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ABSTRACT Speckle tracking based on block matching is the most common method for multi-dimensional
motion estimation in ultrasound elasticity imaging. Extension of 2-D methods to 3-D has been problematic
because of the large computational load of 3-D tracking, as well as performance issues related to the low
frame (volume) rates of 3-D images. To address both of these problems, we have developed an efficient
two-pass tracking method suited to cardiac elasticity imaging. PatchMatch, originally developed for image
editing, has been adapted for ultrasound to provide first-pass displacement estimates. Second-pass estimation
uses conventional block matching within a much smaller search region. 3-D displacements are then obtained
using correlation filtering previously shown to be effective against speckle decorrelation. Both simulated
and in vivo canine cardiac results demonstrate that the proposed two-pass method reduces computational
cost compared with conventional 3-D exhaustive search by a factor of 10. Moreover, it outperforms one-
pass tracking by a factor of about 3 in terms of root-mean-square error relative to available ground-truth
displacements.

INDEX TERMS 3-D speckle tracking, ultrasound imaging, ultrasound elasticity imaging, PatchMatch,
multi-pass tracking, strain imaging, speckle decorrelation, correlation filter.

I. INTRODUCTION
Medical ultrasound not only provides anatomical informa-
tion using B-mode (i.e., brightness mode), but also quanti-
tative tissue motion such as blood flow imaging (e.g., color
Doppler) [1], [2] and ultrasound elasticity (e.g., strain (rate)
imaging and shear wave imaging) [3]–[8]. Tissue motion
can be detected with a wide range of techniques developed
for image processing and computer vision [9]–[18]. How-
ever, the two most common exploit phase-sensitive image
formation: Doppler processing and speckle tracking [19].
Doppler-based methods are preferred for blood flow and 1-D
tissue motion estimation [20], [21] because of their simplicity
for real-time implementation [1], [2]. In contrast, speckle
tracking methods are extensively used in ultrasound elas-
ticity to characterize multi-dimensional motion [22]–[25].
Unlike Doppler, speckle tracking calculates all spatial com-
ponents of tissue displacements from the speckle similarity

between the original image frame and the frame after a
deformation is induced [26]–[29]. It is a specific form of
block matching, which can be realized with cross correla-
tion or sum of absolute differences (SAD) processing using
either envelope-detected signals (phase-insensitive tracking)
or complex signals (phase-sensitive tracking) [29]. Therefore,
speckle tracking is not subject to the angle dependency of
Doppler processing and enables quantification of local tissue
deformation [30]–[33].

Speckle tracking is particularly valuable in assessing
myocardial dysfunction such as infarction and
ischemia [34], [35]. Two-dimensional (2-D) tracking has
been used routinely for cardiac strain imaging [36]. How-
ever, deformation-induced displacement is inherently three
dimensional (3-D), requiring 3-Dmethods to estimate the full
displacement vector and derive associated components of the
strain tensor capturing changes in regional cardiac mechanics
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due to disease processes [37]–[45]. While extending conven-
tional 1-D/2-D speckle tracking to 3-D is straightforward,
processing massive, fully-sampled volumetric data is time
consuming, making it challenging for routine clinical use.

Computational reduction of 1-D and 2-D correlation-based
block matching was previously considered in [46]. Although
a variety of 3-D speckle tracking approaches have been
proposed [9]–[18], [37]–[45], computational load was not
considered for 3-D block matching [47]. Indeed, alternate
tracking methods with greatly reduced computations have
been proposed even though the spatial resolution of derived
displacement fields is generallymuch lower than that of block
matching approaches [14]. The basic arithmetic operations
used in block matching scale with the size of the block
and the size and density of the searched field [37]. Con-
sequently, arithmetic operations increase quadratically with
spatial dimension, limiting the clinical applicability of 3-D
block matching even given the continued growth in computa-
tional capabilities.

In addition, 3-D tracking performance is an issue
primarily because of the reduced frame (volume) rates com-
pared to conventional 2-D rates. This can induce significant
speckle decorrelation (i.e., speckles are dissimilar between
two frames used for tracking) due to low signal-to-noise ratio,
limited depth-of-field, motion gradients within the sample
volume, and tissue deformation [37], [48]. Speckle decor-
relation is the primary cause of displacement estimation
error [37], [49]. It increases the possibility of peak hopping
artifacts (i.e., false estimation) in which a secondary false cor-
relation peak is chosen as the highest correlation value, result-
ing in significant error in the displacement estimate [48], [50].

An effective approach to minimize these artifacts is short-
time (i.e., small kernel size) normalized cross-correlation
(NCC) followed by a correlation filter applied to adjacent
pixels [28], [51], [52]. The small kernel reduces most causes
of decorrelation, whereas the correlation filter spanning mul-
tiple kernels can suppress peak hopping at the slight expense
of spatial resolution [28]. This scheme works effectively for
small strain-induced speckle decorrelation [51]. However,
peak hopping artifacts are still present in low frame rate
3-D speckle tracking of cardiac images due to large inter-
frame displacements and strains [48].

Multi-pass methods splitting the search into an initial
coarse guess over a large search region followed by a high
resolution search over a limited region can help increase com-
putational efficiency and reduce peak hopping artifacts for
3-D tracking [37], [53]–[55]. The method presented in [54]
estimates the displacement at central scan lines on the first
pass, and then propagates outward to estimate displacements
in the lateral direction. It assumes spatially correlated motion
continuity, a reasonable notion for quasi-static applications
such as breast and thyroid elasticity imaging [54]. Applying
it to cardiac imaging is unclear, however, because local strain
variation is significant and this assumption may not hold.

Other methods [37], [55] use a large correlation ker-
nel and search region in the first pass for coarse-to-fine

two-pass tracking. Low-resolution displacement estimates
are first obtained and then used to guide a higher-resolution
search with a much smaller correlation kernel. Because no
assumptions are made about the motion pattern, it can be
applied to cardiac imaging but presumably some initial esti-
mates are required to guarantee good overall performance.

Recently, an algorithm based on randomized search called
PatchMatch was developed for image editing and computer
vision to speed up finding correspondence between two dif-
ferent images or videos [56], [57]. It has also been applied
to medical imaging [58]–[60]. Based on ultrasound simu-
lation data, PatchMatch performance is comparable to that
of an extensive search [60], though more clinical data are
required to further test feasibility. Beyond reducing compu-
tational load, PatchMatch implicitly imposes smoothness of
displacement estimates in adjacent voxels (as explained in
Section II-D), which reduces peak hopping artifacts [60].
Hence, incorporating PatchMatch into multi-pass tracking
has the potential to improve coarse-to-fine tracking where
reliable initial displacement estimation is crucial.

The purpose of this paper is to directly address the primary
challenges limiting routine clinical application of 3-D speckle
tracking: computational load and peak hopping artifacts asso-
ciated with large interframe displacements. We propose effi-
cient two-pass tracking, where in the first pass PatchMatch
is employed for initial displacement estimates. The second
pass uses conventional block matching with smaller search
regions, followed by 3-D correlation filtering applied to
NCCs at adjacent voxels.

This paper is organized as follows. Our specific two-pass
tracking approach is presented in Section II. Simulation and
in vivo canine cardiac data are also described. In Section III,
displacement estimation results and error analyses are pro-
vided. We conclude with a discussion of computational
efficiency in Section IV.

II. METHODS
A. SIMULATED CARDIAC DATA
To quantify the performance of different displacement esti-
mation approaches, simulated 4-D cardiac data developed
in [61] are used with available ground-truth motion vectors.
A detailed description of this simulation model can be found
in [47]. In brief, synthetic cardiac data are based on a spe-
cific electro/mechanical (E/M) model of the heart [62] that
drives the positions of a collection of ultrasound scatterers
input to the COLE ultrasound simulator [63]. By varying
several parameters of the E/M model, different pathophys-
iological conditions were simulated to produce a loop of
3-D ultrasound images over one heart cycle. In this study,
dyssynchronous heart disease due to left bundle branch block
(LBBB), characterized by a progressively longer delay in
the activation of the septum and lateral wall, is used as a
representative example to verify the proposed method.

Figure 1a shows the simulated model of the left ventricle
with LBBB where 2250 mesh nodes (30 longitudinal points,
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FIGURE 1. Simulated cardiac ultrasound imaging with LBBB (left branch
bundle block) disease obtained from [61]. (a) The simulation uses
2250 nodes (30 longitudinal points, 25 circumferential points, and
3 radial points) distributed within the whole myocardium of the left
ventricle. Note that the images are displayed in spherical coordinates.
(b) Volumetric image is shown using 3-D projections. The frame rate is
34 Hz where 40 frames are simulated over one heart cycle. In this study,
3-D displacement estimates are obtained for the short-axis image (i.e.,
the lateral-elevational image plane).

25 circumferential points, and 3 radial points) are distributed
within the myocardium. These images are displayed in spher-
ical coordinates. Figure 1b shows the simulated ultrasound
array with a center frequency of 3.3 MHz and a −6 dB
fractional bandwidth of 65% was assumed. The volumetric
image contained 107 and 80 beams in lateral and elevational
directions, respectively, spanning an angle of 76◦ in both
directions. Therefore, the beam interval in lateral and eleva-
tional directions was 0.72◦ and 0.96◦, respectively. For each
beam, radio frequency (RF) signals were sampled at a rate
of 50 MHz yielding 13,637 samples in the axial direction.
To reduce the number of samples while satisfying the Nyquist
sampling criterion, RF data were further downsampled to a
13.2 MHz rate. The resulting signals were then demodulated
to baseband prior to speckle tracking.

A total of 40 frames was simulated within a complete
heart cycle at a frame/volume rate of 34 Hz. In this study,
3-D displacement estimates were evaluated for the cardiac
short-axis (i.e., the lateral-elevational image plane indicated
in Fig. 1a). Due to limited mesh nodes in the original model,
ground-truth displacements in this image plane were obtained
by dense linear interpolation between nodes. It should be
noted that all displacement results reported here are inter-
frame displacements. Therefore, spatial derivatives of these
results represent strain rate imaging in Eulerian format rather
than strain imaging in Lagrangian format [22].

B. IN VIVO CANINE CARDIAC DATA
A well-defined animal protocol was also used to test the
performance of different displacement estimation approaches
[45], [64]. Myocardial infarction was induced in a male
mongrel canine by percutaneous balloon angioplasty occlu-
sion of the left anterior descending coronary artery for six
hours. At six weeks post-MI, the canine was anesthetized
and an open-chest 4DE imaging study of the left ventricle
was performed. Both RF and B-mode data were acquired
using a Philips iE33 ultrasound machine (Philips Medical

Systems, Andover, MA, USA) with a matrix X7-2 phased
array operating at a center frequency of 3.8 MHz.

The volumetric image was acquired using ECG gating,
where the whole image was reconstructed from seven cardiac
cycles. The frame (volume) rate was 51 Hz. The volumetric
image contained 62 and 56 beams covering 91.5◦ and 82.5◦

in lateral and elevational directions, respectively. Each beam
contained 2360 samples in the axial direction at a sampling
rate of 16 MHz. After euthanasia, postmortem tissue visual-
ization of LV cross-sections was performed to confirm the
extent of myocardial infarction. The study was performed
with approval of the Institutional Animal Care and Use Com-
mittee at the Yale University School of Medicine. Studies
were performed in compliance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals
(1996) [45].

C. 3-D SPECKLE TRACKING
The basic block matching algorithm used here computes
the phase-sensitive normalized cross correlation between
two volumetric frames (volumes) [28], [37]. Define(x, y, z)as
the coordinates in lateral, elevational, and axial directions,
respectively, as integer multiples of the spatial sampling inter-
val in these directions. For each voxel (x, y, z) in the first
volumetric frame, a baseband-demodulated kernel u(x, y, z)
centered at that voxel with a size of (K+1, L+1, M+1) points
in three dimensions is defined. This kernel is then compared
to equivalent ones v(x, y, z) in the second frame using the 3-D
normalized cross-correlation coefficient (NCC) ρ′xyz, as given
by (1) (See the bottom of the next page) [37], where (lx, ly, lz)
denotes the lag (i.e., the voxel displacement between two
frames) in the search region; ∗ represents complex conjuga-
tion; |•| represents the absolute value.Wijh is a 3-D weighting
function with unity gain. A Hamming window was used in
this paper.

Typically, the size of u(x, y, z) equals one speckle spot
to minimize decorrelation induced by significant local
strains [28]. The 3-D displacement at voxel (x, y, z) is esti-
mated from the position of the maximum NCC in lag space.
This computation is not restricted to integer displacements
and sub-voxel accuracy is typically obtained with proper
estimation of the peak position.

Prior to displacement estimation, a 3-D correlation filter
is applied over a group of neighboring NCCs centered at
the NCC corresponding to the voxel under investigation. The
filtered NCC ρxyz is then expressed as [37]

ρxyz(lx, ly, lz)

=

Sx/2∑
i=−Sx/2

Sy/2∑
j=−Sy/2

Sz/2∑
h=−Sz/2

Fijhρ′x+i,y+j,z+h(lx, ly, lz), (2)

where Fijh is the 3-D correlation filter with a size of
(Sx+1, Sy+1, Sz+1) in three dimensions. Here, a Hanning
window was used. Note that the correlation filter is applied
to the spatial extent of the image region rather than the lag
direction [37]. As mentioned in Section I, correlation filtering
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FIGURE 2. Schematic flow chart of PatchMatch for displacement
estimation. Taking a kernel (indicated as a blue cube) in the reference
image as an example, (a) six closest neighbors surrounding this kernel
(only three are displayed) are indicated with different colors. (b) The
positions of the kernel and its neighbors in the target image are randomly
assigned. The similarity between individual pairs in the reference and
target images (i.e., identical color cubes) is measured. (c) The kernel
propagates to the neighborhood having the maximum similarity. (d) Other
random positions are chosen to avoid a local maximum. (e) Determine
the final position by comparing the similarity of all candidates in (d).
(f) Iteration is performed between (c)-(e) to find the positions of all
kernels.

can effectively reduce tracking errors for small deformations
at the slight expense of spatial resolution [28], [51].

D. APPLYING PATCHMATCH TO SPECKLE TRACKING
Originally, PatchMatch was developed for computer
vision [56]. For each kernel (called patch) in the original
image, the algorithm searches for its nearest neighbor (i.e.,
the most similar kernel) in the target image. Dissimilarity is
typically based on a generalized distance metric including
terms such as the sum of squared differences between pixel
values in different patches. The most similar kernel mini-
mizes the general distance metric for all kernels tested [56].
The resulting nearest neighbor field (NNF) contains the map
indicating each pixel index corresponding to its nearest neigh-
bor. Then, image editing can be done based on NNF [56].
Figure 2 shows how PatchMatch is applied to ultrasound
speckle tracking [60].

There are three major steps in PatchMatch: initialization,
propagation, and random search [56]. Take a kernel (indicated
as a blue cube) in the reference volumetric image as an
example. It and its six spatially closest neighbors (indicated
with different colors, Fig. 2a) are assigned to the uniformly-
distributed random positions in the target volumetric image
(Fig. 2b). In practice, such random assignment is confined to
a pre-defined search region according to a priori knowledge
of the maximum tissue motion. The similarity between the
individual pair in the reference and target images is measured
using an NCC approach (defined in (1)). By comparing the
NCC values of all seven neighbors, the kernel propagates to
the neighbor with the maximum NCC value (Fig. 2c).

To avoid falling into a local maximum, additional search is
performed by randomly selecting other positions (Fig. 2d),
confined to a pre-defined search region. In this study, six
random positions are empirically determined. Last, the final
position in the target image is determined by calculating the
maximum NCC among all seven positions (Fig. 2e).

By iterating between propagation and random search,
the final positions for all kernels converges efficiently
(Fig. 2f). In practice, iteration is performed in windshield-
wiper order, i.e., from left/top/front to right/down/end and
then scanned backward. Thus, two iterations complete one
scan cycle. Accordingly, 3-D displacements between two
volumetric images are estimated, which serve as first-pass
estimates in two-pass tracking. The required number of iter-
ations will be evaluated in Section III-A.

To show how PatchMatch works in ultrasound imaging,
Fig. 3 presents displacement estimates for the simulated
cardiac data mentioned in Section II-A at end-systole (ES),
i.e., at the end of heart contraction. Simulated cardiac defor-
mations at this point are expected to be the largest over the
cardiac cycle. A kernel size of 5× 17× 5 (lateral × axial ×
elevational) was used. Figure 3a shows initial displacements,
where the random position is assigned for each individual
kernel. The three displacement components (lateral-upper
left, elevational-upper right, and axial-lower left) components
of displacement along with the maximum NCC map (lower
right) are displayed in the four panels. Lateral and verti-
cal axes represent the elevational and lateral directions in
degrees, respectively. Axial displacements are in units of mm
whereas lateral and elevational ones are in degrees.

After two iterations, as shown in Fig. 3b, displacement
estimates converge. Note that since the lateral and eleva-
tional displacements are much smaller than the axial one,
displacements less than one voxel size become zero inside
the myocardium. Applying four iterations further improves
the results until final convergence (Fig. 3c).

For comparison, the result of conventional one-pass track-
ing with the same kernel size is shown in Fig. 3d. After four
iterations PatchMatch produces displacement results very
similar to those from the exhaustive search. Peak hopping
reduction by PatchMatch can be observed at 5 and 8 o’clock
in the myocardium where smoother estimates are obtained
even though the corresponding maximum NCCs are smaller
than those of one-pass tracking (comparing the lower right
panels in Figs. 3c and 3d). However, both methods fail to

ρ′xyz(lx, ly, lz)

=

K/2∑
i=−K/2

L/2∑
j=−L/2

M/2∑
h=−M/2

Wijhu(x + i, y+ j, z+ h)v∗(x + lx + i, y+ ly+ j, z+ lz+ h)√
K/2∑

i=−K/2

L/2∑
j=−L/2

M/2∑
h=−M/2

Wijh |u(x + i, y+ j, z+ h)|2
√

K/2∑
i=−K/2

L/2∑
j=−L/2

M/2∑
h=−M/2

Wijh |v(x + lx + i, y+ ly+ j, z+ lz+ h)|2
,

(1)
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FIGURE 3. Displacement estimate at end-systole (ES) using PatchMatch. For each panel, lateral (upper left), elevational (upper right), and axial
(lower left) components are displayed along with the NCC (lower right): (a) first random assignment, (b) 2 iterations, and (c) 4 iterations. For
comparison, the results of conventional speckle tracking (referred to as one-pass tracking) (d) are also shown. Lateral and vertical axes represent
the elevational and lateral directions in degrees, respectively. Axial displacements are in units of mm whereas lateral and elevational ones are in
degrees.

find good estimates where there is significant strain, such
as at 4 o’clock. As demonstrated in the next section, these
results can be improved using correlation filtering in two-pass
tracking.

E. PROPOSED TWO-PASS SPECKLE TRACKING
As shown in Fig. 3, PatchMatch can efficiently obtain dis-
placement estimates within a few iterations. However, for
large deformations, these estimates must be improved. There-
fore, we propose the two-pass scheme illustrated in Fig. 4.

PatchMatch is used on the first-pass with a kernel size
slightly larger than a speckle spot (less than two speckle

spots – see Table 1). One speckle spot was determined based
on the full-width at half maximum (FWHM) of the auto-
correlation function of the baseband volumetric image [48].
Using a slightly larger kernel is a tradeoff between ensemble
averaging and speckle decorrelation because no correlation
filtering is applied at this stage. To remove inconsistent esti-
mates, resulting estimates are further processed by filtering,
such as a median filter.

In the second pass, a smaller kernel (around one speckle
spot – see Table 1) is then used to perform the full search
within a smaller search region. Prior to applying 3-D cor-
relation filtering, alignment between all relevant NCCs is
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FIGURE 4. (a) Block diagram of the proposed 3-D two-pass speckle
tracking method, where NCC stands for normalized cross-correlation
coefficient. (b) Illustration of NCC alignment and correlation filtering. For
simplicity, 3-D block matching is represented as the lag space (i.e., (lx, ly,
lz)) and the spatial space (i.e., (x, y, z)). After second-pass search, each
NCC has its extent in lag space (indicated as boxes) and is then shifted to
its PatchMatch estimate. Correlation filtering is performed by multiplying
different weightings on all relevant NCCs (The same color represents
applying the same weighting), and summing them in spatial space. The
resulting filtered NCC is indicated in the lower left of the figure.

TABLE 1. Tracking parameters associated with one-pass and two-pass
tracking used in the simulation and experiment.

needed, as illustrated in Fig. 4b. This is because the zero
lag (i.e., (lx, ly, lz) = (0, 0, 0) in (2)) for each NCC varies
with the estimate of PatchMatch. Hence, to ensure all NCCs
have the same zero-lag reference, every NCC is shifted to
its PatchMatch estimate in lag space. Correlation filtering
is then performed by applying different weightings on the
aligned NCCs (indicated in different colors in Fig. 4b), and
then summing all NCCs in the spatial extent.

After correlation filtering, subpixel interpolation using
second-order polynomial fitting on 27 closest neighbors is
then applied to the magnitude of the filtered NCC. Once
the peak of the interpolated NCC is determined, the corre-
sponding lag provides finer resolution estimates in lateral and
elevational directions [37].

The axial displacement component is estimated using the
phase zero crossing technique. It exploits the fact that the
phase of the analytic representation of the NCC is precisely
zero at the peak location along the axial direction [28]. Its
main advantage is that the axial displacement can be accu-
rately estimated without having to densely interpolate the
NCC in the axial direction to find the peak position [28].
For this purpose, the baseband NCC is first modulated to
form the analytic signal. The phase zero crossing is then
estimated by least-squares linear fitting of the phases at the
lags surrounding the NCC peak [28]. Finally, a median filter
is again used to remove inconsistent estimates.

III. RESULTS
Both simulation and in vivo canine cardiac data sets were
evaluated to demonstrate the performance of the two-pass
tracking approach presented in Fig. 4. Table 1 lists tracking
parameters associated with one-pass and two-pass tracking
used in the simulation and experiment. Note that due to
oversampling in the axial direction (i.e., 4 times the center fre-
quency), the correlation filter was applied every 4 voxels axi-
ally. By doing so, compared to our previous results [37], [48],
arithmetic operations are reduced by a factor of 4 while
keeping filtered results acceptable.

In the simulation, both tracking methods measured the
short-axis cardiac image in the lateral-elevational image
plane using a 5 × 5 (lateral × elevational) 2-D median fil-
ter for post-processing. In contrast, experimental measure-
ments were conducted in the axial-lateral image plane using
a 20 × 5 (axial × lateral) median filter. No thresholding
(e.g., NCC-based) and regularization were used to produce
final displacement estimates.

To quantify the displacement error between estimates and
ground truth results, both bias and root-mean-square error
(RMSE) were measured according to

Bias =
1
N

N∑
i=1

(x ′i − xi), (3)

and

RMSE =

√√√√ 1
N

N∑
i=1

(x ′i − xi)
2, (4)

where N is the number of points inside the myocardium,
and xi and x ′i are the true and estimated i-th displacement
components for these N points, respectively.

A. SIMULATED CARDIAC DATA
1) STATISTICAL EVALUATION OF TWO-PASS TRACKING
The robustness of PatchMatch’s random initialization for
ultrasound imaging and the number of iterations required for
stable results was first investigated.

With sixty independent realizations (i.e., different random
assignment for the initial displacement), Fig. 5 shows the
RMSE of the three displacement components (expressed as
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FIGURE 5. Root mean square error (RMSE) of displacements using
two-pass tracking as a function of iteration with 60 independent
realizations. The error bar spans two times the standard deviation.
(a) RMSE in the early systolic period (approximately 88 ms from
end-diastole (ED)). (b) RMSE at end-systole (ES). Lateral (left), elevational
(middle), and axial (right) displacement estimates are shown in each
figure. Dashed lines show the RMSE of one-pass tracking. For the results
presented here, both approaches do not use correlation and median
filtering.

mean ± standard deviation) as a function of iteration esti-
mated with two-pass tracking in the early systolic period
(Fig. 5a, approximately 88 ms from end-diastole (ED)) and
at ES (Fig. 5b). The former represents the point where aver-
age interframe deformations are not significant compared to
peak deformations at ES. To solely identify the effects of
random initialization on estimation errors, both 3-D corre-
lation filtering and the second median filter in Fig. 4 are

not included. In comparison, the dashed line indicates the
RMSE of conventional one-pass tracking. Clearly, two-pass
tracking is insensitive to the random initialization of Patch-
Match. Moreover, errors are even smaller than those of one-
pass tracking without correlation filtering.

Figure 5 also demonstrates that two-pass tracking can
rapidly converge after two iterations (i.e., one complete
scan cycle). Moreover, errors do not strictly decrease with
the number of iterations, where residual errors are hardly
improved due to speckle decorrelation. However, they are still
smaller than those of one-pass tracking. This suggests Patch-
Match is an efficient and reliable first-pass displacement esti-
mator. In the following evaluations, we chose four iterations
as a compromise between convergence and computational
load.

2) DISPLACEMENT ESTIMATION EVALUATION
Figure 6 shows displacement estimates from simulated car-
diac images at 88 ms after ED. Ground truth displacements
(first column) are compared with those using one-pass track-
ing (second column) and two-pass tracking (third column).
All three components, axial (first row), lateral (middle row),
and elevational (bottom row), are shown. Errors in one-pass
tracking (fourth column) and two-pass tracking (fifth column)
with respect to ground truth are also shown. The axes and
units are identical to those in Fig. 3. Clearly, larger errors are
present in one-pass tracking than two-pass tracking at 7 and
8 o’clock. They are mainly caused by significant cardiac
deformations (i.e., spatial gradients of the displacements)
in these regions. Two-pass tracking can effectively reduce
estimation error and outperform one-pass tracking for this
case.

The effectiveness of two-pass tracking is further demon-
strated in Fig. 7, where the simulated myocardial deforma-
tion at ES is the largest. All image formats are identical
to those in Fig. 6. Specifically, the deformations at 4 and
5 o’clock are more significant than those in Fig. 6 where one-
pass tracking exhibits larger errors. Two-pass tracking can
still obtain displacements close to ground truth. Moreover,
comparing Fig. 3 with Fig. 7 where both are evaluated at
ES, correlation filtering is clearly effective in reducing peak
hopping artifacts. Axial estimation after PatchMatch (Fig. 3c)
is improved by the correlation filter. Additionally, lateral and
elevational displacement components are improved as well
not only by subpixel interpolation, but also by correlation
filtering.

Using the same format, we have included a supplemen-
tary file presenting two videos of interframe displacement
estimates and errors over a complete heart cycle. Results
for ground truth (left column), one-pass tracking (mid-
dle), and two-pass tracking (right) are compared. Here,
the display frame rate is reduced to 1 Hz for easy side-
by-side comparison. The videos will be available at http://
ieeexplore.ieee.org.

A quantitative comparison between one-pass (blue line)
and two-pass (red line) tracking over a complete heart cycle
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FIGURE 6. Displacement estimation of simulated cardiac data in early systolic period (approximately 88 ms from ED). (a) Ground truth
displacements (first column) are compared with one-pass tracking (second column) and two-pass tracking (third column) estimates. The axial
(first row), lateral (middle), and elevational (last) components are shown. (b) Errors in one-pass tracking (fourth column) and two-pass tracking
(fifth column) with respect to ground truth. All images are shown with horizontal and vertical axis representing elevational and lateral directions
(in degrees), respectively. Axial displacements are in units of mm whereas lateral and elevational ones are in degrees.

FIGURE 7. Displacement estimation of simulated cardiac data at ES. All image formats are identical to those in FIGURE 6. Due to the significant
strain present in the lower right myocardial region, one-pass tracking is subject to larger estimation errors than two-pass tracking.

is shown in Fig. 8. To understand the individual contributions
of PatchMatch and correlation filtering in reducing peak hop-
ping artifacts, the results of PatchMatch are also compared
(green line), where the first median filter, the second pass
search, and correlation filtering (as shown in Fig. 4) were
bypassed. Therefore, the results shown here can be regarded
as one-pass tracking with PatchMatch.

The bias (top row) and RMSE (bottom row) of lateral
(first column), elevational (second column), and axial (third
column) estimates are presented as a function of frame
index. Clearly, two-pass tracking consistently outperforms
one-pass tracking for all displacement components in all
frames. One-pass tracking has significant bias and RMSE

from the first to the eleventh frame index (representing
the period between ED and ES) where the heart exhibits
larger deformation than other periods. Errors are maximal
around ES.

Also, this figure clearly shows that the performance of
PatchMatch tracking alone is comparable to that of one-pass
tracking, consistent with the results reported in [60]. How-
ever, applying the second-pass search with correlation filter-
ing significantly reduces the errors of all three components,
as is evident by comparing green lines with red ones. Quan-
titatively, the maximum RMSE of the axial component in
two-pass tracking is 0.27 mm compared to 0.47 mm for one-
pass tracking, which is close to one ultrasound wavelength
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FIGURE 8. Comparison of displacement errors over a heart cycle using simulated cardiac data between one-pass tracking (blue line), two-pass
tracking (red line), and PatchMatch (green line). Here, the results of PatchMatch are obtained by bypassing the first median filter, the second-pass
search and correlation filtering indicated in Fig. 4. The bias (top row) and RMSE (bottom row) of lateral (first column), elevational (second column),
and axial (third column) estimates are presented as a function of frame index. Axial displacements are in units of mm whereas lateral and
elevational ones are in degrees.

(i.e., 0.23 mm). On the other hand, the maximum RMSE of
lateral and elevational components are improved from 0.46◦

and 0.57◦ to 0.21◦ and 0.24◦, respectively. Note that an angle
of 1◦ in the lateral and elevation direction is a displacement
of 1.3 mm and 1.7 mm at a depth of 10.33 cm (indicated
in Fig. 1), respectively.

It should also be noted that lateral and elevational dis-
placement errors are larger than axial ones because of the
characteristics of the ultrasound beam pattern [37]. In gen-
eral, the beamwidth in the lateral and elevational directions
is larger than the pulse width in the axial direction [37].
Moreover, axial RF signals provide even finer sensitiv-
ity by estimating displacement using signal phase [37].
Overall, by averaging the ratio of RMSE between one-
pass and two-pass tracking over all frames, improvements
by a factor of 1.7, 1.8, and 3 for lateral, elevational, and
axial displacement components are clearly demonstrated,
respectively.

B. IN VIVO CANINE CARDIAC RESULTS
In vivo demonstration of two-pass tracking at ED ((a)) and
ES ((b)) is shown in Fig. 9, where results of one-pass track-
ing (first and third columns) are compared with the results
from two-pass tracking (second and fourth columns). The
axial (top row), lateral (middle), and elevational (bottom)

TABLE 2. Comparison of processing time between one-pass and
two-pass tracking. Individual processing times including PatchMatch,
block search, correlation filtering, and others (subpixel interpolation and
phase zero crossing), are expressed in percentage relative to total
processing time of one-pass tracking. Measurements were performed
with two heart periods at ED + 88 MS (top, black) and ES (bottom, green).

components are shown with horizontal and vertical axis rep-
resenting lateral and axial directions, respectively.

Even though ground-truth displacements are not available,
it is evident that two-pass tracking provides more consistent
estimates than those from one-pass tracking. Extensive peak
hopping artifacts can be observed at 4, 6, 7, 8, and 12 o’clock
for ED and at 3 to 9 o’clock for ES. Two-pass tracking
improves all three displacement components. A video is also
included in the supplementary file presenting interframe dis-
placement estimates over a complete heart cycle (This will
be available at http://ieeexplore.ieee.org). Clearly, two-pass
displacement estimates are generally more consistent than
one-pass results.
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FIGURE 9. Comparison of displacement estimates using canine data between one-pass tracking (first column in each figure) and two-pass tracking
(second column) at (a) ED and (b) ES. The axial (top row), lateral (middle row), and elevational (bottom row) components are shown. All images
have horizontal and vertical axis representing lateral (in degrees) and axial (in mm) directions, respectively. Axial displacements are in units of mm
whereas lateral and elevational ones are in degrees.

TABLE 3. Comparison of number of arithmetic operations (AO) per voxel
between one-pass and two-pass tracking associated with PatchMatch,
block search, and correlation filtering. Arithmetic operations of individual
processing are expressed in percentage relative to total arithmetic
operations of one-pass tracking.

IV. DISCUSSION AND CONCLUSION
The performance of both one-pass and two-pass tracking
methods were tested in MATLAB on a Linux computer with
a 2.6-GHz CPU and 252.4-GB RAM. The relative compu-
tational times of different processing components, including
PatchMatch, block search (representing either full search
for one-pass tracking or second-pass search for two-pass
tracking), correlation filter, subpixel interpolation, and phase
zero crossing (the last two are indicated as ‘‘others’’) are
summarized in Table 2. The individual processing times are
expressed in percentage normalized to the total processing

time of one-pass tracking. In addition, the computational load
of both tracking methods is evaluated in terms of arithmetic
operations, as detailed in Appendix A and summarized in
Table 3.

Several observations can bemade in comparing Table 2with
Table 3. First, when only search processing (i.e., Patch-
Match + block search) is considered, two-pass tracking
can improve the processing time by a factor of 15 to 16,
in good agreement with a 15-fold reduction in arithmetic
operations (presented in Appendix A). Second, two-pass
tracking improves not only the search time but the processing
time for correlation filtering.

As shown in Table 3, the number of arithmetic operations
for correlation filtering is reduced from 20.2% to 0.7% due
to the smaller search region. The practical improvement in
processing time is, however, only a factor of 4 (see Table 2)
because two-pass tracking involves NCC alignment before
correlation filtering, which is image dependent and increases
arithmetic operations not considered in Table 3. Nonetheless,
a 4-fold improvement in the processing time of correlation
filtering is still significant.

Third, the computational time of ‘‘other’’ processing,
as defined above, is doubled with two-pass tracking. This
is mainly due to the increased processing time of subpixel
interpolation. As mentioned in Section II-D, subpixel inter-
polation is based on 3-D second-order polynomial fitting
on 27 closest neighbors. In one-pass tracking, however, the
possibility of detecting outlier peaks caused by either lim-
ited search regions or peak hopping artifacts is much higher

17424 VOLUME 6, 2018



G.-S. Jeng et al.: Efficient Two-Pass 3-D Speckle Tracking for Ultrasound Imaging

than that in two-pass tracking. Consequently, interpolation
used 2-D fitting with 9 neighbors and the processing time is
reduced. In any event, the measured total computational load
with two-pass tracking is 10 times less than that with one-pass
tracking. Computations associated with NCC calculations are
greatly reduced and comparable to those of correlation fil-
tering. Hence, correlation filtering becomes the time limiting
step rather than block matching.

Both simulation and animal results in the heart have
demonstrated that the proposed two-pass tracking outper-
forms traditional one-pass, exhaustive-search 3-D speckle
tracking in terms of bias and RMSE. As shown in Fig. 5, even
with random initialization, PatchMatch is statistically robust
and can improve displacement estimation over exhaustive
search without correlation filtering. It should be noted that
the results of PatchMatch do not necessarily correspond to the
maximum NCC, as is evident in Fig. 3. The propagation step
in PatchMatch aligns the motion of adjacent kernels when
the underlying kernel cannot find the best match. This step
can reduce peak hopping artifacts in the presence of speckle
decorrelation.

Further reduction of peak hopping artifacts using corre-
lation filtering has also been demonstrated in Fig. 8. While
PatchMatch alone is comparable to one-way tracking with
correlation filtering, applying correlation filtering in two-
pass tracking can greatly improve estimation. Note that with-
out correlation filtering, block matching in the second pass
is inefficient to suppress peak hopping artifacts. Therefore,
the main purpose of second-pass block matching is to gener-
ate all NCCs required for filtering. Peak hopping suppression
is then realized by correlation filtering.

When myocardial deformations are significant, such as at
4 o’clock in Fig. 7, displacement estimates from two pass
tracking still must be improved. Since strain rate imaging
is based on spatial derivatives of interframe displacements,
small displacement errors can lead to large strain misesti-
mates. Our previous work has shown that correlation filtering
performs poorly for high strain regions, or regions of high
rotational motion, where the true peaks of the NCCs along
the axial direction are not aligned at constant lag [48], [50].
Such misalignment may cause phase cancellation between
NCCs when applying a constant-lag correlation filter, thus
increasing peak hopping artifacts.

Since misalignment is simply related to spatial gradients in
the axial displacement, a ‘‘tilt’’ filter following the true peaks
can potentially reduce phase cancellation between NCCs
within the spatial extent of the correlation filter [48]. We pre-
viously proposed an efficient approach using phase rotation
to ensure phase alignment at constant lag prior to correlation
filtering [48]. The resulting filtered NCC is greatly improved
and produces more accurate displacement estimates provided
that the axial displacement gradient is known in advance.
Using iteration of the initial gradient guess, this algorithm
is effective in 2-D motion estimation associated with quasi-
static elasticity [48]. In future work, we will show how tilt
filtering can be extended to 3-D cardiac imaging using an

iteration-free approach to further reduce displacement errors
over the methods presented here. Moreover, studies using
data from the human heart are required to demonstrate clini-
cally feasibility.

In summary, we have presented an efficient two-pass
speckle tracking approach that can improve both computa-
tional load and displacement estimation compared to tra-
ditional one-pass speckle tracking with exhaustive search.
Simulation and in vivo canine results have demonstrated that
PatchMatch can efficiently obtain consistent estimates in the
first pass. The performance is further improved in the sec-
ond pass with correlation filtering, producing displacement
estimates with a factor of three lower errors. In addition,
overall computational load is reduced by a factor of 10 for
the parameters used in this study.

With the availability of 2-D transducer arrays and real-time
3-D imaging, there are many potential applications of 3-D
motion estimation for clinical problems [65]. In addition to
cardiac imaging, it is expected that the 3-D speckle tracking
method presented here can also be used for quasi-static elas-
ticity and vector blood flow velocity studies.

APPENDIX A
The reduced computational load of two-pass tracking can
be evaluated in terms of arithmetic operations, where sum-
mation, subtraction, multiplication, division, and square root
operations involved in PatchMatch, block search (represent-
ing either full search for one-pass tracking or second-pass
search for two-pass tracking), and correlation filtering are
considered. Table 3 compares the number of arithmetic oper-
ations per voxel between one-pass and two-pass tracking. Just
as in Table 1, they are expressed in percentage relative to the
total arithmetic operations of one-pass tracking.
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