)) (5)

wherem and n are the row and column numbers of the original
image, respectively,B2 represents the bilinear interpolation of
up-sampling by a factor of 2, and Y ′ represents the sampling
result.

Thirdly, the luminance of the sampling result is subtracted
from the luminance of the original image, and the high-
frequency layer of the image is obtained, which is shown as
Equation (6).

H = Y− Y ′ (6)

where H is the high-frequency layer of the image.

FIGURE 7. Sliding window of an image.

Fourthly, the high-frequency layer image is divided into
nine regions, based on a slidingwindow, as shown in Figure 7.
The rich edge region index of each region is calculated with
Equation (3) and the blurred image region corresponding to
the window with the largest rich edge index W is selected as
the rich edge region, as shown in Equation (7).

W = MAX(Mc −Md )

= MAX
(
SUM(Mθ

c
(
Hij
)
)− SUM(Mθ

d
(
Hij
)
)
)

= MAX
(
Mc

(
Hij
)
−Md

(
Hij
))

= MAX
(
R
(
Wij

))
(i = 1, 2, 3, j = 1, 2, 3, θ = 0◦, 45◦, 90◦, 135◦) (7)

where i and j are the vertical and horizontal indices of the slid-
ing window, respectively;Wij is the blurred region covered by
the sliding window, whose coordinate is (i, j) in the image;
Hij is the high-frequency layer information corresponding to
the blurred area Wij; MAX and SUM are the maximum and
summation operations, respectively; Mc

(
Hij
)
and Md

(
Hij
)

represent the moment of inertia and the inverse difference

moment of the gray-level co-occurrence matrix Hij; R
(
Wij

)
is the rich edge index of blurred area Wij; and W is the rich
edge region extracted with the maximum rich edge index.

B. BLUR KERNEL ESTIMATION
Based on the extracted rich edge region, the L0-regularized
intensity and gradient prior are used to estimate the blur
kernel using an iterative method [16].

The prior of the image is defined as Equation (8).

P (x) = σPt (x)+ Pt (∇x) (8)

where Pt (x) represents the number of pixels with nonzero
values, Pt (∇x) is the image gradient, and σ is a weight.
The prior P (x) is used as a regularization term to estimate

the blur kernel of the blurred image with Equation (9).

min
x,k
‖x ∗ k −W‖22 + γ ‖k‖

2
2 + λP(x) (9)

where W is the extracted rich edge region, x is the latent
image of W in the blur kernel calculation process, k is a blur
kernel, and γ and λ are weights.

The blur kernel is estimated from coarse to fine using
Gaussian image pyramid. Once the blur kernel is obtained,
the deblurring algorithm for shaken images proposed by
Whyte et al. [17] is used to restore the motion blurred image.

FIGURE 8. High-frequency layer extraction (a) Blurred image
(b) High-frequency layer.

IV. EXPERIMENTS AND ANALYSIS
A. EXTRACTION OF RICH EDGE REGION
Figure 8(a) is used to evaluate the proposed high-frequency
information extraction performance, and the high-frequency
layer extracted from Figure 8(a) is shown as Figure 8(b).

Two images from the internet, shown in Figure 9, are used
to evaluate the rich edge region extraction performance of
the proposed method. The length and width of the sliding
window are initialized as half of the original image’s length
and width, and the sliding window is set to a quarter of the
original blurred image size. The rich edge index for each
sliding window area for Figure 9(a) and (b) is calculated with
the proposed method, and the results are shown in Table 1.
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FIGURE 9. Extraction of rich edge region.

TABLE 1. Rich edge region index of each sliding window in Fig. 9.

In Table 1, (i, j) is the sliding window coordinate, where
i is the vertical index and j is the horizontal index. The
regionswith red rectangles in Figure 9 are the rich edge region
extraction results. The rich edge indices of the red rectangle
regions in Figures 9(a) and (b) are 11.2711 and 13.0092,
respectively, which are larger than the other index values.
From Figure 9, we can see that the red rectangle contains
more edge information than the others, which accords with
the rich edge region index.

B. VISUAL EVALUATION OF THE IMAGE
RESTORATION RESULTS
The entire blurred image, the non-rich edge region, and the
rich edge region are used to estimate the blur kernel and
evaluate the image restoration performance. The original
blurred images are shown in Figure 10(a). The rich edge
region index of each sliding window is calculated, and the
non-rich edge region and rich edge region are extracted
respectively according to the smallest and largest indices.
The L0-regularized intensity and gradient prior are used to
estimate the blur kernel of the entire blurred image, the non-
rich edge region, and the rich edge region. The restoration
algorithm uses the estimated blur kernel to restore the blurred
image. Figures 10 (b), (c), and (d) show the restoration results
with blur kernel estimated using the entire image, the non-rich
edge region, and the rich edge region and their corresponding
enlarged views, respectively.

FIGURE 10. Blurred image and restoration results. (a) Blurred images.
(b) Restoration results with blur kernel estimated using the entire image
and the enlarged views. (c) Restoration results with blur kernel estimated
using non-rich edge region and the enlarged views. (d) Restoration results
with blur kernel estimated using rich edge region and the enlarged views.

Figure 10 reveals that blur kernel estimation using part
of the image instead of the entire image can complete the
restoration operation. The main reason is that a local image
region can provide information, e.g., pixel intensity and gra-
dient, to estimate the blur kernel. However, different local
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regions contain different amounts of prior knowledge; thus,
their restoration effects are different.

The recovery effect with the rich edge region is signif-
icantly better than that with the non-rich edge region. The
main reason is that the rich edge region contains more infor-
mation than the non-rich edge region about the pixel intensity
and gradient, which are essential for blur kernel estimation.
The restoration effect with the rich edge region is similar to
that with the entire image, while the recovery time decreases
significantly. This is mainly because the proposed method
only needs part of the image in the blur kernel estimation
process, which greatly reduces the calculation.

C. OBJECTIVE EVALUATION OF THE IMAGE
RESTORATION RESULTS
The peak signal-to-noise ratio (PSNR), normalized mean
square error (NMSE) [18], structural similarity (SSIM) [19],
image quality index (Q) (shown as Equation (10)) [20], and
recovery time are used to objectively evaluate the image
restoration results [21].

Q =
σxy

σxσy
·

2x̄ȳ

(x̄)2 + (ȳ)2
·

2σxσy
σ 2
x + σ

2
y

(10)

where x and y represent the pixel values of the original image
and the test image, respectively, and x̄ and ȳ are the average
values of the pixels. σ 2

x , σ
2
y , and σxy are calculated using

Equations (11), (12), and (13), respectively, where N is the
number of pixels.

σ 2
x =

1
N − 1

N∑
i=1

(xi − x̄)2 (11)

σ 2
y =

1
N − 1

N∑
i=1

(yi − ȳ)2 (12)

σxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) (13)

The restoration results for the first and second images of
Figures 10 (b), (c), and (d) are shown in Tables 2 and 3,
respectively. The blur kernel sizes of the first and second
images in Figure 10(a) are 33× 33 pixels and 25× 25 pixels,
respectively.

TABLE 2. Restoration quality for the first image in Fig. 10 (b), (c), and (d).

FromTable 2 and 3, we can see that the image quality of the
proposed method is slightly worse than the restoration result
using the entire image for blur kernel estimation. However, its

TABLE 3. Restoration quality for the second image in
Fig. 10 (b), (c), and (d).

FIGURE 11. Effects of the rich edge region size on the restoration results.
(a) Blurred image. (b) Restoration result with blur kernel estimated using
the entire image. (c) Restoration result with blur kernel estimated using
rich edge region with half of the image. (d) Restoration result with blur
kernel estimated using rich edge region with a quarter of the image.
(e) Enlarged view of the red-rectangle area in (b). (f) Enlarged view of the
red-rectangle area in (c). (g) Enlarged view of the red-rectangle area in (d).

recovery time is about a quarter of that using the entire image.
The recovery results with the rich edge region extracted by
our proposed method are obviously better than those of the
non-rich edge region; i.e., different local regions can provide
different information. Regions containing rich edge informa-
tion that is more conducive to blur kernel estimation can
ensure the image quality and improve the recovery efficiency.

D. EFFECT OF THE RICH EDGE REGION
SIZE ON THE RESULTS
Rich edge regions with different sizes are used to reveal
the relationship between the size of the extracted rich edge
region and the restoration effect. The restoration results with
different sizes are shown in Figure 11. Figure 11(a) is the
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FIGURE 12. Visual comparison of the recovery results (a) Blurred image. (b) Krishnan [6]. (c) Shan [9]. (d) Zhong [20]. (e) Xu [21]. (f) Our method.

original blurred image; its kernel size is 53× 53 pixels.
Figures 11 (b), (c), and (d) are the restoration results
using the entire image, half of the image, and a quarter
of the image, respectively. The enlarged views of the red-
rectangle regions in Figures 11 (b), (c), and (d) are shown as
Figures 11 (e), (f), and (g), respectively. From Figure 11,
we can see that the restoration effect improves with the
increasing size of the rich edge region.

The assessment values of the restoration results with dif-
ferent sizes in Figure 11(a) are shown in Table 4. In Table 4,
columns (b), (c), and (d) show the restoration results with blur
kernel estimated using the entire image, half of the image, and
a quarter of the image, respectively. Table 4 indicates when
the rich edge region increases, the restoration effect improves
and the recovery time increases; however, the recovery time is
still far less than that using the entire image. The main reason
is that a larger rich edge region can provide more related
information.

TABLE 4. Restoration quality comparison for different rich edge
region size.

E. RESTORATION COMPARISON WITH OTHER METHODS
Blurred images from real scenes were used to compare
the restoration results of our proposed method and other
traditional methods. In Figure 12, row (a) shows the
original blurred images, row (b) shows the restoration
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FIGURE 13. Objective comparison of the recovery results. (a) PSNR
comparison. (b) SSIM comparison.

results with Krishnan’s method [6], row (c) shows Shan’s
method [9], row (d) shows Zhong’s method [4], row (e) shows
Xu’s method [22], and row (f) shows the restoration results
with our proposed method. From Figure 12, we can see that
the proposed method is better than the other four algorithms
for blurred image restoration. The deblurred results of image
1, 2 and 4 contain area with unnatural color in row (b). The
deblurred results of image 3 in row (c) appear obvious ringing
effect. Ringing effect has also happened in the deblurred
results of image 1, 4 and 5 in row (d). The motion blur
is not fully removed for the results of image 1 in row (e).
The PSNR values and SSIM values of the five methods are
shown in Figure 13. We can see that the two values of the
proposed method are mostly higher than those of the other
four methods, which proves the effectiveness of the proposed
method. The reason for the good deblurring performance
of our proposed method is that the priors of the state-of-
the-art methods are developed to exploit salient edges for
motion deblurring and the low-frequency regions are ignored,
while high-frequency information is used to extract abun-
dant edge regions in our proposed method. What’s more, the
L0-regularized intensity prior is used to estimate the blur

kernel in our proposed method, which is more effective for
low frequency regions of the images in the deblurring process.

V. CONCLUSIONS
In this paper, an image deblurring method based on rich edge
region extraction using a gray-level co-occurrencematrix was
proposed. The method made three main contributions. First,
the coefficients of the gray-level co-occurrence matrix were
analyzed and an index representing the amount of image
edge informationwas presented, which helped extract the rich
edge region. Second, the high-frequency layer was extracted
to compute the coefficients of the gray-level co-occurrence
matrix. Third, a sliding window was used to divide the high-
frequency layer image, and the rich edge region index of each
region was calculated. The region with the richest edge infor-
mation could replace the entire blurred image for blur kernel
estimation and recovery. This greatly reduced the recovery
time.

Experimental results, including the visual effect of the
image restoration, calculation time, peak signal-to-noise
ratio, normalized mean square error, structural similarity, and
image quality index, showed that the proposed method was
superior to the other methods in terms of recovery results. The
proposed method not only effectively eliminated the motion
blur of the image, but also improved the recovery efficiency
to a certain extent.

However, the size of the rich edge region and the sliding
interval of the sliding windowwere predefined.Wewill focus
on automatically determining these two values in our future
work.
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