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ABSTRACT Feature selection has been a powerful tool to handle high-dimensional data. Most of these
methods are biased toward the highest rank features which may be highly correlated with each other. In this
paper, we address this problem proposing stratified feature ranking (SFR) method for supervised feature
ranking of high-dimensional data. Given a dataset with class labels, we first propose a subspace feature
clustering (SFC) to simultaneously identify feature clusters and the importance of each feature for each
class. In the SFR method, the features in different feature clusters are separately ranked according to the
subspace weight produced by SFC. After that, we propose a stratified feature weighting method for ranking
the features such that the high rank features are both informative and diverse. We have conducted a series
of experiments to verify the effectiveness and scalability of SFC for feature clustering. The proposed SFR
methodwas comparedwith six feature selectionmethods on a set of high-dimensional datasets and the results
show that SFR was superior to most of these feature selection methods.

INDEX TERMS Data mining, computational and artificial intelligence, clustering algorithms, feature
selection.

I. INTRODUCTION
High-dimensional data present a big challenge to supervised
learning due to the ‘‘curses of high-dimensionality’’ [12].
For example, a gene expression data which measures the
expression levels of genes in experiments, often consists of
thousands of genes. In classifying such data, learning mod-
els tend to occur overfitting phenomenon and become less
comprehensible, because it is often found that only a small
portion of genes are highly correlated to the samples, while
most genes are irrelevant. To deal with such problem, feature
selection is one effective means to selected optimal feature
set which contains discriminative features in high-dimension
data.

Over the past decades, feature selection has been play-
ing a important role in dealing with high-dimensional data,
such as removing irrelevant features [3], [20], [26], [32].
Among them, feature ranking is a type of popular feature
selection method which computes the degrees of depen-
dency of individual features with respect to class and select

features according to the degrees. Generally speaking, fea-
ture selection methods can be mainly classified into three
families, i.e., filter methods, wrapper methods and embedded
methods. The filter methods select feature subsets according
to the intrinsic characteristics of the data without involving
any learning algorithm. The typical supervised filter methods
include Fisher score [31] and Relief-F [22], [24]. In wrapper
methods, the predictor is treated as a black box while the
predictor performance as the objective function to evaluate
the feature subset [16]. Despite these type of methods can
get good predictor performance, such methods are usually
time-consuming. Embedded methods include feature selec-
tion as part of the training process. Among the three types of
methods, embedded methods are superior to others in many
respects, and have received more andmore attention [5], [15],
[27], [28], [35]. Typical criteria to evaluate the degrees of
dependency include the measures of correlation between the
feature and the class, or the uncertainty measures used in
information theory.
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However, the above methods are most effective for statisti-
cally independent features, but have low ability in identifying
group features that can be used to predict the class. They are
biased toward the high rank features, but such features may
be highly correlated with each other. Since the correlated fea-
tures may share similar properties and are redundant, we wish
to select more discriminant information with minimum cor-
relations for classification tasks. Kong et al. proposed an
uncorrelated feature selection (exclusive `2,1) [23]. In their
method, a 2-feature group is formed if the pearson correlation
between two features is higher than a user defined threshold.
Then the standard `2,1 regularization will be introduced for
each feature group in order to depress the high correlated
feature pairs. However, it is difficult to set proper threshold
and it is time-consuming to construct feature groups from
high-dimensional data since the candidate number of feature
groups is d2 where d is the number of features.

In this paper, we propose a Stratified Feature Rank-
ing (SFR) method for supervised feature selection from
high-dimensional data. In this method, we first propose
a Subspace Feature Clustering (SFC) to simultaneously
identify feature clusters and the importance of each fea-
ture for each class. SFC extends the Subspace Weighting
Co-Clustering (SWCC) [4] by consuming the class labels.
With the co-clustering result of SFC, features in different fea-
ture clusters are separately ranked according to the subspace
weights learned by SFC. Since features in the same feature
cluster are higher correlated than features in different feature
clusters, we propose a stratified feature weighting method for
ranking the features such that the high rank features are both
informative and diverse.

We conducted experiments on both synthetic data and
benchmark datasets to investigate the performance of our
methods.We compared SFRwith six feature rankingmethods
on 12 high-dimensional datasets, including 5 gene expression
datasets and 7 image datasets. The results show that SFR
outperformed other feature ranking methods on most results.
We also investigate the relationship between the performance
and parameters of SFR. Experimental results show that our
method can select features which are both informative and
diverse. Therefore, SFR is effective for high-dimensional
data.

The rest of this paper is organized as follows. We review
related work on feature selection and co-clustering on
section II. Then, we present the stratified feature selection
method in Section III. The feature selection results are pre-
sented in Section V. Conclusions and future work are given
in Section VI.

II. RELATED WORK
In this section, we give a brief review of related work on both
feature selection and co-clustering.

A. FEATURE SELECTION
Feature selection, also often called as variable selection,
is a process to determine the ‘‘best’’ subset of features

for prediction. This task can date back to 1940’s [19], and
research in this area gained substantial momentum starting
in the early 1960’s due to increased computing power. The
early research on feature selection mainly focuses on lin-
ear regression. Gradually, research on this area has been
expanded to cover classification and clustering problems.
Over the past decades, a number of feature selection methods
have been proposed. Various research and widespread appli-
cations indicated the efficiency of feature selection methods
to remove irrelevant features and gain great improvement in
performance [3], [20], [32].

Feature selection methods can be mainly classified into
three groups, i.e., filter methods, wrapper methods and
embedded methods. The filter methods select feature sub-
sets according to intrinsic characteristics of the data without
involving any learning algorithm. The typical supervised fil-
ter methods include Fisher score [31] and Relief-F [22], [24].
In wrapper methods, the predictor is treated as a black box
while the predictor performance as the objective function
to evaluate the feature subset [16], but such methods are
usually time-consuming. Embedded methods include feature
selection as part of the training process. Among the three
types of methods, embedded methods are superior to oth-
ers in many respects, and have received more and more
attention [15], [27], [28], [35].

Let X ∈ Rd×n be a dataset with n objects {x1, x2, . . . , xn},
where xi ∈ Rd×1. X is associated to nc classes C =
{c1, . . . , cnc} in which cl consists of all objects in the
l-th class. Let µl be the mean vector of the l-th class and
µ be the overall mean vector of the original data. He et. al
proposed a Laplacian Score method which evaluates the fea-
tures according to their locality preserving power [18]. The
Laplacian Score of the j-th feature is defined as follows

Lr =
f̃Tr LÃfr
f̃Tr DÃfr

(1)

where LA = DA − A is the graph Laplacian, in which
DA ∈ Rd×d is a diagonal matrix in which the j-th diagonal
element djj =

∑n
i=1 aji. A = {aij}

n
i,j=1 shares the same

meaning as the sparse affinity matrix in LPP. f̃r is defined as

f̃r = fr −
fTr DA1
1TDA1

1 (2)

where fr is the r-th feature.
Sugiyama et al. proposed a local Fisher discriminant analy-

sis (LFDA) [34]. LFDA preserves the local structure by max-
imizing the local between-class separability and minimizing
the local within-class scatters simultaneously. LFDA finds
a projection matrix W ∈ Rn×d by solving the following
objective function

max
W

Tr((WTS
w
W)−1WTS

b
W) (3)

where S
w
is the local within-class scatter matrix defined as

S
w
=

1
2

n∑
i,j=1

awij (xi − xj)(xi − xj)T (4)
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where

awij =

{ aij
|cl |

if xi, xj ∈ cl
0 otherwise

(5)

S
b
is the local between-class scatter matrix defined as

S
b
=

1
2

n∑
i,j=1

abij(xi − xj)(xi − xj)T (6)

where

abij =

{
aij( 1n −

1
|cl |

) if xi, xj ∈ cl
0 otherwise

(7)

Here aij in Eqs. (5) and (7) have the same meanings as the
sparse affinity matrix in LPP.

Yan et. al proposed a graph embedding framework to
extract features [38]. In this framework, the graph embedding
aims to learn a projection matrix W ∈ Rd×m by solving the
following objective function

min
WTBW=I or WTW=I

Tr(WTXTLAXW) (8)

With different combinations of A and B, the linear graph
embedding framework leads to many popular linear dimen-
sionality reduction methods [38]. For example, aij = 1

n for

i 6= j and B = I for PCA, aij =
δci,cj
nci

and B = I − 1
n11T

for LDA where nci is the number of objects in the class that
the i-th object belonging to and the binary value δci,cj = 1
indicates that the i-th and j-th objects are in the same class.
Based on the graph embedding framework, Gu et. proposed

a joint feature selection and subspace learning method FSSL,
which minimizes the graph-preserving criterion and uses `2,1
of the projection matrix for regularization [15]. FSSL finds
a projection matrix W ∈ Rn×d by solving the following
problem

min
WTXDAXTW=I

[
‖W‖2,1 + γTr(W

TXLAXTW))
]

(9)

where A, DA and LA have the same meanings as in the graph
embedding framework.

Nie et al. proposed a Robust Supervised Feature selection
model (RFS) model [28], by minimization `2,1-norms of both
loss of least square regression and regularization term as

min
W,b

(∥∥∥XTW+ 1bT − Y
∥∥∥
2,1
+ γ ‖W‖2,1

)
(10)

whereW ∈ Rd×c and b ∈ Rc are to be estimated and γ > 0
is the regularized parameter.

However, the above methods are biased toward the high
rank features, but such features may be highly correlated
with each other. Peng et al. [29] proposed a feature selec-
tion method based on the principle of Max-Relevance and
Min-Redundancy. They used a first-order incremental pro-
cess to attain optimal feature set. Yan et al. incorporated the
correlation bias reduction (CBR) strategy into the process
of support vector machine recursive feature elimination to

boost the performance of supervised feature selection [37].
Das et al. [10] suggested several reasons for choosing diverse
features : 1) it increases the interpretability of the selected
features, since we are assured that they not redundant and
are more representative of the original feature space and
2) the correlated features can slow down the convergence of
algorithms such as the stochastic gradient. Since the corre-
lated features may share similar properties and are redundant,
we wish to select more discriminant information with mini-
mum correlations for classification tasks.

Das et al. proposed a wrapper feature selection method,
which aims to predict the class labels using linear regres-
sion on a small subset of features and uses a greedy
and local search based approximation algorithm to obtain
the selected features. But their method is time-consuming.
Kong et al. [23] proposed an uncorrelated feature selection
(exclusive `2,1). In their method, a 2-feature group will be
formed if the pearson correlation between two features is
higher than a user defined threshold. Then the standard `2,1
regularization will be introduced for each feature group in
order to depress the high correlated feature pairs and select
at most one feature from most feature groups. They propose
to optimize the following objective function

min
W∈Rd×c

f (W)+ α
m∑
t=1

∥∥WGt
∥∥2
2,1 (11)

where W ∈ Rd×c , f (W) is cost function and {G1, · · · ,Gm}
are m feature groups. However, it is difficult to set proper
threshold. If the threshold is too small, the number of feature
groups m will be too large such that most important features
will be buried. If the threshold is too big, the number of
feature groups m will be too small such that the correlations
between most features will be ignored.

B. CO-CLUSTERING
Co-clustering [14], also called bi-clustering [9], is a process
of simultaneously clustering rows and columns of a data
matrix. Recently, it has been applied in a variety of areas such
as text mining [1], bioinformatics [30] and recommendation
systems [13].

Compared to traditional clustering methods which are
often proposed to cluster samples based on their distribu-
tion on feature space, co-clustering methods are proposed to
make full use of the duality information between samples
and features. For example, in document data, it is reasonable
to assume that document clusters are formed based on their
association with word clusters, and in the meanwhile, word
clusters can be constructed based on their link in document
clusters. In those special type of data, co-clustering methods
have been widely used to analyze the latent structure which
exists between samples with features, and gain better clus-
tering performance. Several co-clustering models have been
formulated, including hierarchical co-clustering, spectral
co-clustering [36] and partitional co-clustering [2].

Partitional co-clustering is a classical co-clustering method
which has been verified to be effective in clustering large
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data [17]. It iteratively partitions a data matrix into k × l
disjoint co-clusters, where k is the number of object clusters
and l is the number of feature clusters. Based on a parti-
tion process, quite a few partitional co-clustering algorithms
have been proposed. Banerjee et al. [2] introduced minimum
Bregman information (MBI) to co-clustering and proposed
a Bregman Block Average co-clustering algorithm (BBAC).
It attained optimal matrix approximation which simultane-
ously generalizes themaximum entropy and the standard least
squares. In this method, approximation error is measured
by Bregman divergences, which is a class of loss function.
The squared Euclidean distance is a special case of Bregman
divergences. However, since it didn’t distinguish the row vec-
tors and column vectors, BBAC cannot identified the noise
values which widespreadly exists in high-dimensional data.

Dhillon et. al [11] proposed an information-theoretic
co-clustering (ITCC). They regarded rows and columns in a
data matrix as two discrete random variables and data matrix
as a joint probability distribution between these two variables.
In their method, optimal co-clustering result was attained by
minimizing the mutual information loss between the original
random variables and the clustered random variables.

Recently, inspired by soft subspace clustering [6], [8], [21],
weighting technique has gained more attention and was grad-
ually introduced into co-clustering. Sarazin et al. [33] pro-
posed a feature group weighting co-clustering method on
topological maps model, which assigns weights to co-clusters
and learns the weights during the topological biclustering
process. Chen et al. [4] proposed a subspace weighting par-
titional co-clustering method. In their method, they intro-
duced a subspace weight matrix into co-clustering to indicate
the importance of each feature on each object cluster. They
can find optimal feature subsets which have strong relation-
ships with a class by using this subspace weighting matrix.
Further, Chen et al. [7] proposed a two-way subspace weight-
ing partitional co-clustering method which is robust and effi-
cient to clustering high dimensional data. In their method, one
more subspace weight matrix is defined to importance of each
object on each feature cluster.

III. STRATIFIED FEATURE RANKING METHOD
Inspired by Chen et al. [4], [7] which can cluster high
correlated features in same subspace, we can cluster high
correlated features and select features in same subspace from
different clusters to reduce redundancy. In this paper, we pro-
pose a stratified feature selection method. In the newmethod,
we first cluster the features into a set of feature clusters.
In order to attain a final ranked feature list from multiple
feature clusters, we propose a stratified weighting ranking
method to generate a ranked feature list, which ranks the
features according to the subspace feature weights and feature
clusters.

The procedure of the stratified feature ranking method is
shown in Figure 1. Given a labeled dataset X with m features
F = {f1, . . . , fm}, we first cluster F to l disjoint feature
clusters {Q1, . . . ,Ql}, such that Qj

⋂
Qi = ∅(∀i 6= j) and

FIGURE 1. Illustration of the procedure of the stratified feature ranking
method.⋃l

j=1Qj = F. Finally, we rank them features with a stratified
weighting feature ranking method.

In the following, we describe the feature clustering and
stratified weighting feature ranking.

A. FEATURE CLUSTERING
Let X ∈ Rn×m be a labeled data matrix with n objects and
m features. To cluster X into k row clusters and l column
clusters, Chen introduced a subspace weight matrix C ∈
Rk×l in which cgj is the weight of the j-th column in the g-th
row cluster. The objective function of SWCC is as follows [4]

min
U,V,Z,C

1
mn

k∑
g=1

l∑
h=1

n∑
i=1

m∑
j=1

uigvjhcgj(xi,j − zg,h)2

+
η

m

k∑
g=1

m∑
j=1

cgj log cgj

s.t.
k∑

g=1

uig = 1, uig ∈ {0, 1},
l∑

h=1

vjh = 1,

vjh ∈ {0, 1},
m∑
j=1

cgj = 1, cgj ∈ (0, 1) (12)

In supervised feature selection task, since the class labels
in X are known, U ∈ Rn×k can be directly constructed with
the given class labels by setting uig = 1 if xi belongs to the
g-th class, and 0 otherwise. The objective of feature clus-
tering is to partition m features in X into l feature clusters.
To achieve this goal, we extend problem (11) to the following
Subspace Feature Clustering objective function

min
V,Z,C

1
mn

k∑
g=1

l∑
h=1

n∑
i=1

m∑
j=1

uigvjhcgj(xi,j − zg,h)2

+
η

m

k∑
g=1

m∑
j=1

cgj log cgj

s.t.
l∑

h=1

vjh = 1, vjh ∈ {0, 1},
m∑
j=1

cgj = 1, cgj ∈ (0, 1)

(13)
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Algorithm 1 Subspace Feature Clustering (SFC)
1: Input: the labeled dataset X, the number of feature clus-

ters l and the regularization parameter η.
2: Output: the feature clustering result V and the subspace

weight matrix C.
3: Construct a binary matrices U ∈ Rn×k from the given

class labels, in which uig = 1 indicates that the i-th object
belongs to the g-th class.

4: i := 0
5: Randomly initialize Z and let cgj = 1

m for ∀ g and j.
6: repeat
7: Update Vi+1 by (14).
8: Update Zi+1 by (15).
9: Update Ci+1 by (16) and (17).
10: i := i+ 1
11: until (13) obtains its local minimum value

Apparently, problem (13) has the same solutions of V, Z
andC as problem (12). According to the work in [4], we know
the solutions ofV,Z andC to problem (13) as as follows. IfZ
and C are fixed, the optimal solution to V is

vjh = 1 if P(h) ≤ P(t) for 1 ≤ t ≤ L where
P(t) =

∑k
g=1

∑n
i=1 uigcgj(xij − zgt )

2

vjt = 0 for t 6= h

(14)

If V and C are fixed, the optimal solution of Z is

zgh =

∑n
i=1

∑m
j=1 uigvj,hcgjxij∑n

i=1
∑m

j=1 uigvj,hcgj
(15)

If Z and V are fixed, the optimal solution of C is

cgj =
exp{−Egj

η
}∑m

j′=1 exp{−
Egj′
η
}

(16)

where

Egj =
1
n

l∑
h=1

n∑
i=1

uigvjh (xij − zgt )2 (17)

We summarize the detailed algorithm to the objective
function (13) in Algorithm 1, which is denoted as Subspace
Feature Clustering (SFC). In this algorithm, V, Z and C are
alternately updated until convergence. Since in each step we
obtain the minima of problem (13), it is strictly decreasing
to local minima during the optimization process. Supposing
that the algorithm converges in r iterations, the computa-
tional complexity of SFC is O(rnmkl). Since the computa-
tional cost of SFC has linear relationship with the number of
the objects and size of dimension, which is the same with
k-means and BBAC, we can know that it can be efficient
to cluster large high-dimensional data. Since the SFC algo-
rithm is sensitive to the initial cluster centers, we can run
SFC multiple times with different initial cluster centers to
produce multiple feature clusters. Given each l and η, we run
SFC(X, l, η) with different initial cluster centers to produce a
co-clustering result set H, evaluate each co-clustering result

FIGURE 2. Plot of a typical synthetic dataset D1.

H ∈ H and select H∗ ∈ H as the best clustering result for
feature selection. To evaluate a co-clustering resultH, we use
the learned V∗, Z∗ and C∗ to predict a label for each object
xi ∈ X, by assigning xi to the class with minimal weighted
distance, i.e.,

label(xi) = argmin
g

 l∑
h=1

m∑
j=1

v∗jhc∗gj(xij − z
∗
gh)

2

 (18)

After that, different evaluation indices can be used to eval-
uate the classification result obtained from H by comparing
the predicted labels with the given class labels, including
NMI , accuracy, recall and so on. Usually, the number of
feature clusters l is given by user. In practice, we can also
select multiple l to produce multiple co-clustering results and
select the best co-clustering result. Finally, we select a best
co-clustering result H∗ for each parameter setting in which
l disjoint feature clusters {Q1, . . . ,Ql} are used for feature
ranking.

B. STRATIFIED WEIGHTING FEATURE RANKING
Since the learned weight matrix C in H∗ identifies contri-
bution of each feature to each class, a natural way is to
rank the features according to C. In the commonly-used least
square regression based feature selection method, a projec-
tion matrix W ∈ Rm×k is learnt and the importances of the
features can be estimated as {

∥∥w1
∥∥
2 , . . . , ‖w

m‖2} [4], [28].
Since the subspace weight matrix C in SFC is non-negative,
we can evaluate the importances of features according to
{‖c1‖1 , . . . , ‖cm‖1}.

To select r import features, if we just select r high-
rank features according to C, the selected feature may be
concentrated on a small number of feature clusters and they
are highly correlated with each other. To select features which
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FIGURE 3. The average entropies of C versus η from the results of
SFC on D1.

are both informative and diverse, we propose a stratified
weighting method for ranking features. In the new method,
we first sort features in each feature cluster in ascending
order order according to {‖c1‖1 , . . . , ‖cm‖1}. Assume the
index of the j-th feature in the corresponding feature cluster is
`j, we compute a stratified weighting feature ranking vector
θ ∈ Rm for m feature in which θj is defined as

θj =
∥∥cj∥∥1 λ`j (19)

where λ ∈ (0, 1] is the stratified weighting parameter which
is given by user. Here, λ`j is used to geometrically decrease
the weights in a feature cluster. If λ = 1, θj degenerate
to
∥∥cj∥∥1 which is the conventional ranking method without

stratification. If λ < 1, the features in a feature cluster
will be assigned to a set of geometrically decreased weights
such that the features with lower order will be deemphasized.
In such way, we can avoid selecting too many features from
a feature cluster. Therefore, we can select features which are
both informative and diverse according to θ .

C. THE FEATURE RANKING ALGORITHM
The detailed procedure of above method is summarized in
in Algorithm 2, which is denoted as Stratified Feature Rank-
ing (SFR). In the new method, we first use SFC to cluster m
features in X into l disjoint feature clusters. Finally, we rank
the m features with a stratified weighting feature ranking
method.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
ON FEATURE CLUSTERING
In this section, we conduct a series of experiments on the a
typical synthetic dataset to demonstrate the performance and
investigate the Stratified Feature Ranking (SFR)

Algorithm 2 Stratified Feature Ranking (SFR)
1: Input: the labeled dataset X, the number of feature

clusters l, the regularization parameter η, the strati-
fied weighting parameter λ and repeated number of
clustering rep.

2: Initialize an empty clustering result listH.
3: for j = 1 to rep do
4: Call SFC(X, l, η) with randomly initialized cluster

centers to produce a clustering results H.
5: Add H intoH.
6: end for
7: Validate each clustering resultH ∈ H, and selectH∗ ∈ R

which has the best clustering result.
8: Compute the `1-norm of C as {‖c1‖1 , . . . , ‖cm‖1} and

sort features in each feature cluster in ascending order
order according to these values.

9: Compute θ ∈ Rm×1 according to Eq. (19).
10: Sort θ in descending order, and select top r ranked

features as ultimate result.

FIGURE 4. The feature clustering results of SFC versus η on D1.

A. EXPERIMENT SETUP
We generated a dataset D1 which has 100 rows and
100 columns. We present it in figure 2, where higher values
mainly exist near diagonal blocks, and we plotted them in the
darker color while lower values were plotted in lighter color.
From figure 2 ,we can see D1 can be divided into 16 blocks.
The four co-clusters existed in the diagonal blocks, while
noise random exists in other blocks.

In the experiments, we used D1 to investigate the subspace
weights of the SFC algorithm. As it exist 4 co-clusters in
data, we set L = 4 and chose 20 real values {1.20E − 4, . . . ,
1.219E − 4} for η. Since final clustering results are affected
by initial clusters, we randomly generated 100 initial cluster
centers and produced results with respect to different initial
clusters. In the end, we totally got 2, 000 results to analyze
the impact of the parameters to final co-clustering result in
Stratified Feature Clustering.
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FIGURE 5. Weight matrix of the selected clustering result by SFC on D1.
(a) Weight matrix of C. (b) Weight matrix W.

TABLE 1. Characteristics of 5 gene expression data sets.

B. IMPACTS OF η ON C
We computed the average entropy of C for each clustering
result. The results were plotted in Figure 3. From figure 3,
we can see that the average entropy of C was affected by
η when η is small. It increased with η, and then decreased
immediately. After that, it increased rapidly as η increase.
When η is large, the object function was mainly affected
by entropy regularizer which force weights evener, so the
average entropy of C didn’t change too much in the end.

C. IMPACTS OF η ON FEATURE CLUSTERING RESULTS
We use the five common used evaluation indices to measure
the quality of all feature clustering results. Since cluster-
ing result was sensitive to initial clusters, we computed the
average value of each evaluation from 100 results, and
reported the average results in Figure 4
From Figure 4, we can see that when η is small, all evalu-

ation indices are low, then they increased rapidly. Next they

FIGURE 6. Average time costs of SFC on 20 synthetic datasets.
(a) Average time costs versus the number of objects. (b) Average time
costs versus the number of features.

TABLE 2. Characteristics of 7 image data sets.

slightly dropped. Finally, they didn’t change too much with
the increase of η. When η is small, the regularization is
slightly, the weights are mainly concentrated on a few vari-
ables. On the contrary, the weights are evenly distributed
when η is setting to a relatively big value. In both cases, SFC
finally often produced poor clustering results.
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FIGURE 7. The accuracies versus the number of selected features by 7 feature selection methods on 12 data sets. Here, ReF
represents Relief-F, Fir represents Fisher, SRB represents SVM-RFE-CBR. (a) Results on the BR3 data set. (b) Results on the ST
data set. (c) Results on the BT2 data set. (d) Results on the 11T data set. (e) Results on the 14T data set. (f) Results on the OR3
data set. (g) Results on the OR6 data set. (h) Results on the YA3 data set. (i) Results on the YA6 data set. (j) Results on the
YAB data set. (k) Results on the MSRA data set. (l) Results on the USPS data set.

TABLE 3. The average classification accuracies of 7 feature selection methods on 12 benchmark datasets (the best two results on each dataset are
highlighted in bold).

D. SUBSPACE WEIGHT
The NMI value for each of 2, 000 feature clustering results
was computed and the highest value is 0.885. For the

co-clustering result with the highest NMI value, the subspace
weight matrix C is drawn in Figure 5(a). Here we used a
weight matrix W ∈ Rn×m to indicate the relation between
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FIGURE 8. Average accuracies of SFR versus the number of feature
clusters l on 12 datasets.

features and object, where wij reflect the importance of the
j-th feature to the i-th object which is defined as

wij =
∑
g

∑
h

uigvjhcgj (20)

We plotted the weight matrices in Figure 5(b) where the
darker color corresponded to higher weight. From the two
figures, we can see that subspace structure of D1 can be well
revealed by the subspace weights of SFC , which helps us to
identify separated feature clusters.

E. SCALABILITY ANALYSIS
For analyzing the scalability of SFC to high-dimensional
data, we randomly generated 10 synthetic datasets, where
the number of objects were fixed to 1000. In this part of
experiment, we controlled the numbers of features ranging
from 200 to 12800 and generated different datasets. For
fairy comparison, we set regularization parameter to 0.01 in
all data. For each data, we randomly generated 100 initial
feature clusters and produced different clustering results.
The average time costs were plotted in Figure 6. From this
figure, we can see that the execution time of every algorithm
has a nearly linear relationship with the number of objects
and the size of dimension. Beside, the runtime of SFC were
comparable to that of BBAC-S which is BBAC with squared
Eculidean distance. Since latter has been verified to be scal-
able for handling high-dimensional data, we can know that
SFC can also scale well to high-dimensional data.

V. EXPERIMENTAL RESULTS AND ANALYSIS
ON FEATURE SELECTION
In this section, we present experimental results on 12 real-life
datasets to demonstrate the performance and investigate the
properties of the proposed SFR method.

A. BENCHMARK DATA SETS
In this part of experiments, 12 real-life data sets were used
to investigate the performance of our proposed method,

FIGURE 9. Average accuracies versus η on 9 datasets.

FIGURE 10. Average accuracies versus λ on 12 datasets.

including 5 gene expression data sets which were selected
from http://gems-system.org/ and 7 image data sets which
were downloaded from Feiping Nie’s page.1 We listed these
two types of datasets in Table 1 and 2 separately.

B. RESULTS AND ANALYSIS
We compared SFR with six supervised feature selec-
tion methods to validate the effectiveness, including
Relief-F [22], [25], RFS [28],MRMR [29], Fisher Score [31],
SVM-RFE-CBR [37],UGL [23]. We set parameters of all
methods in the same strategy to make the experiments fair
enough, i.e., 11 values varying from 10−5 to 105. We set
different thresholds of highly correlated feature pairs varying
from 0.6 to 0.9 in UGL and SVM-RFE-CBR. We remove
half of features in each iteration until 60 features are left in
SVM-RFE-CBR and remove each feature in the end. For each
data set, we selected a set of 10 numbers from 1 to 10 for l
and 10 numbers from 0.1 to 1 for lambda to run SFR. The
repeated number of clustering repwas set as 20 and NMI was
used as the evaluation index to evaluate a clustering result in
our experiments.

1http://www.escience.cn/system/file?fileId=82035
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FIGURE 11. Feature ranking results. (a) Original feature ranking result {‖c‖1 , · · · , ‖c‖m} on the OR6 dataset (l = 5, η = 1). (b) Variance of
percentages of selected features in feature clusters according to the feature weights in Figure 11(a). (c) Original feature ranking result
{‖c‖1 , · · · , ‖c‖m} on the 14T dataset (l = 5, η = 1). (d) Variance of percentages of selected features in feature clusters according to the feature
weights in Figure 11(c).

For each data set in Table 1 and 2, we ran seven super-
vised feature selection methods to select different num-
bers of features and performed 10-fold SVM on the data
with the selected features . The maximal accuracies ver-
sus the number of selected features of 7 methods on 12
datasets are reported in Figure 7, and their average accu-
racies are summarized in Table 3. Overall, our proposed
method SFR outperformed all other methods in accuracy on
8 of 12 datasets, especially on the BR3, BT2, 14T datasets.
To be specific, SFR has 7.5% improvement on the 14T
dataset, compared to the second best method Relief-F. From
Figure 7, we can see that SFR produced the best result with
only 20 features on the ST dataset, 100 features on the
BR3 dataset, 140 features on the 14T dataset, 60 features
on the YA3 dataset and 20 features on the YA6 dataset.
SFR also achieved good performance for the rest datasets in
average.

C. PARAMETER SENSITIVITY ANALYSIS
In this experiment, we investigate the effect of three parame-
ters l, η and λ on the performance of SFR.

We first study the effect of l on the performance of SFR.
The relationships between the average accuracies and l on 12
datasets are shown in Figure 8. From this figure, we can see
that the accuracies increased with the increase of l on most
datasets. On all datasets, the lowest accuracies are obtained
with only one feature cluster, which indicates that the intro-
duction of feature clustering into feature selection indeed help
to select better features for classification.

The relationships between the average accuracies and η
on 12 datasets are shown in Figure 9. From this figure,
we can see that the accuracies increased with the increase
of l on most datasets. We can see that the accuracies do
not change too much with the increase of η on the YA3,
YA6 and MSRA datasets, which indicates that only a small
number of features in these datasets are useful. The accuracies
are obtained with medium η on the OR3 and OR6 datasets,
which have a relative small number of features. On two
very high-dimensional datasets ST and BT2, the accuracies
increased with the increase of η.

The relationships between the accuracy and λ on
12 datasets are shown in Figure 10. From this figure, we can
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see that the accuracies were stable when 0 ≤ λ ≤ 0.9, which
indicates that the classification results are insensitive to λ.
We also notice that on all datasets, the lowest accuracies are
obtained when λ = 1. According to Eq. (19), we know that
the stratified weighting feature ranking with λ = 1 degen-
erates to the conventional ranking method. Therefore, these
results show that stratified feature ranking indeed improved
the feature selection.

In real applications, we can set the three parameters with
domain knowledge, or to attain better result by choosing the
combination of parameters in a means of grid search.

D. FEATURE RANKING
In this subsection, we selected two datasets, i.e., the OR6
and 14T datasets, to show how the stratified weighting fea-
ture rankingmethod improves the classification performance.
We set l = 5, η = 1 and λ = {0.1, 0.2, · · · , 1.0} to
run SFC on the two datasets and the original feature rank-
ing results {‖c‖1 , · · · , ‖c‖m} on the two datasets are shown
in Figure 11(a) and 11(c), in which features in a feature
cluster are sorted in descending order according to their
original feature ranking results. Then we conduct experiment
to check whether the proposed method can select diverse
features. Assume we have selected r important features,
we first compute the percentages of selected features in each
feature cluster and then the variances of the percentages are
reported in Figure 11(b) and 11(d). From the two figures,
we can see that as we selected more number of features,
the variances become smaller indicating that the numbers
of selected features from different feature clusters become
equal. We also notice that the variances with λ = 1 are much
bigger than those with λ < 1. Since the results with λ = 1 are
equal to those without stratified feature ranking, we know that
the proposed method indeed select more balanced number
of features from all feature clusters. Since the features in
different feature clusters are lowly correlated with each other,
we know that the proposedmethod indeed select more diverse
features than the original feature ranking method.

VI. CONCLUSIONS
This paper presents a Stratified Feature Ranking (SFR)
method for ranking features in high-dimensional data. In this
method, a subspace Feature Clustering (SFC) method was
presented to cluster features into a set of feature clusters,
and the features in different feature clusters were separately
ranked according to the subspace weights in SFC. To select
both informative and diverse features according to the sub-
space weights in SFC, we propose a stratified weighting
feature ranking method to rank features such that high rank
features come from as many feature clusters as possible. The
effectiveness and scalability of SFC for feature clustering was
verified by experiments on a set of synesthetic datasets. SFR
was compared with other six feature ranking methods on a set
of high dimensional datasets. The experimental results show
that SFR outperformed other six feature ranking methods
on most datasets. It is experimentally verified that the new

method can select features which are both informative and
diverse. Therefore, it is a new tool for high-dimensional data.

In the future work, we will introduce other techniques such
as ensemble learning to boost SFC. The use of SFR in real
applications is also our future work.
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