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ABSTRACT Industrial IoT networks deploy heterogeneous IoT devices to meet a wide range of user
requirements. These devices are usually pooled from private or public IoT cloud providers. A significant
number of IoT cloud providers integrate smartphones to overcome the latency of IoT devices and low
computational power problems. However, the integration of mobile devices with industrial IoT networks
exposes the IoT devices to significant malware threats. Mobile malware is the highest threat to the security of
IoT data, user’s personal information, identity, and corporate/financial information. This paper analyzes the
efforts regardingmalware threats aimed at the devices deployed in industrial mobile-IoT networks and related
detection techniques. We considered static, dynamic, and hybrid detection analysis. In this performance
analysis, we compared static, dynamic, and hybrid analyses on the basis of data set, feature extraction
techniques, feature selection techniques, detection methods, and the accuracy achieved by these methods.
Therefore, we identify suspicious API calls, system calls, and the permissions that are extracted and selected
as features to detect mobile malware. This will assist application developers in the safe use of APIs when
developing applications for industrial IoT networks.

INDEX TERMS Industrial mobile IoT, threats, malware, detection method, machine learning.

I. INTRODUCTION
In the smart industry arena, smartphones are extensively inte-
grated with industrial Internet of Things (IoT) networks. IoT
cloud providers are integrating cooperative mobile devices
to reduce the transmission latency with remote data centers,
and to increase the computation and storage capabilities of
IoT networks, resulting in significant reduction in service
execution time.

Despite the sensitivity of mobile platforms and their poten-
tial for abuse, several security issues not too dissimilar to
those already affecting traditional IT network counterparts
are beginning to surface. The most significant issue is the
emergence of traditional malware such as viruses, worms,
Trojan horses, and rootkits. Malicious software in this con-
text behaves similarly to the same threats on traditional IT
networks. In this casemalwaremay be targeted at ex-filtrating
sensitive data from the mobile platform or further leveraging
the compromised asset to access sensitive industrial/critical
infrastructures in IoT networks in which the mobile device
has legitimate access to the corresponding IoT devices.
Second, developers are beginning to offer software for free

and instead generate revenue with data analytics and market-
ing which can invade a user’s privacy. An example might be
a free address book application that while managing a user’s
contact list may also provide a copy of this contact list to
the developer for marketing purposes. Although not strictly
malicious, this behavior is also not always apparent to the
user and may not be in their best interest. Researchers have
already developed malware which can abuse microphone
permissions to subvert the microphone to record sensitive
user information input from a keypad as detailed in [64].
Researchers in [65] also find that Cloaker, a stealthy rootkit,
exploits features of the ARM processor in order to hide itself.
There are two specific ARM hardware features utilized by
Cloaker, the ability to change the location of the interrupt
vector and the ability to lock addresses in the translation
lookaside buffer. This second technique allows memory to
be stealthily mapped into processes without modifying the
OS level (detectable) page table entries. This demonstrates
several security weaknesses in mobile architectures which are
significant threats for industrial control systems specific to
mission critical systems.
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The safety and security of data, corporate information,
identity, and the resources of the mobile phones used in IoT
networks can be threatened if the malware is not detected as
early as possible. The industry may face financial loss, loss of
data, loss of corporate information, and identity theft because
of the undetected malware present in mobile devices [56].
Users may be unaware of what is happening in the back-
ground and may lose personal information that they do not
wish to share or expose. Malware detection is immensely
important as our data, identity, and resources are at risk. We
need to identify malicious applications as early as possible,
deactivate them, and take security measures to protect our
information on the mobile platform.

Detection of malware is a crucial task, as malware develop-
ers hide their malicious activities and introduce new methods
to avoid detection [18]. Anti-malware software must cope
with new technologies such as code obfuscation, mimicry
attacks etc. For Windows and other operating systems, use
of resources is not a critical concern, whereas for the oper-
ating system of mobile devices resource usage is always a
concern. Limited use of resources means that the process of
malware detection is not a straightforward problem for the
mobile platform. Detecting the malicious activities of mobile
applications using limited resources within a limited time
period is a challenge to researchers.

Significant research has been carried out to detect mal-
ware on the Android mobile platform. However, the detec-
tion process usually suffers from limitations. Researchers
have used static, dynamic, and hybrid processes to detect
mobile malware and malicious activities. Researchers’ pri-
mary concerns involve accuracy levels, and most the research
papers describe the performance of their detection pro-
cess using accuracy metrics. For the operating system of
mobile devices, performance overhead should be consid-
ered, as higher accuracy may cause higher overhead. Accu-
racy and performance overhead need to be well balanced
to make the detection process efficient. Moreover, malware
must be detected as early as possible before doing any harm
to the system. Research indicates that 260,000 devices have
been infected by the DroidDream malware within 48 hours
before the malware was detected [50]. Therefore, malware
should be detected as soon as it enters the apps mar-
ket place. Researchers need to focus on this major con-
cern involving early detection to ensure Zero-day malware
detection.

We analyze the ongoing research efforts covering the three
basic categories: static, dynamic, and hybrid analysis. These
analyses represent the data set, features, feature selection
method, detection method, and the accuracy. We also have
mentioned the literature gap and the limitations of current
research efforts. Thereby we have identified the suspicious
feature lists which are commonly used by malware develop-
ers. The main contributions of this research effort are divided
into the following main areas:
• Defining the mobile malware detection process for
IoT networks.

• Determining the security limitations for mobile plat-
forms in industrial IoT networks.

• A comparative analysis of static, dynamic, and hybrid
detection processes and their limitations and scopes.

• Identifying the suspicious permission, API call, and sys-
tem call lists to enable IoT application developers in the
safe use of APIs.

The rest of the paper is organized such that the prob-
lem definition is discussed in Section II. The motivation
is discussed in Section III followed by the security loop
holes of Android in Section IV. The detection process and
performance matrices are discussed in Sections V and VI,
respectively. Comparison of detection methods and the
outcomes of the comparative analysis are discussed
in Sections VII and VIII, followed by the Conclusion.

II. PROBLEM DEFINITION
This study involves the malware detection process for the
Android platform. There are known and unknown malware
and benign apps in the market. Known malware is removed
from the market place. Unknown malware evades the detec-
tion engine by hiding its malicious activities. We identify
these unknownmalwares and the benign apps based on binary
classification. If there are a finite set of classes, then the
classifier will determine the class of a given object. Binary
classification involves only two sets of possible classes. In our
stated problem, we must classify apps into two finite classes:
malware or benign ware. Thus, we can represent this problem
as a binary classification problem [63]. We can consider all
apps as a set of applications, A. There are different types of
applications available in A.

A = {A1,A2,A3, . . . ..,An} (1)

In this A set there are n applications. These applications
may be malware, benign ware, or new unknown applications.
Each applicationAi has been definedwith some feature vector
Fi and class label CL i.

Ai = {Fi,CL i} (2)

Here, Fi is a feature vector with a number of selected fea-
tures, k .

Fi = {F1,F2,F3, . . . . . . ,Fk} (3)

Class label [(CL)]i defines the label of the class where there is
a label for benign ware, malware, and Unknown apps.

CL i =
{
CLb,CLm,CLuap

}
(4)

Here, CLb is the class label of benign ware, CLm is the class
label of malware, and CLuap is the class label of unknown
apps.

In the problem definition, a detection engine DE classifies
CLuap into eitherCLb orCLm. The detection engine will have
a malware detection function (µ) and an achieved accuracy
level (Accl). The malware detection function will use the
feature set and determine the class label. The detection engine
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will use the detection mechanism to classify the set of apps A
by providing each with label CLb or CLm.
The definition of the malware detection function is given

below:

µ (F) : F → CL (5)

It is desired that the detection engine has maximum
accuracy.

III. MOTIVATION
The use of smart phones is increasing daily. Among all smart
phones, most use Android as the operating system, with
Android users increasing at a significant rate. In the United
States, Android users numbered 107.7 million in 2016,
whereas the number was 98.5 million in 2015, and 87.7 mil-
lion in 2014 [35]. The growth rate was 9.34% in 2016 and it
is obviously a high growth rate. Moreover, the global market
share as of 2016 for the Android operating systemwas 86.2%,
whereas Apple’s iOS was only 12.9%, Microsoft 0.6%, RIM
0.1%, and for others was 0.2%. In comparison with the fourth
quarter of the year 2015, market shares were 80.7%, 17.7%,
1.1%, 0.2%, and 0.2%, respectively [36]. From these figures,
it is obvious that the global market for Android shows rapid
growth whereas iOS and Microsoft show negative growth.
The popularity of Android is clearly obvious from these given
data for 2016 and 2015. This motivated us to choose the
Android platform toworkwith, as security improvementswill
benefit a large number of mobile users.

Mobile apps developers generally choose to develop apps
for the Android platform because of its greater global market.
Seemingly every day new mobile applications for Android
enter the market. Android allows third party applications,
which opened a new horizon in the development of apps, but
includes some disadvantages; this type of opportunity, and
the immense popularity of Android, has attracted malware
developers. The volume of Android mobile malware showed
an increase of 230% in 2015, which is alarming [37]. Thus,
there is a need for more secure methodologies to detect mal-
ware efficiently and promptly. Malware detection becomes a
necessity because of the availability of applications from dif-
ferent sources. These malwares can obtain access to personal
information, bank details, user name, photos, and other sensi-
tive information. Some can send Short Mail Services (SMS)
messages, email, or even install other applications without
notifying the user. Some of these need root privileges, which
users may allow without knowing the security threats. Obvi-
ously, users should be aware of the threats to their identity,
leakage of information, or even financial forgery because of
these applications.

Malware is a program or a set of programs that can cause
harm to identity, data or sensitive information, financial
forgery, and resources. According to a survey [37], the top
ten Android mobile malwares are given in Table 1 below:

In the year 2016, approximately 87% of smart phone users
used Android. Table 2 indicates that the Android market
shows positive growth and others show negative growth.

TABLE 1. Top android malware.

TABLE 2. OS comparison [38].

Security measures are designed to protect mobile plat-
forms. However, existing measures are insufficient consider-
ing the causes for potential security threats in the Android OS
as given below.
• Exponential growth in the number of malicious appli-
cations [49], [56]. Most of the market share for global
smartphones belongs to Android. This attracts malware
developers. Malware developers choose to target the
Android platform for this reason [54].

• The Android Market Place is the public market for apps.
Without prior review, developers can place their apps
on the Android Market Place [40]. The openness of
the Android Market Place allows malware developers
to place malicious apps. It is a challenging task to
detect the new malware and remove it from the public
market place before infection [50]. In 2012, malwares
were downloaded 700,000 times before being detected
by Google and automatic uninstallation was not possi-
ble [56]. In the market place, it is difficult to verify each
app and lack of a proper verification mechanism is a
reason for the growth of malware [50].

• As a further challenge, variants of malware are created
to avoid detection [50]. Because of the diversity of the
malware families, all cannot be detected using a fixed
set of features [50]. It is a challenging task to investigate
each app in the Android Market Place to identify the
hidden malware.

Users can and should make some decisions regarding
security issues, as unaware users may cause security issues.
Users may allow apps which need internet permission, even
allowing SMS permission, even though there is no reason to
allow sending SMS messages [56]. The lack of knowledge
and awareness by users regarding security concerns make the
problemmore difficult to handle. Moreover, the need for anti-
malware software for the Android platform is not considered
essential by most users [56]. The lack of knowledge is not
only characteristic of the Android user; it is also present in
unskilled app developers. Inappropriate use of the security
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measures of Android by unskilled developers create uninten-
tional loop holes that lead to security threats to users and their
data [39].

A wide range of Android operating systems are used.
Old versions of Android may suffer from different security
issues [55]. Additionally, many smartphone and tablet ven-
dors run third party apps markets which may act as a source
of malicious applications [53]. People from China and Asia
choose to download apps in their local languages which are
available at third party apps store and are a potential source
of malware [56].

Crowd sourcing is used for the prevention of malware in
Android. However, fake reviews from users can be a security
threat. Joining a site such as Admob is comparatively easier
than joining iAd as no identity proof is required. This encour-
ages the ad-based malware developers [55].

These security threats can cause the following issues.
Personal data leakage: People are not concerned with the

security of data or personal information in mobile devices
while they are normally very concerned for the same in PC
environments [54]. Some apps steal personal information and
at the same time demand payments. Such Trojan apps have
been downloaded 9,252 times and 211 affected users paid a
total of $250,000 to the malware developers [56]. Malware
developers successfully stole personal data such as contacts,
emails, SMS, and device information which can be used in
identity theft and spamming [56].

Social: GPS location, call log, and contact lists can be
captured by malware [56]. The contact list and location are
user-sensitive information. This information can be captured
by malware and can do harm by leaking social identity that
can be used in various ways to threaten the security of a user’s
social image.

Business: Business organizations have their own apps
to run their business. Malware can capture user informa-
tion or business data which will put the business organization
at a risk. The business owner will be at a risk of financial loss
as well as reputation.

Financial loss: The motive of malware development has
changed and now focuses on financial gain [53]. Capital
expenses related to malware average $6–7bn dollars in a
fiscal year [53]. ‘‘Zeus in the Mobile’’ is a Trojan that
captures the authentication code of the user in a banking
application, which may cause financial losses to the user. It is
also expensive to remove, where a security firm charged $21/s
for the first detection in 2010 [54]. This type of malware can
cause user financial losses as well as large financial losses
to a business owner in detection fees. In some cases, a user
may have to pay large phone bills for premium rate services
because of the malicious activity of an app [56].

Considering all the security threats, we can state that a
proper detection engine that will detect new and unknown
malware to ensure Zero-day detection is a crucial need in
the current era. This survey will help researchers to fulfill
this crucial need. It will show the direct impact between the
security of the mobile application and the user. A proper

malware detection systemwill provide a healthy environment
for nursing the mobile-based economy. It will identify many
elements of security threats involved in using mobile phones
and applications, and the user will feel confident in using
these applications

IV. SECURITY LOOP HOLES
Android is an open source operating system for mobile
devices and is very popular among smart phone. Develop-
ers have designed and introduced many applications for the
Android Platform [39]. Instead of having a main function,
developers design applications in terms of components.

Android is based on the Linux operating system. There are
three layers, named the kernel layer, Android middleware,
and Android application layer. The lower layer is the kernel.
The kernel is used for device drivers, memory management,
process management, and networking [59]. The middleware
connects the upper application layer and the lower kernel
layer [53]. The application layer has applications with dif-
ferent types of components. Components can communicate
with each other, which is called Inter Component communi-
cation. The components are namely Activity, Service, Con-
tent Provider, and Broadcast receiver. Activity defines the
user interface. Service defines the designed actions. Content
providers help to store and access data from the database.
Broadcast receiver acts as a media to distribute messages to a
destination.

TheAndroid security architecture and the apps architecture
were designed to provide flexibility in the development of
apps. Improper usage and lack of awareness in developing
secure application create loop holes which may threaten the
security of the data, identity, and may cause financial loss.
Security loop holes of the Android Operating system are
given below.

Components may be private or public. Private component
will reduce the security measures, so there is a need for care
when defining private components [39]. If the permission of
a public component is not defined in a manifest file, any other
application can access it. If we use the default setting, it may
lead to security threats [39].

If the permission for broadcasting is not defined, any other
application can access it. Unprotected broadcasts may be the
cause of leaked information involving personal, sensitive,
and/or financial information [39].

Content provider controls the access to data. Separate
read/write permissions and URLs are needed to ensure that
separate read and write permissions are used to avoid the risk
of compromising data integrity. Content sharing should be
specific, and not all or none [39].

Pending Intent objects allow another application to ‘‘fin-
ish’’ an operation via Remote Procedure Call (RPC), which
may allow filling of unspecified values by any remote appli-
cation. It introduces delegation, which may have negative
impact on security [39].

checkPermission() can be invoked by a component. The
developer can add a reference hook monitor. Service hooks
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allow moving a security policy to the application code, which
may also be a security threat cause [39].

As Android does not have a native Windows system and
also does not support all GNU libraries, it is difficult to port
all applications or Linux libraries to all smartphone/tablet
platforms [53].

Multitasking allows running an application in the back-
ground while another application is running in the foreground
and the user may be unware of the background application.
Malware usually runs in the background with highest priority
and thus increases its lifetime to carry out malicious activities
while the user is unaware of the suspicious activities [53].

Killed activities can reboot and return to the same state
because the kernel keeps stores the killed activity and its state.
This allows the malware to re-activate even if its activity was
killed [53].

In microSD, the data storage is not password locked at
the operating system level, which allows access to it [53].
Data flow can be observed easily by installing a debugging
app [53]. GPS data can be observed, as it is in plain text
format [53]. There is no mechanism to check an email header
to detect spoofing or other attacks, making the email system
insecure in Android [53].

Any application can read the information of the system,
such as installed apps, device information, IMEI, IMSI,
phone numbers, and others [55]. The content of the SD card
is readable, as automatic readable permission is provided to
it. Developers may use the SD card as storage, being unware
of the threat [55].

In the manifest file, some developers forget to set the
‘‘debuggable = false’’ switch, which causes a major security
hole and may allow malicious activities [55]. If the develop-
ers do not want their components to be accessed by other
components, then components must be designed with care
and the export flag should be set to ‘‘false’’ in the manifest
file. Most developers are not aware of this, and those who
know may forget the requirement [55]. SQL injection can
be accomplished by obtaining access to the single database
shared by multiple content providers [55].

The diversity in languages and platforms in Android apps
development makes it difficult to assure standardized secu-
rity procedures [55]. Unskilled developers and their poor
development practices represent one of the main causes of
security loop holes. For example, storing passwords in plain
text, debugging features enabled, unnecessary permissions,
etc. lead to vulnerable apps [55].

Poor understanding of security issues, protocols, and lack
of awareness of best programming practices by new and even
professional developers lead to security threats [56]. Exces-
sive requested permissions are one indicator of suspicious
apps [56].

Key security concerns involve cryptographic issues, CRLF
injection, and information leakage when using Android
apps [55]. In the same manner as a Wi-Fi based net-
work, an attacker can capture the communication between
a mobile device and mobile network and can redirect the

communication to a server and know and record all move-
ments of a user [56].

Execution of Unstructured Supplementary Service
Data (USSD) control codes should be handled carefully. Oth-
erwise, malware can wipe all data from the device [56]. iOS
uses code-signing and then verifies an app, whereas Android
does not use code signing. Android’s Bouncer app suffers
from a weakness involving fake developer accounts as it does
not require proof of identity [56].

Bouncer, an automated tool to detect malware in Google
Play runs in only five minutes. To avoid detection, malware
can introduce malicious activity after the known five minutes
have elapsed [56]. As apps are checked by Bouncer after a
certain period, the malware developer determines Bouncer’s
IP address and sets execution of malicious activities on
devices with different IP addresses [56].

Encryption of apps as introduced by Google does not
prove the validity of the apps and also suffers from failing
to run in many devices [56]. Malware developers can avoid
the certificate check by disabling it or introducing a new
certificate [56].

FIGURE 1. Components of malware detection system.

V. MALWARE DETECTION PROCESS
Malware detection is a process that contains different com-
ponents to evaluate whether an application is malware or not.
Generally, there are four components of the malware detec-
tion system namely, data set, feature extractor, feature selec-
tor, and classifier. Figure 1 illustrates a malware detection
system,

A. DATA SET
The first component of the malware detection system is the
data set. The data set represents a representative collection of
malware and benign ware. A proper data set is essential for
analysis of the behavior of the malware. We need examples
of both the malware and the benign apps for proper detec-
tion. The most common sources of Android Mobile Malware
are the Genome project, Contagio, DREBIN data set, Virus
Share, etc. The most widely used sources for known benign
apps are Google Play, App China, Amazon, Android Market,
etc. Malwares can hide their malicious activities and be avail-
able in Android market places. Android apps are available in
both official and third-party appsmarket places. They are also
good sources of Android applications which can be used as
the data set in the detection engine.

B. FEATURE EXTRACTOR
The feature Extractor is the component which extracts
the desired features from the malware and benign apps.

VOLUME 6, 2018 15945



S. Sharmeen et al.: Malware Threats and Detection for Industrial Mobile-IoT Networks

The feature extractor can extract features from the mani-
fest file, dex file, byte code, and log file. Based on the
type of extracted feature set, we can categorize the fea-
ture extractor as a static feature extractor, dynamic feature
extractor, or hybrid feature extractor. Some feature extractors
extract features from a single category and some extract fea-
tures from multiple categories. We can categorize the feature
extractors as shown in Figure 2.

FIGURE 2. Types of feature extractor.

The features that can be extracted by not executing the
application are called static features. The mechanism that
extracts the static features is called a Static Feature Extractor.
Researchers may consider only a single category of static
features and others consider a set of multiple static features.
Common static features are: Permission, API call, String
extracted, Native commands, XML elements, Meta data,
Intents, Broadcast receivers, Hardware components, etc.

Static features can be extracted from the manifest file, dex
file, and byte code. The most widely used tool is the APK
tool. From the APK tool, we obtain the APK file, Manifest
file, classes.dex, and Smali file. From these files, we can
extract features. The feature extraction process is illustrated
in Figure 3.

FIGURE 3. Feature extraction using APK tool.

The features that can be extracted from an application by
executing it are called dynamic features. The mechanism that
extracts the dynamic features is called the Dynamic Feature
Extractor. As the static features are not able to represent
the full characteristic of an app, researchers use dynamic
features, some researchers consider only a single category

of dynamic features and others consider a set of multiple
dynamic features. Common dynamic features are: System
call, Network traffic, SMS, Process id, Process information,
Memory usage, IP address, Log events Power consumption,
System component, User interaction, etc.

FIGURE 4. Feature extraction using virtual machine.

The log file is generated by executing the application in a
virtual machine. From the data set, we collect the malware
and benign ware and execute these in the virtual machine
(Figure 4), which generates the run time log file. From the
log file, we can extract the dynamic features.

To obtain better performance in the detection of malware,
researchers use both the static features and the dynamic fea-
tures. One or multiple static and one or multiple dynamic
features are combined to obtain higher accuracy and proper
detection of malware. These are called hybrid features. The
hybrid feature extractor combines the static feature extractor
and the dynamic feature extractor. Common hybrid features
are: system call and permission, system call and API call,
permission and network traffic, API call, intents and system
call, and many more.

C. FEATURE SELECTION
Feature selection is an important task in malware detection.
There are many features, but we need to select those among
them which will provide better accuracy in the classification
process. Widely used feature selection methods for Mobile
Malware detection are:
• Information gain algorithm
• Select mostly features used in previous research
• Select a subset of all features (top 20, top 50, etc.)

D. DETECTION METHOD
The detection method or the classifier is used to determine
whether an app is malware or not. Based on the features,
the classifier classifies apps as malware or benign ware.
Most classifiers use machine learning. Classifiers based on
machine learning use one or multiple classifiers. Layered
classifiers may also be used in the detection process. In this
case there are two or three layers and each layer contains a
classifier to improve the accuracy of the detection system.
In parallel classifiers, there are various individual classifiers.
The outputs of these classifier are combined to obtain higher
accuracy. Other classifiers such as AHP and penalty calcu-
lation do not use the machine learning approach. Common
machine learning classifiers used in Android mobile malware
detection are: SVM, KNN, J48, RF, Naïve Bayes, C4.5,
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PART, RIDOR, and many more. Figure 5 categorizes the
classifiers.

FIGURE 5. Classification of detection method.

VI. PERFORMANCE MATRIX
The True Positive Rate (TPR) defines the percentage of
benign apps identified accurately, where TPR=TP/(TP+FN).
TP is the number of accurately identified benign apps and FN
is the number of incorrectly identified benign apps.

The False Positive Rate (FPR) defines the per-
centage of incorrectly identified malware apps, where
FPR=FP/(TN+FP). FP is the number of incorrectly identi-
fied malware and TN is the number of correctly identified
malware.

Accuracy is a metric used to describe the overall perfor-
mance. Accuracy is the percentage of correctly identified
apps, where ACC=(TP+TN)/(TP+TN+FP+FN).

VII. COMPARISON OF DETECTION METHODS
Mobile Malware detection commonly involves three tech-
niques, namely static, dynamic, and hybrid detection tech-
niques. The static analysis extracts features without execution
of the application. The dynamic analysis involves the execu-
tion of the application, and hybrid analysis uses both static
and dynamic features for the classification. Table 3 compares
the advantages and drawbacks of these methods.

A. STATIC ANALYSIS ON ANDROID MOBILE MALWARE
DETECTION
In the following section, we will discuss the static analysis
of mobile malware detection. We mention the name of the
research work, year, type, a short description, data set, detec-
tion method, major outcome, and limitations/future work.

1) DATA SET
The data sets that are used in the static analysis involve
a wide range of malware and benign ware. The difficulty
lies in obtaining a proper data set of malware because
each day different types of apps are introduced in the offi-
cial and third-party market places of Android. There is a

TABLE 3. Comparing static, dynamic and hybrid analysis.

corresponding quick development in the number of malwares
and their types. Malware authors hide malicious activities
and introduce newer techniques such as code obfuscation,
update attacks, etc. If we compare the number of malware
and benign applications used in previous research, the result
is Table 4.

TABLE 4. Comparison based on the number of applications used in
experiments.

From this comparison table, we can see that for static
analysis, the highest number of malware was used in [22].
The Drebin data set [7] involves the malware and benign ware
where the number of malware is the second highest and the
number of benign apps is the highest.
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2) FEATURE EXTRACTION
Static features are extracted mainly from the Manifest file.
Permissions are extracted from the Manifest file. The appli-
cations are applied to the APK tool which generates the
APK file. The AndroidManifest.xml file contains the per-
mission set. This xml file can be decompiled by the AXML-
Printer2 tool to obtain the permission [20] (Figure 6).

FIGURE 6. Permission extraction.

API calls are extracted from the APK file [20]. The APK
file contains the classes.dex file [21]. This file is decompiled
by the dex2jar tool to obtain the jar file. Using the jad tool, we
obtain the Java file from the jar file. API calls are extracted
from this Java file [20] (Figure 7).

FIGURE 7. API Call.

3) FEATURE SELECTION
Among the total 145 permissions set [41], permissions are
selected as desired features to verify malicious activities.
To select the permissions, the authors have used the informa-
tion gain technique [20]. Permissions with low gain value are
marked as safe and others are considered risky permissions.
Another research determined risky permissions using risk
factors [42]. They ranked permissions using three ranking
methods. The ranking methods used were correction coef-
ficient, mutual information, and T-tests. According to [42],
the riskiest permissions are given in Table 5.

Another research proposed the top twenty permission
sets [31]. They considered twenty permissions that were used
in a previous research work. All permissions are covered
in [42] except WRITE_APN_SETTINGS and VIBRATE.

The research work in [5] mentioned twenty-six permis-
sions that are mostly used by malware. Most are also
used in [31] and [42]. Only three permissions are new
here: RECORD_AUDIO, ACCESS_LOCATION_EXTRA,
and INSTALL_PACKAGES.

Reference [21] selected a total of 34 permissions. Among
these permissions, most are used in other research papers.
DELETE_PACKAGES, MOUNT_UNMOUNT_FILESYS-
TEMS, INSTALL_SHORTCUT, READ_LOGS, CALL

TABLE 5. Risky permission set.

PREVILIGED, RECEIVE_WAP_PUSH, BAIDU LOCA-
TION_SERVICE, CLEAR_APP_CACHE, ACCESS
FIND_LOCATION, DEVICE_POWER, INTERNAL SYS-
TEM_WINDOW, and PROCESS_OUTGOING_CALL are
not selected in [31] and [42].

Finally, we obtain a list containing 58 suspicious permis-
sions from the above-mentioned references. They are listed
below:

All permissions from [42] plus DELETE_PACKAGES,
PROCESS_OUTGOING_CALL, WRITE_APN_SETT-
INGS, MOUNT_UNMOUNT_FILESYSTEMS, READ_
LOGS, VIBRATE, INSTALL_SHORTCUT, CALL
PREVILIGED, RECORD_AUDIO, RECEIVE_WAP_
PUSH, BAIDU LOCATION_SERVICE, ACCESS_
LOCATION_EXTRA, INTERNAL SYSTEM_WINDOW,
DEVICE_POWER, INSTALL_PACKAGES, ACCESS
FIND_LOCATION and CLEAR_APP_CACHE.

The permission is the mostly used feature in the Android
malware detection process. Another feature, API call, is also
used in Android mobile malware detection. According
to [20], [30], and [31] the API calls that are mostly used by
malware are listed in Table 6.

From the above details, we can summarize that mostly
used feature selection methods are Information Gain,
Mutual Information, T-test, correlation-based feature selec-
tion, selected features from previous research, and Consis-
tency Subset Evaluator. The research paper [21] namely
uses gain ratio, RELIEF attribute evaluator [43], correlation-
based [44], and consistency subset evaluator [45] as feature
selection methods. Among these feature selection meth-
ods, correlation-based feature selection showed the better
performance.
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TABLE 6. Suspicious API calls.

4) DETECTION METHOD
Most research uses machine learning approaches. A very few
of them have tried different detection methods. For example,
the Analytic Hierarchy process is used as a detection method
in MAETRIOD [9]. A two-layer detection method using
machine learning was applied in [25] and showed improved
performance. Parallel use of detection methods is demon-
strated in [26] and exhibits excellent performance. However,
most research to date involves single classifiers as shown
in Table 7.

From this comparison table, we note that the best accu-
racy is 99% and second best is 98.6%. The detection
method using K-nearest Neighbor (KNN) achieves best per-
formance in accuracy. Random Forest (RF) and Support Vec-
torMachine (SVM) are mostly used as detectionmethods and
also exhibit high accuracy. The two layered and parallel clas-
sifiers achieved second best accuracy. Permission is the most
commonly used feature among all static features. Permission
along with other features (combinations of features) show
improvement in performance at the cost of higher complexity.

KNN has the best overall performance. However, KNN’s
speed decreases with large data sets. Random Forest is the
mostly widely used detection method. A random forest con-
tains a set of tree-structured classifiers and each tree classifies
an object. The result depends on the majority vote count [47].
The computational complexity of a random forest of size T

TABLE 7. Static features with detection method.

is O (T.D) where D is the maximum depth of each tree and
the space complexity is O(2D) [46].

The time complexity of the SVM is O(m3) and the space
complexity is O(m2) for m elements [48]. The time complex-
ity of the j48 decision tree is O(nm2) where n is the number
of training examples and m is the number of features.

The two-layered classifier [25] has the second-best
accuracy. However, this two-layered classifier involves deci-
sion trees in two layers and requires extensive compu-
tation compared to single layer classifiers. The parallel
classifier [26] also shows better performance. This parallel
classifier involves four types of classifiers, which also require
high computational complexity.

The most common feature of Android Mobile Malware
Detection is the permission, but research using other features
can be found in the literature. The research in [6] achieves
best performance using API call as a feature. The second-
best performance in [25] uses the requested permission and
the used permissions. The equal performance in [26] uses
the permission, command, and API call as features. Research
in [25] and [26] uses two layered and parallel classifiers
as detection methods. The research in [7] uses more fea-
tures, but the best accuracy is only 93.9%. Using more fea-
tures would intuitively lead to higher accuracy. However, the
detection method used, it exhibits lower accuracy. Moreover
we have to consider that using more features will result
in higher computation, as the mobile platform has limited
resources.
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B. DYNAMIC ANALYSIS ON ANDROID MOBILE
MALWARE DETECTION
In this section, we discuss the dynamic analysis of mobile
malware detection. Dynamic analysis requires execution of
the malware. Dynamic analysis has been introduced to over-
come the limitations of static analysis.

1) DATA SET
The data sets that are used in the Dynamic Analysis involve
a small range of malware and benign ware. As the dynamic
analysis involves execution of the apps, it is difficult to use
a large number of apps. However, a larger data set can more
accurately reflect the accuracy of the detection engine so it is
desirable to use a large data set in the detection process. If we
compare the number ofmalware and benign applications used
the previous research, Table 8 is the result.

TABLE 8. Comparison based on the number of applications used in
dynamic analysis.

From this table, the number of malware used in dynamic
analysis is comparatively lower than in static analysis. The
research in [33] uses the highest number of malwares, which
are 3,524. Dynamic analysis involves high computational
cost. The number of malware is relatively low for this reason.
However, it is necessary to use a large data set to evaluate the
detection system more precisely.

2) FEATURE EXTRACTION
Feature extraction in dynamic analysis requires execution of
the mobile application. The malware or the application is
executed in a virtual machine or emulator, which generates
a log file. Then, from the log file the features are extracted
using a log analyzer or parser. The system call is extracted
by using the Strace tool and features are selected by using
different selection algorithms (Figure 8).

FIGURE 8. Dynamic Feature Extraction.

TABLE 9a. Suspicious system calls.
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TABLE 9b. (Continued).

3) FEATURE SELECTION
The system calls, used in malicious apps according
to [27], [28], and [32] are listed in Table 9.

Dimjasevic et al. [29] also chose the system call as
a desired feature. Examples of selection algorithms used
in dynamic analysis are information gain, similarity func-
tion, and using suspicious activity lists from previous
research. Other researchers have used other dynamic features
in their research work. Ham and Choi [33] have used the
following dynamic features:

• Memory related features: size, shared, allocated, pss,
vss, free for Native, and Dalvik

• Virtual memory related features: VmPeak, VmHwm,
VmData, VmSize, and VmLib

• Power: Level and temperature
• Network: TxBytes, RxBytes, RxPacket, and TxPacket
• CPU: CPU Usage

4) DETECTION METHOD
Mainly, machine learning approaches are used as detection
methods. Both supervised and unsupervised methods have
been used. The detection methods that are commonly used
in dynamic analysis are K-means Clustering, Random For-
est, Naïve Bayes, Logistic regression (LR), SVM, KNN_E,

KNN_M, and Bayesian network (BN). Weka tool is used for
the detection methods. Table 10 illustrates the dynamic fea-
tures, accuracy level, and detection methods used in dynamic
analysis:

TABLE 10. Dynamic features and detection methods.

C. HYBRID ANALYSIS FOR ANDROID
MOBILE MALWARE DETECTION
In this section, we discuss hybrid analysis for mobile malware
detection. Hybrid analysis involves both static and dynamic
features. Researchers have introduced hybrid analysis to
overcome the limitations of both static and dynamic analysis.
Hybrid analysis helps to improve the accuracy level in the
Android mobile malware detection process.

1) DATA SET
Hybrid analysis uses both static and dynamic features.
A proper data set is essential for hybrid analysis. Mal-
ware are usually collected from Gnome Project, Contagio
Mobile, Virus Share, AppChina, etc. Benign apps are col-
lected from Google Play, Wandoujia App market, AppChina,
etc. Table 11 provides a brief list of data sets used in hybrid
analysis.

TABLE 11. Number of applications used in hybrid analysis.

From this table, the number of malware apps varies from
110 to 15,741. The research in [14] used a large number of
malware and benign apps.
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2) FEATURE EXTRACTION
Hybrid analysis uses static as well as dynamic features.
The static features are extracted from the APK file.
Dynamic features are extracted from the Androidmani-
fest.xml and classes.dex. By executing the apps in the vir-
tual machine or emulator, dynamic features are extracted.
Figure 9 depicts the feature extraction process for hybrid
analysis.

FIGURE 9. Hybrid feature extraction.

Hybrid analysis requires both static and dynamic feature
extraction tools. The APK tool, dex2jar, Soot,WALA, etc. are
needed to perform the static feature extraction. The Starce and
Rnadoop tools are used to extract dynamic features. Dynamic
analysis involves the use of a virtual machine or emulator.
Feature extraction in hybrid analysis requires high computa-
tion, which is a concern for the mobile platform.

3) FEATURE SELECTION
Feature selection is extremely important in hybrid analysis.
Because of the many features available, feature selection
must be precise and accurate. The time and space complex-
ity of the selection method should also be considered. The
appropriate feature set is selected using different selection
methods such as information gain, mutual information, Fisher
score, etc. The feature selection methods used are the same
as for static or dynamic analysis. However, the importance
of proper selection in hybrid analysis is much higher than
in static or dynamic analysis. Unnecessary and irrelevant
features can hamper the overall performance of the detection
engine. Information gain and Fisher score are used as the
selection methods in the research papers that are discussed
here.

The static features that are involved in hybrid analysis are
Permission, API call, Java Package name, Intent receivers,
Class structure, Crypto operations (cryptographic API) Ser-
vices, Receivers, and Publisher ID. The most commonly used
static feature is the permission in hybrid analysis.

The more common dynamic features involved in hybrid
analysis are System call, File operations, Network activity,
dynamically loaded code, and dynamically registered broad-
cast receivers, Phone activity, and Crypto operations (crypto-
graphic API). The most commonly used dynamic feature is
the system call in hybrid analysis.

4) DETECTION METHOD
The detection method must handle many features. The main
objective here is to achieve more accurate performance than
static or dynamic analysis. For this reason, it is necessary to

design and implement a detection method that will improve
the accuracy level. Different detection methods are used in
hybrid analysis such as J48 decision tree, Linear L1, Linear
L2, SVM, KNN, LDC, QDC, MLP, PARZC, Bayes, and
others. Weka tool is used here. Table 12 indicates the static
and dynamic features used in hybrid analysis, accuracy level,
the used detection method, and the number of malware used
in hybrid analysis.

TABLE 12. Feature set with detection method in hybrid analysis.

From this table, the system call is the most commonly used
dynamic feature and the permission is the most commonly
used static feature. Other static and dynamic features are also
used in many research works to improve accuracy. Among
these research works, the SVM shows the best performance in
the scale of TPR, which is 98.24% [14] for the static analysis
and provides low FPR. However, the overall accuracy of
hybrid analysis was not discussed in this reference. Another
research paper showed 96.9% accuracy by using KNN as the
detection method [18].
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VIII. COMPARATIVE ANALYSIS OUTCOMES
A comparative analysis has been carried out based on static,
dynamic, and hybrid analysis for the Android mobile mal-
ware detection process. This comparative analysis has pro-
vided a broad sense of the Android Mobile Malware Detec-
tion process. We have analyzed the challenges and the secu-
rity loop holes of Android applications, which attract the mal-
ware developers. We have also analyzed the features, feature
extraction techniques, feature selection techniques, and the
detection methods. We evaluate them considering the number
of usedmalware, feature extraction process, selected features,
detection method, and accuracy. Most research works choose
static features and static analysis, as static analysis is easier
to carry out on a mobile platform. However, static analysis
suffers from specific limitations such as code obfuscation,
downloading malicious contents from remote servers, and
others. Dynamic analysis can handle some of these limita-
tions, but not all of them. Moreover, dynamic analysis for
Android platforms is not feasible if we consider the resources
necessary to carry out he analysis. To overcome this limita-
tion, Cloud computing and use of remote servers have been
introduced [17]. As a third option, hybrid analysis involves
both static and dynamic analysis. Hybrid analysis provides
the freedom to choose both static and dynamic features to
improve accuracy in the detection process. However, Hybrid
solutions also involve operational complexity and limited
resources inherent in mobile devices. Compared to static
and dynamic analysis, hybrid analysis is the best option for
research work because new techniques can be introduced by
the malware developer. Analyzing only static or dynamic
features will not be sufficient to provide full detection capa-
bilities; we need both. Hybrid analysis is the method leading
to higher accuracy and lower false positive rates.

In this literature review, we have analyzed a large number
of research works that involve recent static, dynamic, and
hybrid analysis for Android mobile malware detection.While
analyzing these, we have noted the following literature gaps.

A. FAILURE TO DETECT UNKNOWN/NEW VARIANT OF
MALWARE, NEED TO ENSURE ZERO-DAY DETECTION
Today, malware developers are using newer and innovative
techniques to change the internal architecture of malware
and to change its procedures to avoid detection. They have
used code obfuscation techniques, polymorphism, and meta-
morphism to change the behavior of the malware to act
more like benign ware by hiding the malicious activities.
Normal conventional malware detection techniques are not
capable of detecting these new forms of malware. Most of
the research carried out to detect between malware or benign
ware depend on app behaviors and features. They have not
focused on the detection of new malware. In the literature
review, static analysis [1]–[9], [19]–[22], [24]–[26], [41]
did not focus on the detection of new malware. Moreover,
dynamic analysis [10]–[12], [23], [32]–[34] and hybrid
analysis [13]–[17] provided little or no discussion on the

detection of new malware. In addition, malware changes
behavior or feature sets very frequently. If behavioral or sig-
nature based detection techniques attempt to detect new vari-
ants of malware, the attempt will likely result in failure. Anal-
yses based on only the behaviors of past malware will not be
able to detect future malware. If our detection process is not
able to detect new variants of malware, then the apps market
will face both financial and existential problems. Ability in
detecting a new variant is an essential role for a detection
engine. However, this ability is absent in the above-mentioned
literature review. We must design detection engines that can
detect the unknown and newmalwares introduced in the Apps
Market to ensure Zero-day malware detection.

A few research works discuss Zero-day detection in order
to detect unknown and new malware. Brief descriptions of
these along with their limitations are discussed here.

A noble and effective approach has been proposed using
data mining and several detection algorithms to ensure
Zero-Day Malware Detection for the Windows system [58].
Supervised learning methods are used to detect unknown
malware. The method extracts API calls as the features.
A large number of data sets are evaluated using classifiers
such as Naïve Bayes, KNN, SMO- normalized poly kernels,
SMO-Poly kernels, SMO-Puk, SMO-Radial Basis Func-
tion (RBF), Backpropagation neural network algorithms, and
the J48 decision tree. A total of 51,223 recent malware
datasets are used and a signature set for malware and for
benign ware has been generated. The authors achieved 98.5%
TPR and 0.025 FPR. However, in the results they did not men-
tion Zero-day detection. How many unknown malwares have
been detected is not discussed. Moreover, malware develop-
ers use code obfuscation techniques to hide the malicious
behavior of a malware. A signature matching approach will
not be able to detect a new malware under these conditions.
Thus, Zero-Day Malware detection will not be achieved by
signature detection.

A heuristic-based filtering approach is introduced in a
permission-based behavioral footprint scheme to ensure
Zero-Day Malware detection for Android [57]. They have
named the system DroidRanger. The study collected a very
large number of apps from Android’s official market place
and also from four other third party app markets named eoe-
Market [59], alcatleclub [60], gfan [61], and mmoovv [62].
In this heuristic-based filtering approach, only two heuristics
are applied; however, two heuristics are not sufficient. More
heuristics are needed in order to detect new unknown mal-
wares.

For Zero-day detection of unknown malware, an approach
has been introduced which combines static analysis and
machine learning techniques [52]. They have used ensemble
learning to obtain better performance using Simple Logistic,
Decision tree, Random tree, and Random Forest as the detec-
tion methods. A total of 179 features are used to perform the
classification. The experiment was run on 2,925 malware and
3,938 benign ware samples. To improve the accuracy and to
detect unknownmalware they used a large number of features
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and four detection methods. However, they did not mention
how to incorporate the features of unknown malware, and
presented no proof that unknown malware could be detected.
Large numbers of features and four detection methods can
improve accuracy but cannot guarantee Zero-day detection.

Risk Ranker is a malware engine that introduced a proac-
tive approach to detect unknown malware to ensure Zero-
day detection [50]. They proposed a proactive technique,
as reactive techniques will not be able to detect unknown
malware. Rather than using a signature based detection tech-
nique, Risk ranker uses a ranking approach to determine high,
medium, and low risk apps. Based on dangerous behavior,
potential risks were analyzed. A total of 118,318 apps were
analyzed, and among them a total of 281 were identified
as risky apps. They found 718 malwares and 322 qualified
as Zero-day detection. However, this risk ranker also has
limitations such as using the javax.crypto libraries to detect
encryption. Malware developers can adopt new techniques
that avoid encryption detection. Moreover, dynamic loading
of the malicious code can be accomplished with the help of
the internet, making it easy for malware developers to hide
their malicious activities and avoid detection. The heuristics
used in the Risk ranker to detect malware can be avoided
by malware developers, as there are thousands of avoidance
techniques.

MADAM (Multi-Level Anomaly Detector for Android
Malware) is a proposed method to ensure Zero-day detec-
tion [18]. MADAM uses multiple levels of features.
The levels are kernel level, application level, user level,
and package level. In MADAM, there are three main
blocks named App Risk Assessment, Global Monitor, and
per-app Monitor. MADAM has achieved 96.9% accuracy.
As MADAM has used multiple levels of features and three
different blocks to detect malicious behavior of malware,
it has achieved high accuracy and low overhead. However,
behavioral or signature based detection suffer from a major
disadvantage, which is that they will not be able to detect
unknown and new behaviors of malware. MADAM used
signature based detection and it may not be able to detect new
behaviors of unknown malware.

B. SELECTION OF PROPER FEATURE SET TO
INCORPORATE UNKNOWN BEHAVIORS
OF NEW MALWARE
Feature selection is an essential task for any detection engine.
Proper feature selection will eliminate unnecessary and irrel-
evant features. This will be immensely helpful in the detection
process. Moreover, selection of features should be carried out
in such a way that the selected features will incorporate both
known and unknown malware and help to detect unknown
and newmalware to ensure Zero-day detection.Most research
has focused on feature selection. It is essential to develop a
feature selection method that will select the correct features
to ensure Zero-day detection.

Thus, the research question is: how to select the appro-
priate feature set that will incorporate known and unknown

behaviors of malware to ensure Zero-day detection. More-
over, must develop a feature selection approach that will
reduce feature extraction during runtime detection.

Yerima et al. [52] extracted features by using the APK tool.
They have considered the permission, API call, and com-
mands as appropriate features, but did not mention their rea-
sons for selecting only these three categories of features. They
extracted 179 features and used all of them as their ensemble
learning and demonstrated improvement in performance with
various ranges of features. Among these 179 features, 130 are
permission features. Others are critical API calls and com-
mands. They used SMA related API, Telephony related API,
packaged related API, and others. They have selected these
API types as these were also used in other research work.
They selected the top 20 and top 50 features using Mutual
Information ranking. However, how these selected features
would help to detect unknown malware is not explained.

MADAM [18] proposed a multi-level approach. Features
are extracted by using a hybrid feature extraction technique.
Features were classified into different levels, for a total of four
levels of features. In the package level, some features describe
the app metadata such as permissions, market rating, devel-
oper’s reputation, and number of downloads. They used these
features to create a suspicious-apps list. The application level
contains Critical API call and SMS related features. Critical
API calls are used for signature-based detection. There are
two other levels: user and kernel levels. User activity features,
SMS related features, and system calls are used to classify the
malware and benign ware. Thus, different features are used
in different levels in the detection process. In MADAM, fea-
tures have been selected based on different types of malware
behavior. Feature selection is performed based on the previ-
ous behavior of malware. This feature selection methodology
is not suitable for detection of unknown malware. How to
incorporate new behaviors of unknown malware is not made
clear. The feature selection mechanism should accommodate
the characteristics of both known and unknown malware.

Zhou et al. [57] used a heuristic-based filtering approach
to detect malware to ensure Zero-day detection. First, they
used SMS related permissions for filtering. Receive_SMS
and Send_SMS permissions are used here as the features. For
behavioral footprint matching, they used an API call and per-
mission list. They chose theAPI call and permission list based
on the heuristics used and on the behavior of knownmalware.
However, the feature selection mechanism can select certain
types of features which may not be able to detect unknown
and new malware with different types of behavior.

Past research mostly used permissions as the selected fea-
tures in the Android malware detection process. Permission
was selected as the feature in [1], [2], [5], [9], [25], [21],
and [41]. Some authors selected the API call as the feature
by using static feature extraction techniques [6], [8], [24].
Information gain was used as the feature selection method
to obtain a permission list [20]. Other selection methods such
as correlation coefficient, mutual information, and T-test have
been used to detect suspicious system calls [42].
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Multiple categories of static features are extracted and
selected in somework [3], [4], [19], [20] to improve accuracy.
For example, the authors used multiple categories of static
features: permission, API call, and Intent in a research work
that achieved 97.87% accuracy [3]. Although static features
are easy to extract, they suffer from mimicry attacks and their
inability to detect code obfuscation techniques.

To overcome the limitations of static features, dynamic
feature extraction has been introduced. Dynamic features are
able to depict the behaviors of malware more accurately.
In the dynamic analysis, many researchers used only one cat-
egory of features, which is the system call [10], [11]. Others
used only the API call as the extracted feature [12], [23].
Using a single category of features makes the feature extrac-
tion system simple and the computational cost is compara-
tively lower than using multiple categories of features. Other
authors used multiple categories of features. For example,
the permission, API call, and command related features
which illustrate the use of features from multiple categories
were used in [26] and they achieved a higher level of accuracy
of 98.6%. They combined these multiple categories of fea-
tures in order to improve the accuracy. However, these com-
bined features have shown obvious improvement of accuracy
but at the same time, the feature extraction process become
costly regarding required computation.

More recently, researchers have become interested in
using hybrid features, as hybrid features can illustrate the
actual behavior of an application more accurately than
static or dynamic features. Usually they choose a single
category of static features and a single category of dynamic
features to make the feature extraction simple and easy.
Permission and API call are commonly extracted by using
hybrid feature extraction and the authors combined the single-
category features as hybrid features [15]. To achieve higher
accuracy levels, most hybrid feature extraction techniques
combine multiple categories of both static and dynamic fea-
tures [13], [14], [16]–[18]. Permission, API call, and system
call are commonly extracted and used as hybrid features,
as these have shown a significant improvement in accu-
racy [13]. However, the hybrid feature extraction technique
suffers from higher computational cost. More resources and
time are needed, which increase the performance overhead.

The rapid increase of Android malware has led to the
necessity of proper detection engines [60]. From the previ-
ous discussions, it is apparent that without a proper feature
selection mechanism, the detection engine will not be able to
detect malware accurately. To detect the unknown and new
malware it is necessary to propose and implement a proper
feature selection mechanism that will select the appropriate
features. These appropriate feature sets will lead to accurate
and fast detection of malware to ensure Zero-day detection.

C. FAILURE TO PREDICT THE BEHAVIOR OF MALICIOUS
APPS FROM THEIR PAST ACTIONS
Malware developers are using different techniques to hide
malicious activities and mimic benign ware behavior.

From the past behavior of the malware, it is very difficult
to predict the future behaviors of malware. Behavior based
and signature based detectionmethods fail to detect the newer
malicious behaviors ofmalware. The crucial need is to predict
future behavior from past actions of malicious applications
to ensure Zero-day detection. This research work points out
necessary research directions to increase the probability of
detecting new and unknown malware and to ensure Zero-day
detection.

From the literature review, we have not located any
approach to predict the behavior of malware from past
actions. Only some researchers used data bases to store
app behaviors [50]. However, they did not mention any
approach to predict future behaviors from past actions.

IX. CONCLUSION
We have analyzed the static, dynamic, and hybrid analysis
methods for mobile malware detection. The analysis includes
recent literature on Zero-day detection. The detection pro-
cess, feature extraction and selection process, and detection
algorithms are discussed in this study. We have found that
machine learning approaches are commonly used to clas-
sify malware and benign ware. The suspicious permission
list, API call list, and the system call list are also identi-
fied to assist application developers. In future, we plan to
design and implement a framework that will be able to detect
mobile malware with a high accuracy to ensure Zero-day
detection.
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