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ABSTRACT We consider the problem of scheduling a set of jobs subject to unequal release dates on a two-
machine flow shop where the no-wait and non-availability constraints are considered so as to minimize the
makespan. The contribution of this paper is two-fold. First, we propose a new mathematical formulation for
the problem and derive valid inequalities. Second, we propose new lower bounds that are based on single and
two-machine relaxations. These lower bounds are embedded onto a branch-and-bound algorithm enhanced
by elimination and dominance rules. Computational results show that our exact methods consistently
outperform the state-of-the-art branch-and-bound procedure.

INDEX TERMS Scheduling, flow shop, no-wait, non-availability, lower bounds, branch-and-bound
algorithm.

I. INTRODUCTION
In this paper, we address the two-machine no-wait flow shop
scheduling problem subject to unequal release dates and
non-availability constraints. The problem can be defined as
follows. A set J = {1, . . . , n} of jobs have to be scheduled on
a two-machine flow shop environment without preemption.
Each job j ∈ J is available at its release date rj and have to
be processed during p1j unit times on the first machine M1
and p2j unit times on the second machine M2. The jobs are
subject to the no-wait requirement, i.e., while a job termi-
nates its execution on the first machine it must immediately
begins the execution on the second machine (no idle time
between the two parts is permitted). The two machines are
subject to a non-availability constraint, i.e., the machines
are unavailable during an interval of time. We assume that
the two intervals overlap and the unavailability on machine
M1 (denoted by [s1, t1] ) starts and ends before the starting
and ending of the unavailability on machine M2 (denoted
by [s2, t2]), respectively. The jobs are non-resumable since
they must completely restart if they cannot finish before the

unavailable intervals. The problem is to find a feasible sched-
ule, such that the time Cmax at which all the jobs are com-
pleted (makespan) is minimized (see Example 1). Using the
notation specified in Pinedo [29] and the notation of the
availability constraints specified by Lee [27], this problem
can be denoted F2|nr − a, nwt, rj|Cmax . The problem is
NP-hard in the strong sense since it is a generalization of
the well known flow shop problem subject to release dates
F2|rj|Cmax . Besides it’s theoretical challenge, the no-wait
flow shop problem with unavailability periods has many real
life applications [2]. Indeed, inmany industrial environments,
a machine might be unavailable for processing due to many
reasons, such as sudden breakdowns (stochastic unavailabil-
ity) or due to a planned preventive maintenance operation
where the period of unavailability is already known (deter-
ministic unavailability). In addition, usual no-wait require-
ment exists in many production technology processes, for
example, temperature of the material impose that each opera-
tion follow the previous one immediately. Likewise, in the
pharmaceutical or chemical manufacturing, the production
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of certain component ask for the no-wait of some produced
batches.

In the literature, there is a large amount of works dealing
with related problems. The F2|rj|Cmax problem have been
widely studied [8]–[13]. The most effective procedure is
probably the one proposed by Cheng et al. [8] who proposed
a branch-and-bound algorithm able to solve instances up to
500 jobs in few seconds. Other variant of the two-machine
flow shop have been studied in the literature (in the presence
of time lags, ready times, and delivery times). The reader is
referred to Haouari and Ladhari [19] for more details.

The two-machine flow shop problem under non-
availability constraints was proven to be NP-hard [33].
Lee [27] was one of the first researchers to address this type of
problems. He proposed several heuristic algorithms for many
configurations: semi resumable, nonresumable and resum-
able jobs, non-availability period on the first, secondmachine
and both machines. Later, many researchers followed the
same path. Recently, Hnaien et al. [20] considered the two-
machine flow shop problem with an availability constraint on
the first machine. The authors proposed two mixed integer
programming models and a branch-and-bound procedure
which solves instances of size up to 100 jobs. For a survey
on scheduling problems under non-availability constraints,
we refer the reader to the article of Ma et al. [28].

Moreover, some work deals with the two-machine no-
wait flow shop with availability constraints. Cheng and
Liu [5] presented a polynomial time approximation scheme
(PTAS) for the nonresumable case when an unavailable inter-
val is imposed on only one machine, or the unavailable
intervals on the two machines overlap. Their approxima-
tion scheme seems to be interesting only in theory since its
complexity contains a huge coefficient whose value depends
on the desired accuracy. Later, they improved the existing
results by proposing a 3/2-approximation algorithm which
is more efficient in practice for the same problems [6].
Kubzin and Strusevich [25] have considered all possible sce-
narios of handling the job affected by the non-availability
(resumable, non-resumable or semi-resumable). For all these
scenarios, they offered approximation algorithms with a
worst-case ratio of 3/2. For the resumable scenario, they
presented a 4/3-approximation algorithm.

In our best knowledge, only one paper dealt with the
problem under consideration. Indeed, Ben Chihaoui et al. [3]
introduced the problem and proposed exact method and
heuristic procedures. Firstly, they proposed a set of upper
bounds: two constructive heuristics, a genetic algorithm and a
greedy search procedure. After that, the authors proposed sev-
eral lower bounds based on single machine relaxations. The
different components were embedded within a branch-and-
bound algorithm to solve exactly the problem. Computational
results showed that the algorithm could only solve instances
with up to 15 jobs. These results show the intractability of
the problem and the necessity to propose efficient procedures
to deal with its difficulty. The objective of this paper is
to propose effective exact methods for the problem under

consideration. More precisely, we make the following con-
tributions:

1) We propose a mathematical model for the problem and
enhance it with valid inequalities.

2) We derive several lower bounds based on single and
two-machine relaxations.

3) We introduce a preprocessing procedure which reduces
the size of the instances.

4) We implement branch-and-bound algorithms based on
the proposed procedures.

5) We conduct a comprehensive computational study that
make evidence that our exact methods outperform
already existing procedures.

The remainder of this paper is organized as follows.
Section II presents the mathematical formulation and the
valid inequalities. Section III recalls the state-of-the art lower
bounds and presents the new derived ones. The compo-
nents of the branch-and-bound algorithm are described in
Section IV. Computational experiments on a set of randomly
generated instances are reported in Section V. Finally, con-
cluding remarks are given in Section VI.

TABLE 1. Data of example 1.

Example 1: Consider the 5-job instance defined by
Table1, where the first and the second machines are
unavailable during time periods [100,180] and [120,220],
respectively.

FIGURE 1. Optimal schedule of example 1.

Figure 1 depicts the optimal schedule which yields a
makespan Cmax = 378.

II. MATHEMATICAL FORMULATION
In this section, we propose a mathematical formu-
lation for the problem. To this end, we used the
assignment-based formulation originally introduced by
Lasserre and Queyranne [26] for single machine problems
and then adapted it to this problem. Before presenting the
model, we introduce a useful result allowing to eliminate
some decision variables.

A. PRELIMINARY RESULT
In order to derive the formulation, we first replaced the
unavailability intervals by twofictious jobs, denoted hereafter
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by α and β defined as follows:
• rα = s1, p1α = s2 − s1, p2α = t1 − s2,
• rβ = s2, p1β = t1 − s2, p2β = t2 − t1 .
In the sequel, we denote by Jf = J ∪ {α, β}, the set of

jobs to schedule plus the two dummy jobs. The key idea of
the formulation is to consider n + 2 positions (one position
for each job in the set Jf ) and to determine for each position
what is the job to be scheduled. It is clear that the two dummy
jobs α and β must be scheduled at positions that will match
the unavailability intervals. Thus, after a first look, we must
consider the n+ 2 positions for these two latter jobs. In order
to reduce the number of positions to consider, we will search
for the maximum number of jobs that can be scheduled before
the unavailability intervals. To this end, we compute the
schedule based on the Shortest Remaining Processing Time
(SRPT) rule on both machines as follows:
• on the first machine, the release dates are rj and the
processing times are equal to p1j.

• on the second machine, the release dates are equal to
rj + p1j and the processing times are p2j.

It is worth recalling that the SRPT rule consists in schedul-
ing at each time period the job with the minimum remaining
processing time. Chu [14] proved the following lemma:
Lemma 1: The completion time of position k given by the

SRPT rule is a lower bound on the completion time of the job
processed at position k in any sequence.

Let k imax , i = 1, 2, be the maximum index verifying
S i(k imax) ≤ si where S i(.) is the completion time given by
the SRPT rule of the job scheduled at the position indicated
between brackets on machine Mi. Thus, we have the follow-
ing result:
Fact 1: kmax = min(k1max , k

2
max) represent an upper bound

on the number of jobs that can be scheduled before the
unavailability period.
Proof 1: On one hand, considering only the processing

time on the first machine represents a relaxation to the prob-
lem. Thus, based on the result of Lemma 1, it is clear that
k1max constitutes an upper bound on the maximum number of
jobs that can be scheduled before the starting time s1 of the
unavailability interval on the first machine.

On the other hand, since job j can not be scheduled before
rj+ p1j then this latter value constitutes a lower bound on the
starting time of job j on the second machine. Applying the
same reasoning as in M1 leads to k2max to be an upper bound
on the maximum number of jobs that can be scheduled before
the starting time s2 of the unavailability interval on M2.
As a result kmax = min(k1max , k

2
max) is an upper bound

on the number of jobs that can be scheduled before the
unavailability period.
Corollary 1: The set Pj of possible positions for job j is:

Pj =


{1, . . . , n+ 2} if j ∈ J
{1, . . . , kmax + 1} if j = α
{2, . . . , kmax + 2} if j = β

B. THE MODEL
The formulation is based on binary variables xjk which deter-
mines whether the job j is scheduled at position k , i.e., xjk is
equal to 1 if job j is scheduled at position k and 0 otherwise.
Continuous variables C1

k and C2
k are also used to compute

the completion times of the job scheduled at position k on
machines M1 and M2, respectively. A continuous variable
Cα is necessary to retrieve the completion time of the first
dummy job α.

The mathematical model, hereafter denoted by (MIP),
is given as follows.

minC2
n (1)

s.t.
∑
k∈Pj

xjk = 1, ∀j ∈ Jf (2)

∑
j∈Jf

xjk = 1, ∀k ∈ Pj (3)

C1
k ≥

∑
j∈Jf

(rj + p1j)xjk , ∀k = 1, . . . , n+ 2 (4)

C1
k ≥ C

1
k−1 +

∑
j∈Jf /k∈Pj

p1jxjk , ∀k = 2, . . . , n+ 2

(5)

C1
k ≥ C

2
k−1, ∀k = 2, . . . , n+ 2 (6)

C2
k ≥ C

1
k +

∑
j∈Jf /k∈Pj

p2jxjk , ∀k = 1, . . . , n+ 2 (7)

Cα ≥ C1
k − L(1− xαk ), ∀k = 1, . . . , kmax + 1 (8)

Cα = s2, (9)

xαk ≤ xβk+1, ∀k = 1, . . . , kmax + 1 (10)

C1
k , C

2
k ≥ 0, ∀k = 1, . . . , n+ 2 (11)

xjk ∈ {0, 1}, ∀j ∈ Jf , k ∈ Pj (12)

The objective function (1) minimizes the makespan on
the second machine. Constraints (2) and (3) state that each
job is scheduled at only one position and at each position
only one job is processed, respectively. Constraints (4) ensure
that the job scheduled at position k can not start before its
release date while constraints (5) ensure that the same job can
not start before the completion time of the job scheduled at
position k−1. Constraints (6) force the no-wait requirement.
Constraints (7 ) are used to compute the completion times
on the second machine. At this point, it is worth noting
that variables C2

k can be eliminated from the formulation.
We kept them to simplify the presentation of the model.
Constraints (8) allow to retrieve the completion time of the
dummy job α on the first machine where L is a large value.
Constraint (9) force this latter completion time to be equal
to s2. Constraints (10) force the second dummy job β to
be scheduled immediately after job α. Thus, constraints ( 9)
and (10) ensure that the fictious jobs are scheduled on the
unavailability period. Finally, Constraints (11) and (12) are
the continuous and integrality constraints, respectively.
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C. VALID INEQUALITIES
We also added valid inequalities to strengthen the
model. These constraints are inspired from those of
Haouari and Kharbeche [18] and Kooli and Serairi [23] who
proposed a set of valid inequalities for the assignment-based
formulation. The key idea is based on the computation of
lower bounds on the completion times of the positions. Let
λijk , i = 1, 2, be a lower bound on the completion time on
machine i if job j if scheduled at position k . It is clear that∑n

j=1 λ
i
jkxjk represents a lower bound on the completion time

on machine i of the job processed at position k . Thus, the
following Proposition holds.
Proposition 1: Inequalities

C i
k ≥

n∑
j=1

λijkxjk , ∀i = 1, 2, ∀k = 1, . . . , n (13)

are valid for (MIP).
Kooli and Serairi [23] proposed lower bounds on the com-

pletion times of positions in the case of the single machine
problem with release dates. The authors used the Shortest
Remaining Processing Time rule to derive a set of schedules
by omitting each time a job from the initial set of jobs. They
proved thatmax(Ck−1(J\{j}), rj)+pj constitutes a valid lower
bound on the completion time of job j if it is scheduled
at position k , where Ck−1(J\{j}) is the completion time of
position k − 1 computed by the SRPT rule on the set of
jobs J\{j}. In our case, in order to compute the values λijk ,
we used the same approach on both machines M1 and M2
separately, i.e., on the first machine, the release dates are
rj and the processing times are equal to p1j. On the second
machine, since job j can not be scheduled before rj+p1j then
the release dates are equal to rj+p1j and the processing times
are p2j.

III. LOWER BOUNDS
In this section, we describe the proposed lower bounds in
the literature. Then, we present a new single machine-based
lower bound. Finally, we propose several lower bounds based
on two machine relaxations.

A. LOWER BOUNDS OF THE LITERATURE
In order to derive a set of lower bounds,
Ben Chihaoui et al. [3] replaced the unavailability intervals
by the two dummy jobs (see Section II-A) and used a classical
and widely used flow shop relaxation scheme which consists
in relaxing the capacity of all the machines but one, say
Mk (k = 1, 2). The obtained problem is the well-known
single machine problem with release dates (or heads) and
delivery times (or tails) denoted by 1|rj, qj|Cmax .

A first simple and easy way to compute a lower bound
based on this scheme consists in removing the first machine
and considering only the second one. Thus, we get a set of
jobs J ∪ {α, β} with rj = rj + p1j, pj = p2j and qj =
0, ∀j ∈ J ∪{α, β}. The resulting problem is optimally solved
by scheduling the jobs in the non-decreasing order of their

release dates. This bound is referred by LB1 and is computed
in O(n log n)-time.
A second lower bound is based on the relaxation of the sec-

ond machine and considering the processing times of the jobs
on M2 (p2j) as the delivery times. The preemptive version
of the resulting problem 1|rj, qj|Cmax , is optimally solved
using the so-called Jackson’s Preemptive Schedule [21]. It’s
worth noting that the two dummy jobs are constrained to
start at their release dates. The obtained preemptive lower
bound is denoted by LB2 and is calculated in O(n log n)-
time. Similar to the previous relaxation but without consid-
ering the preemption, a valid lower bound (hereafter referred
as LB3) is derived by solving the latterNP-hard problem [4]
optimally by the branch-and-bound algorithm developed by
Gharbi and Labidi [15].

Another interesting lower bound is computed by con-
sidering the same relaxation scheme for LB1 but without
adding the two fictious jobs. Instead, the unavailability period
on the second machine [s2, t2] is taken into account. Fol-
lowing the notation of Schmidt [32], the resulting prob-
lem is denoted by 1,NCwin|rj, qj|Cmax where the tails (qj)
are equal to zero. This latter problem is then solved opti-
mally by the dynamic programming algorithm developed by
Kacem and Haouari [22]. The obtained lower bound is
denoted by LB4 and clearly dominates LB1.

After this brief description of the lower bounds of the
literature, we move to the presentation of the new proposed
bounds.

B. NEW SINGLE MACHINE-BASED LOWER BOUND
The computation of this lower bound is similar in spirit
to LB4 but instead of relaxing the first machine, the sec-
ond one is relaxed and the machine is not available
during [s1, t1]. The resulting problem 1,NCwin|rj, qj|Cmax ,
where the heads, the processing times and the tails are,
respectively, equal to rj, p1j and p2j, ∀j ∈ J , is solved
using the Integer Linear Program developed by Gharbi et al.
[16]. It is clear that this bound (denoted by LB5) dominates
LB2 and LB3.

C. TWO-MACHINE BASED LOWER BOUNDS
In the sequel, we propose two lower bounds by relaxing
some constraints from the original problem in order to get
polynomial solvable problems.

1) TRAVELING SALESMAN-BASED LOWER BOUND
The idea of this lower bound consists on relaxing the release
dates and the non-availability constraints which are replaced
by the two dummy jobs α and β. The obtained problem
is F2|nwt|Cmax . Gilmore and Gomory [17] formulated this
latter problem as a Traveling Salesman Problem and proved
that finding an optimal tour is similar to finding the optimal
permutation. Based on this result, we can derive a lower
bound by minj∈J rj + Opt(J ), where Opt(.) is the optimal
solution of the F2|nwt|Cmax problem calculated on the set
between brackets. Repeating this result for every release date
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and considering each time the subset of jobs having their
release greater than the actual considered release date, we can
derive a lower bound LB6 which can be formally presented as
follows:

LB6 = max
j=1,...,n

{
r∗j + Opt(j ∈ J/rj ≥ r

∗
j )
}

where r∗1 ≤ r∗2 ≤ . . . ≤ r∗n are the heads rj (j ∈ J ) sorted
in the non-decreasing order.

Since Gilmore and Gomory [17] showed that the two-
machine no-wait flow shop problem can be obtained in
O(n log n)-time, then it is clear that LB6 is computed
in O(n2 log n).

2) PREEMPTION-BASED LOWER BOUND
An interesting lower bound, denoted hereafter by LB7,
is computed by relaxing the no-wait requirement and the non-
availability constraints which are replaced by the two dummy
jobs α and β. In addition, the preemption is allowed on the
first machine. In this context, Cheng et al. [7] proved that
the two-machine 1-minimal flow shop problem with preemp-
tion (denoted by F2|rj, 1−min, pmtn|Cmax) is polynomially
solvable in O(n log n)-time. Note that the two-machine flow
shop is called 1-minimal if the processing times satisfy the
constraints p1j ≤ p2j, ∀j ∈ J [1], [24]. In order to satisfy
the 1-minimal condition, the instance is modified by setting
p1j = min(p1j, p2j), ∀j ∈ J .
For the sake of completeness, we briefly sketch the basic

idea of the algorithm developed by Cheng et al. [7].

1) Apply the SRPT rule on the first machine.
2) Schedule the jobs on the second machine according

to the non-decreasing completion times on the first
machine.

IV. BRANCH-AND-BOUND ALGORITHM
In this section, we provide a detailed description of our
branch-and-bound algorithm.

A. PREPROCESSING PROCEDURE
We present two procedures that are executed before starting
the branch-and-bound procedure. The first one consists in
adjusting the release dates and thus can tighten the value of
the lower bounds. The second one, consists in eliminating
some jobs from the instance in order to reduce the search
space which affects the computational burden.

1) ADJUSTMENT RULE
A simple approach, that was presented by Chihaoui et al. [3],
for adjusting the release dates is based on the fact that
the two machines are constrained to handle any job in the
unavailability periods. Clearly, if for any job j (j = 1, . . . , n)
with rj ≤ t2 satisfying one of the two following con-
straints (rj + p1j > s1) or (rj + p1j + p2j > s2) then
the release date of job j should be adjusted as follows:
rj = max(t1, t2 − p1j).

2) ELIMINATION RULE
We generalize the elimination rule that was presented by
Tadei et al. [13] for the F2|rj|Cmax problem. This rule can
be formulated as follows.
Proposition 2: Let σ = (σ (1), σ (2), . . . , σ (n)) be a com-

plete schedule. If there exists 1 < k < n such that the
following inequalities hold:

min
k≤l≤n

(
rσ (l) +

l∑
h=1

phσ (l)
)
≥ C i

k−1, ∀i = 1, 2

then the subsequence (σ (1), σ (2), . . . , σ (k−1)) can be elim-
inated from the instance.

Proof 2 (Obvious): Because of the non-availability con-
straints, we will use this proposition in a more adequate and
intelligent manner. To this end, we divide the set of jobs J
into two subsets as follows:
• J1 = {j ∈ J such that rj + p1j ≤ s1 and rj + p1j + p2j ≤
s2} the subset of jobs that potentially can be scheduled
before the non-availability constraints,

• J2 = J\J1 the subset of jobs that must be scheduled after
the non-availability constraints.

The key idea is to derive a schedule on subset J1 and to
test if the generated schedule can be eliminated from the
solution. For a more comprehensive presentation, we present
the elimination rule by Algorithm 1 in which C i(.) represents
the completion time of the schedule between brackets on
machine Mi.

Algorithm 1 Elimination Rule
Construct a schedule on the subset J1
if C1(J1) ≤ s1 and C2(J1) ≤ s2 then
Remove the jobs of J1 from the instance
Construct a schedule on the subset J2

end if
Apply Proposition 2 on the derived schedule

For the construction of the sequences, we used the fuzzy
scheduling method introduced by Cheng et al. [7] for
F2|rj|Cmax problem. Let Dl(σ ij) = C l(σ ij) − C l(σ ji);
l = 1, 2. A fuzzy function is introduced:

µσ (i, j) = 0.5−
D(σ ij)

2 Dmax(σ )

where D(σ ij) =
∑2

l=1 αlD
l(σ ij) and Dmax(σ ) =

maxi,j |D(σ ij)|. The real numbers α1 and α2 must verify the
equality α1+α2 = 1. In our tests, we have set α1 = α2 = 0.5.
The fuzzy function is used to estimate the probability that
job i precedes job j for the completion of schedule σ . Thus,
the next job i chosen to terminate schedule σ is identified
by max

i∈NS
min
j∈NS

µσ (i, j) where NS is the set of unscheduled

jobs. The procedure is repeated iteratively for the set of
unscheduled jobs J1 or J2 to derive a schedule. The derived
schedule is also used as the starting solution in the branch-
and-bound algorithm.
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B. UPPER BOUND
In order to get quickly a strong upper bound, a genetic local
search algorithm was implemented in the root node of the
tree. We have modified the code of the genetic procedure of
Rakrouki et al. [31]. The procedure is based on an initial pop-
ulation consisting in a set of solutions generated randomly.
Each solution is evaluated by means of its fitness (the value
of its makespan). At each iteration, crossover and mutation
operations are applied on the current population. After that,
a local search step is applied on the generated solutions using
two local search heuristics, each one being selected under a
probability.

C. BRANCHING SCHEME AND SEARCH STRATEGY
In order to solve the F2|nr − a, nwt, rj|Cmax problem, two
types of search strategy have been implemented within our
branch and bound algorithm:
• Depth first strategy: it consists in branching on the node
in a depth-first order.

• Best active new node strategy: it consists in branching
on the node which has the smallest lower bound among
the most recently created nodes.

D. DOMINANCE RULE
For the aim of improving the performance of our branch-
and-bound algorithm, a dominance rule reducing the size
of the search space is developed. This dominance rule is
based on the set of unscheduled jobs. It’s an adaptation of
the dynamic programming dominance rule firstly proposed
by Potts and Van Wassenhove [30]. The rule can be stated as
follows.
Proposition 3: Given two initial partial sequences σ and

σ ′ constituting different permutations of the same job set
such that C i(σ ′) ≥ C i(σ ), ∀i = 1, 2 (break ties arbitrarily),
then σ dominates σ ′ and the node corresponding to partial
sequence σ ′ can be pruned.
In order to efficiently use this dominance rule, we used

a Hash Table to store the informations. Each entry of the
table corresponds to several list of jobs. Each list is sorted in
Lexicographic order. Moreover, each list has a list of couples
of completion times C1

max and C
2
max . In a node of the branch-

and-bound algorithm, we have four situations:
• There is no entry in the hash table corresponding to the
set of scheduled jobs. Thus, an entry must be created.

• The two completion times are lower than a previously
stored couple of completion times then the completion
times are updated.

• The two completion times are greater than a previously
stored couple of completion times then the node is
pruned.

• There is no relation between the completions times of
the partial sequence and a previously stored couple of
completion times then a couple of completion times is
added to the list of jobs.

The rule runs in O(n log n)-time. Indeed, we must sort
the set of scheduled jobs in Lexicographic order which is

obtained in O(n log n) and the comparison of two set of jobs
is done in O(n).

V. COMPUTATIONAL RESULTS
The performance of the proposed procedures has been
assessed on a set of a randomly generated instances. All the
algorithms were coded in C++ and compiled with Visual
Studio 2010. The MIP instances have been solved using
Cplex 12.6. All the computational experiments were carried
out on a Quad Core 3.40 GHz Personal Computer with 16 GB
RAM under Windows 7 Ultimate environment. A time limit
equal to 3600 seconds has been set for each variant of our
exact procedure.

A. DATA SET
The scheme of the generation of the instances is the same as
the one used by Chihaoui et al. [3], i.e.,
• The number of jobs n is equal to 10, 15, 20, 25, 30, 35,
40, 45 and 50 jobs.

• The processing times on machineM1 andM2 are drawn
from the discrete uniform distribution [1,100].

• The release dates are drawn from the discrete uniform
distribution [1, 100 · R], where R ∈ {1, 2, n, 2n}.

• The starting time s1 of the unavailability period on
machine M1 was fixed at the beginning (s1 =

0.25 · T ) or in the middle (s1 = 0.5 · T ) where
T represents an horizon of the schedule computed by
T =

∑
j∈J p1j +

∑
j∈J p2j. The starting time s2 of the

unavailability period onmachineM2 is set to s1+0.25· Tn
• The ending times t1 and t2 are set to s1 + T

n and s2 +
1.25 · Tn , respectively.

• 10 instances were generated for each combination of
n, R and s1 for a total of 400 instances.

• The instances were grouped into 8 sets (S1, S2, . . . , S8)
where the odd sets (S1, S3, S5 and S7) corresponds to
s1 = 0.25 · T and the even sets to s1 = 0.5 · T .

B. COMPARISON OF THE LOWER BOUNDS
The results of a comparison of our lower bounds,
according to the variation of the set (S1, S2, . . . , S8)
and n (10, 15, 20, 25, 30, 35, 40, 45, 50), are depicted
in Table 2. For each lower bound, we provide the
following:
• Gap: the mean percentage deviation with respect to the
Genetic-based upper bound.

• Time: the mean CPU time (in seconds). The computa-
tional times less than 0.01 second are denoted by ‘‘-’’.

• Max: the number of times where the lower bound is
maximal, i.e., gives the best value among all the lower
bounds LBi(i = 1, . . . , 9).

In addition to the lower bounds described in Section III,
we added two other lower bounds: LB8 is based on the linear
relaxation of (MIP) and LB9 is based on the linear relaxation
of (MIP) along with constraints (13).

Table 2 depicts:

VOLUME 6, 2018 16299



M. Labidi et al.: Computational Study of the Two-Machine No-Wait Flow Shop Scheduling Problem

TABLE 2. Detailed performance of the lower bounds.

• LB6 and LB9 exhibit the best performance among all
the developed lower bounds. Indeed, LB9 outperforms
LB6 for instances with n ≤ 30 and the performance
is inverted on instances with n > 30. Moreover, LB6

yields to the maximum lower bound in almost 72% of
the instances with a relatively large difference to LB9
(54% of the instances). Furthermore, LB9 needs more
computational effort (more than 1 second for n ≥ 30).
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TABLE 3. Performance of the branch-and-bound algorithm.

• Interestingly, we see that the valid inequalities have a
strong impact on the performance of the mathematical
formulation.

• Clearly, LB5 outperforms the state-of-the-art lower
bounds (LB2 and LB3) but its performance remains how-
ever quite weak compared with the other lower bounds.

• We remark that LB7 provides better performance than
LB4 for the sets S1, S2, S3 and S4 but this performance
seems dramatically sensitive to the other sets (S5, S6, S7
and S8) where LB4 dominates LB7.

At this point, the results suggest that computing LB5 or LB9
at each node of the tree is not worthwhile. Consequently,
in each node N , we compute the lower bound LB(NS)
on the set of unscheduled jobs as follows: LB(NS) =
max(LB6,LB7). However, in order to speed up our exact
procedure, LB6 was computed only for the minimal release
date, i.e., LB6 = min

j∈J
rj+Opt(J ) whereOpt(J ) is the optimal

solution of the F2|nwt|Cmax problem calculated on the job
set J . Moreover, it should be made clear that the lower bound
at the root node of the search tree is defined as follows:
LB(root node) = max(LB4,LB5,LB6,LB7,LB9).

C. PERFORMANCE OF THE BRANCH-AND-BOUND
ALGORITHM
Actually, we implemented six variants of our exact procedure
denoted by B1, B2 and B3 for the variants using the best
active new node strategy and D1, D2 and D3 for those using
the depth first strategy. The utilization of the elimination and
dominance rules is as follows:
• B1 and D1: only the elimination rule.
• B2 and D2: only the dominance rule.
• B3 and D3: both the elimination and dominance rules.
In Table 3, we evaluate the performance of the different

branch-and-bound procedures. We provide the number of
solved instance (denoted by SI ) together with the average
CPU time (denoted by Time). All the exact procedures are
compared for n equal to 10, 15, 20, 25, 30. According to this
Table, we notice that all the branch-and-bound variants are
able to solve 100% of the instances for n equal to 10 and
15 with a computational time less than 7 second. Moreover,
B2, B3, D2 and D3 enable to solve all of the generated
instances for n equal 20 within an average CPU time of
42, 73 seconds for B3. Clearly, B3 and D3 exhibit the best
performance due to the importance of the dominance and

elimination rules. Following those two variants, only few
instances still unsolved (12, 5% and 26, 25% for n equal to
25 and 30, respectively). However,D3 is outperformed by B3
in term of computational effort.

D. COMPARISON OF THE EXACT METHODS
The performance of the the best variant of our branch-
and-bound algorithm, namely B3, according to the vari-
ation of the set and the number of jobs n is analyzed
in Table 4. This procedure is compared to the exact res-
olution of the mathematical model (MIP) along with con-
straints (13). To have an exact idea about the performance of
our approaches, we coded the branch-and-bound proposed by
Chihaoui et al. [3] as described by the authors with only a
minor modification on the upper bound. For clarity, we recall
the different components of this algorithm:

• The depth first strategy is considered,
• The lower bounds used are LB1 and LB4. If LB1 fails to
eliminate the node then LB4 is computed,

• The root node is the maximum between LB2, LB3 and
LB4,

• The upper bound developed is our genetic algorithm
described in Section IV-B.

The depicted results show the high efficiency of our
exact solution approaches. Indeed, we observe that, on one
hand, for the sets S5, S6, S7 and S8, our branch-and-bound
algorithm B3 enables to solve almost all the generated
instances within a very short CPU time (less than 1 sec-
ond in about all the instances). Moreover, our formulation
do the same but it requires more CPU times in few cases.
By contrast, we see that the state-of-the-art algorithm of
Chihaoui et al. [3] is not able to solve all the cases for the same
set of instances while it requiresmuchmore CPU time. On the
other hand, B3 is able to solve all the generated instances
for the set S1, S2, S3 and S4 for n ≤ 20 with a maximum
average CPU time of 133.69 seconds. Nevertheless, the per-
formance of our procedures (B3 and Formulation) remain
acceptable for instances with n ≥ 25 where only few cases
still not solved within the limit. Interestingly, we remark that
the formulation is able to solve more instances than B3 for
this type of instances on S2 and S4. For the same set of
instances, the B&B of Chihaoui et al. [3] can solve only
few cases for n = 20 and fail to solve all but one instance
with n ≥ 25.
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TABLE 4. Comparison of the exact methods.

VI. CONCLUSION
In this paper, we have presented a computational study for the
two-machine no-wait flow shop scheduling problem with a
single unavailability period on each machine and job release
dates. This problem arises in the context of many real life
industrial problems (i.e., scheduling with planned preventive
maintenance operations). We have presented a mathematical
formulation and valid inequalities for the problem. We also
provided very tight lower bounds and have embedded them
within an exact search procedure. We have reported the
results of extensive computational experiments that prove
that the proposed approaches consistently provide optimal

solution for instances with up to 25 jobs while requiring short
CPU times.

For future research, the investigated algorithm could be
incorporated within more complex and realistic scheduling
problems with unavailability constraints. More precisely, this
research can be extended to the case where we have multiple
unavailability periods.
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