
Received January 7, 2018, accepted March 10, 2018, date of publication March 13, 2018, date of current version March 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2815617

Lightweight SOA-Based Multi-Engine Architecture
for Workflow Systems in Mobile
Ad Hoc Networks
TONGGUANG ZHANG 1, SHUAI ZHAO 1, BO CHENG1, (Member, IEEE), MAURIZIO FARINA2,
JIWEI HUANG1, (Member, IEEE), JUNLIANG CHEN1, BINGFEI REN 1, AND SHOULU HOU1
1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Ericsson IT Solutions & Services SpA, 80143 Napoli, Italy

Corresponding author: Tongguang Zhang (jsjoscpu@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61501048, in part by the Beijing
Natural Science Foundation under Grant 4182042, in part by the Fundamental Research Funds for the Central Universities under Grant
2017RC12, in part by the National Natural Science Foundation of China under Grant U1536111, Grant 61372115, Grant U1536112, and
Grant 61502043, and in part by the Beijing Natural Science Foundation under Grant 4162042.

ABSTRACT At present, most mainstream workflow systems adopt client/server architecture where the
workflow system server (WSS) runs on a server in a fixed network or cloud and the workflow system
client (WSC) runs on a PC or a mobile smart device (MSD), such as a smartphone. However, in special
circumstances (e.g., battlefields, earthquakes, tsunamis, and floods) communication infrastructure can be
damaged or it does not exist; consequently, traditional workflow systems cannot meet the need. MSDs are
now more powerful than ever and can be used to construct mobile ad hoc networks (MANETs) in special
circumstances. To provide communication usingworkflow technology inMANETs, we present a lightweight
service-oriented architecture-based multi-engine architecture for workflow systems in MANETs. One
characteristic of the architecture is that certain MSDs play dual roles, functioning as both a WSS and a
WSC. We provide the architecture design details and implement the workflow engine on Linux/Android
platforms. Because the multiple workflow engines must be able to cooperate closely, we present a multi-
engine trigger mechanism. The test results validate the effectiveness and availability of the workflow engine
and verify the feasibility of the algorithm for the multi-engine trigger mechanism.

INDEX TERMS MANET, multi-engine, SOA, trigger mechanism, workflow system.

I. INTRODUCTION
In recent years, mobile smart devices (MSDs), such as tablets
and smartphones, have gradually become more powerful and
popular computing platforms, and MSDs are predominantly
used for web services. As a result, MSDs are increasingly
used as work equipment in many industries and government
organizations worldwide. Assisted by specifically developed
mobile applications, employees in many industries have
improved their productivity by participating in the business
process regardless of the location and time. However, in cer-
tain situations, MSDs do not work, and workflow systems
are unavailable because of a lack of necessary infrastructure
(such as in underground areas, sparsely populated areas, etc.)
or infrastructure failure. Most mainstream workflow systems
currently use client/server architecture in which the workflow
system server (WSS) application runs on a server within a

fixed network or cloud, while the workflow system client
(WSC) runs on a PC or MSD. However, in special circum-
stances (e.g., battlefields, earthquakes, tsunamis, and floods)
communication infrastructure can be damaged or it does
not exist; consequently, traditional workflow systems cannot
perform their roles or functions. Now, however, MSDs can
be used to construct mobile ad hoc networks (MANETs) in
these special circumstances.

MANETs are both self-forming and self-healing and
can enable peer-level communications between MSDs with-
out relying on centralized resources or fixed infrastructure.
Several routing algorithms are available and include OLSR
(optimized link state routing protocol), OSPF (open shortest
path first), B.A.T.M.A.N. (better approach to mobile ad hoc
networking), and AODV (ad hoc on-demand distance vector)
among many others.

14212
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-8402-1279
https://orcid.org/0000-0002-5217-004X
https://orcid.org/0000-0001-7491-2465


T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

Currently, a workflow engine can be executed on an MSD.
Some studies have focused on single-engine (mobile pro-
cess engine, MPE) in mobile networks. Schobel et al. [1]
presented a lightweight mobile process engine for executing
data collection instruments on MSDs. The mobile process
engine allowes for an offline execution of deployed process
models as well as for the storage of the collected data on the
MSD. Wipp [2] proposed Workflows on Android (WOtAN),
a modular and flexible framework for business process man-
agement running on Android MSDs, and showed an applica-
tion scenario where WOtAN was used to properly support
a mobile data collection application. Castelán et al. [3]
described a Software Reference Architecture for WfLMS
(Workflow Learning Management Systems) with Mobile,
Cloud and Collaborative functionalities in order to develop
a WFLMS as a native application for the iOS platform. The
other studies have focused on the cooperation amongmultiple
engines. Thai et al. [4] deployed a number of engines in
the cloud to orchestrate the workflow, the engines support
decentralisation by allowing intermediate data to be trans-
ferred between one another. Bi et al. [5] proposed process
models fragmentation approaches based multiple execution
engines. IBM InfoSphere Information Server [6] is a data
integration platform, multiple workflow engine processes can
be run across the cluster where the InfoSphere Master Data
Management Collaboration Server is running. More than one
workflow engine processes run on different servers and share
the load of items that are moving through workflows. How-
ever, although the work mentioned above studied or imple-
mented the cooperation among multiple engines, due to the
constrained resources and the unstable network connectiv-
ity of MANETs, the cooperation approaches are not quite
suitable to be used in MANETs. In this paper, we study
the cooperation among multiple engines in MANETs and
face two challenges: (1) the design and implementation of a
lightweight workflow engine that can be executed efficiently
on MSDs; and (2) combining multiple workflow engines to
work as single workflow engine such that users perceive only
a single workflow engine.

For communications among people using workflow tech-
nology in MANETs, we present a lightweight service-
oriented architecture (SOA)-based multi-engine architecture
for workflow systems in MANETs. One characteristic of the
architecture is that certain MSDs play dual roles, functioning
both as a WSS and as a WSC. In this study, we design
a scenario in which the communication infrastructure is
absent as shown in Fig. 1-A. Then, MSDs are used to con-
struct a MANET as shown in Fig. 1-B, where if MSD-A is
elected as the server, other MSDs can visit the WSS in this
server. Assuming that MSD-A eventually becomes disabled,
as shown in Fig. 1-C, the MANET must be reconstructed
as shown in Fig. 1-D. After MSD-B has been elected as the
server, other MSDs can visit the WSS in this server. The
MANET construction/reconstruction processes are transpar-
ent to mobile subscribers. To achieve this goal, we present a
lightweight multi-engine architecture based on SOA [7], [8]

FIGURE 1. Application of the multi-engine architecture in MANET.

to construct the workflow systems in MANETs. Special sce-
narios [9] occur in which the multi-engine architecture would
become beneficial, including but not limited to battlefields,
post-disaster relief management, and collaborative working
sites under field conditions.

In this paper, the main contributions of the current work
are fourfold. First, we provide a lightweight SOA-based
multi-engine architecture for workflow systems in MANETs.
Second, we design and implement a lightweight workflow
engine on the Linux/Android platform in C/C++. Third,
because multiple workflow engines must work as single
workflow engine, we present a multi-engine trigger mecha-
nism throughwhich they can cooperate closely such that users
perceive only a single workflow engine. Finally, we design
and implement a Disaster Response System to evaluate the
effectiveness and availability of the workflow engine.

The remainder of the paper is organized as follows.
Section II reviews related work. Section III introduces the
design and implementation of the workflow engine to resolve
the first challenge. Section IV presents the trigger mechanism
to resolve the second challenge, which activates a workflow
engine based on the connection states of mobile nodes in
MANETs. Section V describes two experiments performed
to validate the effectiveness and availability of the workflow
engine and verify the feasibility of the multi-engine syner-
gistic algorithm. Section VI concludes the paper and briefly
provides directions for future work.

II. RELATED WORK
At present, a process engine can be enabled to run on MSDs.
Schobel et al. [1] conducted studies on a lightweight mobile
process engine for executing data collection instruments on
MSDs.Wipp [2] presentedWorkflows onAndroid (WOtAN),
a modular and flexible framework for business process man-
agement running on Android MSDs. Xu et al. [10] presented
a mobile workflow support system based on mobile stream
data management system for Android devices and applied
vehicle data services and information sharing in collabora-
tive works. In mobile environments, the mobility of portable
devices and the unstable connectivity of mobile networks

VOLUME 6, 2018 14213



T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

can influence web service selection. To address this prob-
lem, Deng et al. [11] proposed a novel offloading system
to allow for the robust selection of mobile services. This
approach considered the dependent relationships between
component services and aimed to optimize the execution
time and energy consumption of the running mobile services.
Park and Nam [12] proposed a framework that supports ubiq-
uitous access to medical systems using MSDs and integrated
medical systems. Tao et al. [13] introduced a mobile work-
flow management system and proposed the active service for
amobile workflow. Reference [14] propose aweb service rec-
ommendation approach based on collaborative filtering and
make QoS prediction based on user mobility. This approach
considers user mobility and data volatility to adapt to mobile
edge computing environments. However, due to resources are
often constrained, the proposed approaches mentioned above
are not suitable for MANETs.

Some studies have been performed in hosting web services
in MSDs. The potential for mobile web services was first dis-
cussed by Berger et al. [15]. Mohamed and Wijesekera [16]
conducted studies on hosting web services in MSDs based
on both SOAP and REST [17], [18]. Wagh and Thool [19]
proposed Android-based framework for hosting mobile ser-
vices using RESTful web services [20], [21] to enable Web
service provisioning. Verma and Srivastava et al. [9] proposed
an approach to manage web service directories hosted on
MSDs that would enable MSDs to manage service registries
without assistance, which can drastically reduce the cost of
and dependency on infrastructure. In addition, this approach
could facilitate the provision of services in dynamic net-
works, such as vehicular networks or MANETs. However,
most of the work performed by a mobile web service uses
a standard directory system with UDDI for web service dis-
covery, which requires high computational costs. In addi-
tion, centralized management could cause a single point of
failure when discovering web services in MANETs. There-
fore, in our proposed multi-engine architecture, we use
a WSLT (Web Service LisT) to manage web services in
resource-constrained MSDs in MANETs.

The literatures [22]–[24] on web service execution have
proposed theories and tools to model the context or envi-
ronment, and studies on running processes in MSDs have
led to more flexible process deployment in MSDs. Even
when the MSDs are disconnected from the central process
engine, they can still conduct the assigned activities. How-
ever, the designed or generated processes target fixed devices
and thus fail to adapt to the changing environment of MSDs.
In our work, we adopt a multi-engine trigger mechanism to
overcome this shortcoming.

III. SOA-BASED MULTI-ENGINE ARCHITECTURE
In this section, we detail the design and implementation of the
multi-engine architecture for workflow systems in MANETs.
Fig. 2 shows the three-layered model of the architecture,
in which MWS represents a mobile web service, WA repre-
sents wrapped APP, M-MPE represents master MPE, S-MPE

FIGURE 2. Three-layered model of the multi-engine architecture.

represents slave MPE, M-MSD represents master MSD, and
S-MSD represents slave MSD.

The first layer of the architecture focuses on multiple
workflow engines.We discuss the design and implementation
of the workflow engine in detail. Because MPEs must be
able to cooperate, we present a trigger mechanism to acti-
vate the workflow engine based on the connection states of
mobile nodes. The layer also focuses on process execution.
The second layer aims to solve the problem of web service
selection in MANETs. The third layer focuses on the exe-
cution of web services in mobile environments. Because of
space constraints, wemainly focus on the first layer and detail
the design and implementation of the lightweight SOA-based
multi-engine architecture in MANETs as well as the multi-
engine trigger mechanism.

A. DESIGN CONCEPTS
The design concepts of the multi-engine architecture address
six key points: lightweight BPM (business process manage-
ment), a master/slave engine, a multi-engine trigger mech-
anism, an SOA-based strategy, a web server hosted on an
MSD, and a RESTful web service.
• Lightweight BPM: BPM takes a holistic approach to
managing all resources involved in a process, including
people, information, content, and applications. In an
integrated BPM suite, a technology platform can be
developed that supports an entire BPM lifecycle with the
ability to design, model, execute, and monitor business
processes. A BPM application is similar to an evolved
workflow system. Because resources are constrained
in MANETs, we propose the lightweight BPM. The
analysis, design and modeling of business processes
are performed using a PC. The business processes are
executed and monitored in MPEs in MANETs.

• Master/slave engine: In MANETs, each MSD may run
either a master engine or a slave engine. However, only
one MSD runs the master engine; the other MSDs con-
currently run the slave engines. We detail which MSD
should be elected to run the master engine in Section IV.

14214 VOLUME 6, 2018



T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

• Multi-engine trigger mechanism: To avoid a single-
point fault, we provide a multi-engine trigger mecha-
nism. If the MSD running the master engine becomes
invalid, another MSD is elected to run the master engine
as soon as possible. The trigger mechanism is presented
in Section IV.

• SOA-based strategy: Alignment with an SOA strat-
egy is prevalent in current workflow systems. In SOA,
components are decomposed into web services, making
them reusable overmultiple platforms. Together with the
SOA, the BPM enables the decoupling and composition
of complex business logic.

• Web server hosted on anMSD: InMANETs, eachMSD
can act as a service provider and a service consumer.
Therefore, a web server must be hosted on an MSD.

• RESTful web service: Enciso-Quispe [18], AlShahwan
and Moessner [25], and Srirama et al. [26] showed
that RESTful web services are relatively more suitable
for mobile environments, which is consistent with our
proposal to offer a directory service (i.e., WSLT) on
an MSD.

FIGURE 3. Lightweight SOA-based multi-engine architecture.

B. LIGHTWEIGHT SOA-BASED
MULTI-ENGINE ARCHITECTURE
As shown in Fig. 3, the lightweight SOA-based multi-engine
architecture includes both an M-MPE and S-MPEs. In the
SOA, each application and its functions are modeled and
published as web services and are reusable across multiple
platforms. Each web service has an interface with a public
description. The architecture supports the asynchronous invo-
cation of web services that have disadvantages when used in
mobile applications. For example, theseweb servicesmay use
the more verbose XML and SOAP protocols. Several per-
formance problems of web services in MSDs are discussed
in [27]–[29]. SOAP is verbose and carries high performance
costs [30]. Therefore, SOAP is difficult to use in resource-
constrained situations. In these cases, we adopt a RESTful
API and JSON to solve the problem. The client sends a
request (JSON message) to the server, and the server sends
a response (JSON message) back to the client.

The characteristics of the architecture are as follows. First,
technical personnel canmake full use of various technologies,
such as C/C++, PHP, JavaScript, Java, python, Node.js,
Websocket, Nginx, lighttpd and Android. Second, the invoca-
tion interface of web services adopts the RESTful style [31].
Third, the workflow engine is lightweight and can be effi-
ciently run in an MSD.

The M-MPE executes the business process and invokes the
tasks belonging to the process. A business process is com-
posed of a group of tasks, resources and a logical relationship,
and these processes are described usingXPDL/BPMN2.With
XPDL/BPMN2, we can describe the services that are used
and specify their order and the data flow occurring in the web
services.

Single points of failure may occur because of server shut-
downs or a removal from the MANET. Therefore, we present
a multi-engine trigger mechanism between the M-MPE and
S-MPEs to solve these issues.

C. MAIN COMPONENTS OF THE WORKFLOW ENGINE
The main components of the workflow engine and their
relationships are described in Fig. 4. The M-MPE manages
the selection, invocation, execution order, and faults of web
services. The S-MPEs synchronize the state/execution data of
the processes with the M-MPE. In this section, we discuss the
design and implementation of these components. The MPE
consists of six main functional modules: Process Execution,
WSLT, Get Web Service URI, Heartbeat, Communication
Protocol and Trigger.

FIGURE 4. Components of the workflow engine.

1) PROCESS EXECUTION
This component is the heart of the workflow engine, and it
is responsible for parsing and executing the process descrip-
tion. In this module, the process business logic is described
using XPDL, and all XPDL activities are implemented. Each
implementation can change the process state. All the mes-
sages use the JSON data-interchange format. When a JSON
message arrives, the module traverses the process description
document and takes appropriate actions. Web services are
identified by the RESTful API, and they communicate by

VOLUME 6, 2018 14215



T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

FIGURE 5. Components of the multi-engine trigger algorithm.

interchanging JSON messages. Therefore, the MPE parses
and executes business processes and then remotely invokes
web services running on other servers via the RESTful
API. The module includes three subsidiary modules: (1) BP
(Business Process) Repository, which supports process man-
agement and enables persistent storage for process descrip-
tions; (2) Instance Data, which stores the values of currently
running process instances; and (3)Process State, which stores
the process state data. The MPE monitors the state of each
request it receives. The state consists of the discovery state
and execution state of each service in the request.

2) WSLT
The WSLT (Web Service LisT) manages the status informa-
tion of web services. After a web service is developed in
a PC, it is uploaded to the MSD. Meanwhile, the information
(SUUID, URI, service function description, etc.) of the web
service is inserted into the WSLT. When designing a business
process, a suitable web service must be identified for each
activity. Thus, a suitable web service in the WSLT must be
identified based on the service request; the SUUID of the
matched web service must be returned, and the activity node
in the business process must be associated with the SUUID.
When executing a business process, the Process Execution
module finds the appropriate URI in the WSLT based on the
SUUID of an activity and then invokes the web service via
the URI.

3) GET WEB SERVICE URI
This module obtains the corresponding URI of a web service
from the WSLT by its SUUID and then calls the web service
via the URI. The web service execution results are returned
to the invoker in a certain data-interchange format (such
as JSON).

4) HEARTBEAT
This module is used to check the validity of a web service
running in a server, and the results are used to update the
activity state of the web service in the WSLT.

5) COMMUNICATION PROTOCOL
To support external communication protocols, aCommunica-
tion Protocol module is provided. This module must support
both the basic internet protocols (e.g., HTTP) and mobile
protocols (e.g., Wi-Fi). Nginx is used as the web server in the
MSD.We provide anNginxmodule that connects the standard
web server with the MPE. Thus, an incoming HTTP request
can be forwarded to the MPE and the reply message can be
routed back to the right application.

6) TRIGGER
This module is the concrete implementation of the multi-
engine trigger mechanism detailed in the next section.

IV. MULTI-ENGINE TRIGGER MECHANISM
Certain single points of failure may occur in MANETs, such
as when the master MSD is shut down or removed from the
MANET. In these situations, another MSDmust be elected as
the M-MPE, and multiple MPEs must be able to cooperate to
send and receive messages in synchronous or asynchronous
modes. Therefore, we study and present a multi-engine trig-
ger mechanism to support the process execution inMANETs,
design the algorithm for the trigger mechanism, and then
write it in C. The source code is available in [32]. The
simulation experiment is presented in Section V.B. Themulti-
engine trigger mechanism is shown in Algorithm 1.

The main functional components of the algorithm and
their relationships are described in Fig. 5. There are three
variables: ctrl, server_IP and IP_list. The IP_list variable
includes the IP addresses of the nodes which may be M-MPE
or S-MPEs, in addition, the IP_list variable is mainly used
by the Heartbeat Thread to find which node is the M-MPE.
The values of all the IP_list variables are the same. The
value of the server_IP variable is the IP address of the
M-MPE. The value of the ctrl variable is very important,
ctrl = −1 denotes that the algorithm is in the initializa-
tion stage, ctrl = 0 denotes that the node is running as the
S-MPE, ctrl = 1 denotes that the node is running as the

14216 VOLUME 6, 2018



T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

Algorithm 1 For the Multi-Engine Trigger Mechanism
VAR: ctrl = −1
VAR: server_IP
VAR: IP_list //the list of IP addresses
BEGIN:
1. procedure: MAIN
2. create_thread(Heartbeat);
3. while ctrl == −1 //Initialization stage
4. sleep 1 s;
5. while true
6. if ctrl == 0: create_thread(Slave);
7. if ctrl == 1: create_thread(Master);
8. end while
9. end procedureMAIN
10. procedure: Heartbeat
11. for ip in IP_list
12. if ctrl == −1 //Initialization stage
13. while true
14. who_is_Master(ip); //later joins in MANETS
15. if ip is Master
16. ctrl == 0; server_IP == ip;
17. if no ip is Master: the max_ip is elected as Master
18. if self_ip != max_ip
19. ctrl == 0; server_IP == max_ip;
20. if self_ip == max_ip: ctrl == 1;
21. end for
22. end while
23. if ctrl == 0 //Slave
24. while true
25. sleep 1 s; request_to_Master(server_IP);
26. if no response from Master
27. for ip2 in IP_list > self_ip //descending order
28. if ping_ok(ip2): server_IP == ip2;

//switch Master
29. if cannot ping all ip2: ctrl == 1; //become Master
30. end for
31. end while
32. if ctrl == 1 //Master
33. while true: response_to_Slave();
34. end for
35. end procedure Heartbeat
36. procedure: Master
37. while true //communication between Master & Slave
38. if database updating
39. send synchronous data to Slave;
40. end procedureMaster
41. procedure: Slave
42. while true
43. if receive synchronous data from Master
44. update database;
45. end procedure Slave
END

M-MPE. There are four functional components: Heartbeat
Thread, MAIN Thread, Master Thread and Slave Thread.

When the algorithm (theMAIN Thread) is starting up, the ini-
tial value of the ctrl variable is −1 and the Heartbeat Thread
is created firstly. After the algorithm is initialized, the value
of the ctrl variable is 0 or 1, if ctrl = 0, the Slave Thread is
created, if ctrl= 1, theMaster Thread is created. Because the
value of the ctrl variable is tuned by the Heartbeat Thread,
theHeartbeat Thread plays an important role. TheHeartbeat
Thread is detailed in the algorithm.

V. TESTING
The test environment is an IBM Server with a 32-core
2.0 GHz Intel Xeon CPU, 64 GB of memory, and a 64-bit
Fedora 26 operating system. We design and implement
the workflow engine (cBPM4Linux), process designer, and
multi-engine synergistic algorithm. cBPM4Linux is short for
C/C++ Business Process Management for Linux. The core
source code of cBPM can be obtained from [33]. We conduct
two experiments: one to test the effectiveness and availability
of cBPM4Linux and the other to validate the feasibility of the
multi-engine synergistic algorithm in a MANET.

FIGURE 6. Functional components of the running cBPM4Linux System.

A. DESIGNING AND TESTING THE WHOLE
CBPM4LINUX SYSTEM
As shown in Fig. 6, the whole cBPM4Linux System consists
of two parts: aWeb Server and aWebClient. Users can design
and execute a process through a Web Client that accesses the
Web Server. The cBPM Front-end Designermodule provides
process design interface for users. The cBPM Web Server
module provides business process execution interface for
users. spawn-fcgi is used to spawn a cBPM Engine which
is a FastCGI application written in C/C++. MariaDB is
used to store the process state, process instance data, and
so on.

To test the effectiveness and availability of the entire
cBPM4Linux System, we design and implement a Disaster
Response System (DRS) as shown in Fig. 7. A DRS provides

VOLUME 6, 2018 14217



T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

FIGURE 7. Process of a disaster response system.

survivors and emergency personnel with the information to
locate and assist each other in a disaster area. The DRS allows
survivors or rescue team to submit help requests to the rescue
center. The rescue center optimizes the available resources
to serve every incoming request, generates an action plan
for the rescue mission, and then sends medical team, fire
brigade or transport team to perform the rescue mission.

The processes of the DRS are described by the XML
file DisasterResponse.xml which can be generated by using
the cBPM Front-end Designer or written manually using a
text editor. Because the cBPM Front-end Designer is in the
process of development, we designed the process description
file for this study using a text editor.

As shown in Fig. 8, the commands in lines 1 and 2 are
used to start the services nginx and mariadb. The command
in line 3 is used to navigate to the folder where the cBPM
Engine (executer) and the code of the cBPM Web Server are
stored. The command in line 4 is used to set up the environ-
ment variables used by the cBPM Engine. The command in
line 5 is used to spawn the cBPM Engine. Next, we introduce
how users access the DRS supported by the cBPM4Linux
System.

Create DRS Process: First, the rescue center creates the
DRS process (the XML file DisasterResponse.xml) as shown
in Fig. 9 (A). Fig. 9 (B) shows the process activities.

FIGURE 8. Start up the whole cBPM4Linux System; the key is to run the
cBPM Engine (Criteria Workflow Engine).

FIGURE 9. Test of the disaster response system.

Submit Help Requests: The survivors or rescue team
complete a help request form and then submit the form as
shown in Fig. 9 (C).

14218 VOLUME 6, 2018



T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

FIGURE 10. Node N10 is moving to a new location in the virtual MANET.

Accept and Dispatch: Based on information from the
survivors or rescue team, the rescue center dispatches medi-
cal team, fire brigade or transport team to perform the rescue
mission as shown in Fig. 9 (D).

Upload Rescue Results:After completing the rescue mis-
sions, themedical team, fire brigade or transport team upload
the rescue results to the rescue center as shown in Fig. 9 (E).
The test result shows that the whole cBPM4Linux System

is effective and available.

B. TEST FOR MULTI-ENGINE SYNERGISTIC ALGORITHM
To validate the feasibility of the multi-engine synergistic
algorithm, we use the Common Open Research Emula-
tor (CORE) [34] to build the virtual MANET. Then, we verify
its feasibility via CORE.

As shown in Fig. 10 (A), the virtual MANET is com-
posed of 11 mobile nodes. The nodes labeled N1–N9 are
S-MSDs. Node N10 is elected as theM-MSD. Each node acts
as a miniature Linux machine with OSPFv3MDR installed.
OSPFv3MDR is an extension of the popular OSPF routing
protocol, and it is used to construct MANETs. In addition,
we run server-manet, which is the program implementation of
themulti-engine synergistic algorithm, on nodesN1–N10 and
run client-manet on the node N11. The program client-
manet is used to simulate a workflow system client that visits
the workflow system server by sending data to the server-
manet running in node N10. Meanwhile, node N10 sends
the synchronous state/execution data of the process to
nodes N1–N9. By double clicking on nodes N6 and N8–N11,
we open terminal windows as shown in Figs. 8–11. The test
steps are as follows.

1. Run server-manet on node N10 as shown in Fig. 11.
2. Run server-manet on nodes N6 and N8. The outputs are

shown in lines 1 and 7 in Fig. 12 and in lines 2 and 3 in
Fig. 11.

FIGURE 11. Node N10 acts as the M-MSD/S-MSD.

3. Run server-manet on node N9. The outputs are line 1 in
Fig. 13 and line 4 in Fig. 11.

4. Run client-manet on node N11. The outputs are shown
in lines 1 and 2 in Fig. 14. Node N11 sends data to node N10,
which then sends data to nodes N1–N9. The outputs are
shown in lines 2 and 8 in Fig. 12 and line 2 in Fig. 13.

5. Now, node N10 moves to a new location as shown
in Fig. 10 (B), which changes the network topology. The
server-manet program is executed and elects node N9 as the
newM-MSD, as shown in line 3 in Fig. 13. NodeN10 changes
to act as an S-MSD, as shown in line 6 in Fig. 11; however,
it cannot visitM-MSD (N9) because of its disconnection from
other nodes as shown in line 7 in Fig. 11. The server-manet
program is executed on nodes N6 and N8 in Fig. 12. Then,
nodes N6 and N8 are elected as S-MSDs again (lines 3 and 9
in Fig. 12) and connected to the M-MSD (lines 5 and 6 in
Fig. 13).

6. The client-manet is executed again on node N11 (line 3
in Fig. 14). The outputs are shown in lines 4 and 5 in Fig. 14.
Node N11 sends data to node N9, which then sends data to
nodes N1–N8. The outputs are shown in lines 4 and 10 in
Fig. 12.

VOLUME 6, 2018 14219



T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

FIGURE 12. Nodes N6 and N8 act as S-MSDs.

FIGURE 13. Node N9 acts as the S-MSD/M-MSD.

FIGURE 14. Node N11 acts as a client and visits the M-MSD.

7. Now, node N10 moves to its original location, which
again changes the network topology, and node N10 is
re-elected as the M-MSD (line 8 in Fig. 11).

8. The client-manet is executed again on node N11 (line 6
in Fig. 14). The outputs are shown in lines 7 and 8 in Fig. 14.
Then, node N11 sends data to node N10, which, in turn, sends
data to nodes N1–N9. The outputs are shown in lines 6 and 12
in Fig. 12 and in line 9 in Fig. 13.

We examine the packet loss, network latency and jitter in
the virtual MANET (shown in Fig. 10) by performing ping
tests from node N11 to nodes N1–N10. After many tests,
we find that the round-trip time (RTT) between any two adja-
cent nodes is approximately a constant value of 40Âś0.1 ms.
The results of the ping test vary depending on the quality of
the connection in real networks. However, stable connections
occur within the virtual MANET. The packet loss is 0.0%,
and the delay between any two adjacent nodes is 20 ms.
In addition, in terms of the relationship between hops and
RTTs (shown in Fig. 15), we observe no delay jitter in the
virtual MANET. Therefore, we test the multi-engine syner-
gistic algorithm in an ideal network environment.

We then study the time points until data synchronization
between the M-MSD and S-MSDs to show the sensitivity
of the algorithm. As shown in Fig. 16, the time required

FIGURE 15. Relationship between hops and round-trip times.

FIGURE 16. Time points until data synchronization between the M-MSD
and S-MSDs.

for node N11 to visit nodes N10/N9 is the baseline time.
(1) Node N10 acts as the M-MSD. When node N11 visits
node N10, after 60 ms, node N10 is successfully connected
to node N11 and sends synchronous data to nodes N6, N8
and N9, respectively. After another 40 ms, nodes N6, N8
andN9 receive the synchronous data. (2) The analysis process
for node N9 acting as the M-MSD is similar to that of node
N10 acting as the M-MSD. (3) Node N10 acts as the M-MSD
again. When node N11 visits node N10, after 80 ms, node
N10 is connected to node N11 and sends synchronous data
to nodes N6, N8 and N9, respectively. After another 40 ms,
nodes N6 and N9 receive the synchronous data. As shown
in Fig. 10 (A), theminimal number of hops between nodeN10
and nodes N6, N8, and N9 is two. However, after 60 ms,
node N8 receives data from node N10 because after node N10
moves to its original location again, the routing table gener-
ated by CORE chooses a three-hop path from node N8 to
node N10. The previous analysis shows that the algorithm
is highly sensitive. The delay time is mainly spent in data
transmissions.

14220 VOLUME 6, 2018



T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

The above test results show that the multi-engine synergis-
tic algorithm is available for data synchronization between
MSDs in MANETs. The source code of the algorithm is
available in [32].

VI. CONCLUSIONS
When communication infrastructures are damaged or do
not exist, traditional workflow systems cannot fulfill their
roles or functions. This study was performed to provide
communication by using workflow technology in MANETs.
The primary findings can be summarized as follows. First,
a lightweight SOA-based multi-engine architecture for work-
flow systems in MANETs was presented, and the architec-
ture was described. Second, the workflow engine that runs
on Linux/Android was implemented using C/C++. Third,
a trigger mechanism between multiple workflow engines
was applied; the algorithm for the trigger mechanism was
designed and implemented in C. Two experiments were con-
ducted to validate the effectiveness and availability of the
workflow engine and to verify the effectiveness of the multi-
engine synergistic algorithm in MANETs.

Our group is performing ongoing work to combine
Android, Docker, NS-3 and Fedora to construct an exper-
imental platform [35], [36] that more closely matches
an actual MANET environment. This platform will run
cBPM4Linux, server-manet, MariaDB and Nginx in Docker
and run cBPM4Android, server-manet, SQLite and Nginx
in Android. Subsequently, we will be able to undertake
additional studies to reveal the issues related to lightweight
SOA-based multi-engine architectures for workflow systems
in MANETs.

REFERENCES
[1] J. Schobel, R. Pryss, M. Schickler, and M. Reichert, ‘‘A lightweight

process engine for enabling advanced mobile applications,’’ in Proc. OTM
Confederated Int. Conf., 2016, pp. 552–569.

[2] W. Wipp, ‘‘Workflows on Android: A framework supporting business
process execution and rule-based analysis,’’ M.S. thesis, Faculty Eng.,
Comput. Sci. Psychol., Ulm Univ., Ulm, Germany, 2016, pp. 23–34.

[3] E. Castelán, M. Brigos, and J. Fernandez, ‘‘The design and development
of a mobile workflow learning application,’’ in Proc. Int. Conf. Edu., Res.
Innov., 2015, pp. 2881–2889.

[4] L. Thai, A. Barker, B. Varghese, O. Akgun, and I. Miguel, ‘‘Optimal
deployment of geographically distributed workflow engines on the cloud,’’
in Proc. IEEE 6th Int. Conf. Cloud Comput. Technol. Sci., Singapore,
Dec. 2014, pp. 811–816.

[5] J. Bi, Z. L. Zhu, and Y. S. Fan, ‘‘Multiple BPEL execution engines based
on fragmentation approach and application of service process models,’’ in
Proc. IEEE Int. Conf. Ind. Eng. Eng. Manage., Hong Kong, Dec. 2009,
pp. 1292–1296.

[6] InfoSphere Information Server. Accessed: Aug. 2017. [Online]. Available:
https://www.ibm.com/analytics/information-server

[7] M. Daagi, A. Ouniy, M. Kessentini, M. M. Gammoudi, and S. Bouktif,
‘‘Web service interface decomposition using formal concept analy-
sis,’’ in Proc. IEEE Int. Conf. Web Services (ICWS), Jun. 2017,
pp. 172–179.

[8] M. P. Papazoglou, ‘‘Service-oriented computing: Concepts, characteristics
and directions,’’ in Proc. IEEE 4th Int. Conf. Web Inf. Syst. Eng. (WISE),
Dec. 2003, pp. 3–12.

[9] R. Verma and A. Srivastava, ‘‘A novel Web service directory framework
for mobile environments,’’ in Proc. IEEE Int. Conf. Web Services (ICWS),
Jun./Jul. 2014, pp. 614–621.

[10] J. Xu, Y. Nakamoto, and S. Akiyama, ‘‘Workflow support based on
mobile data stream management system,’’ in Proc. 4th Int. Symp. Comput.
Netw. (CANDAR), Hiroshima, Japan, 2016, pp. 332–337.

[11] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, ‘‘Computation offloading
for service workflow in mobile cloud computing,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 12, pp. 3317–3329, Dec. 2015.

[12] E. Park and H. S. Nam, ‘‘A service-oriented medical framework for fast
and adaptive information delivery in mobile environment,’’ IEEE Trans.
Inf. Technol. Biomed., vol. 13, no. 6, pp. 1049–1056, Nov. 2009.

[13] H. Tao, C. Jian-Guo, and X. Wei, ‘‘Modeling mobile workflow based on
business friend domain,’’ in Proc. 5th Int. Conf. Comput. Inf. Sci. (ICCIS),
Jun. 2013, pp. 512–515.

[14] S. G. Wang, Y. L. Zhao, L. Huang, J. L. Xu, and C. H. Hsu, ‘‘QoS
prediction for service recommendations in mobile edge computing,’’
J. Parallel Distrib. Comput., pp. 1–11, Oct. 2017. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2017.09.014

[15] S. Berger, S. McFaddin, C. Narayanaswami, and M. Raghunath, ‘‘Web
services on mobile devices-implementation and experience,’’ in Proc. 5th
IEEE Workshop Mobile Comput. Syst. Appl., Oct. 2003, pp. 100–109.

[16] K. Mohamed and D. Wijesekera, ‘‘A lightweight framework for Web
services implementations on mobile devices,’’ in Proc. IEEE 1st Int. Conf.
Mobile Services (MS), Jun. 2012, pp. 64–71.

[17] G. Mesfin, T.-M. Grønli, G. Ghinea, and M. Younas, ‘‘Usability of com-
posing REST services on smartphones,’’ in Proc. IEEE 31st Int. Conf. Adv.
Inf. Netw. Appl. (AINA), Taipei, Taiwan, Mar. 2017, pp. 476–483.

[18] L. Enciso-Quispe, J. Quichimbo, F. Luzón, E. Zelaya-Policarpo, and
P. A. Quezada-Sarmiento, ‘‘REST architecture in the implementation of a
Web and mobile application for vehicular tariff rotating parking,’’ in Proc.
12th Iberian Conf. Inf. Syst. Technol. (CISTI), Lisbon, Portugal, Jun. 2017,
pp. 1–6.

[19] K. Wagh and R. Thool, ‘‘Mobile Web service provisioning and perfor-
mance evaluation of mobile host,’’ Int. J. Web Service Comput., vol. 5,
no. 2, p. 1, 2014.

[20] M. M. Kazzaz and M. Rychlý, ‘‘Restful-based mobile Web service migra-
tion framework,’’ in Proc. IEEE Int. Conf. AI Mobile Services (AIMS),
Honolulu, HI, USA, Jun. 2017, pp. 70–75.

[21] A. Ruokonen, Z. Wu, and R. Lu, ‘‘Describing mobile devices as RESTful
services for the end-users,’’ in Proc. IEEE Int. Conf. Mobile Services (MS),
San Francisco, CA, USA, Jun./Jul. 2016, pp. 127–134.

[22] A. Russo,M.Mecella, andM. de Leoni, ‘‘ROME4EU—A service-oriented
process-aware information system for mobile devices,’’ Softw., Pract.
Exper., vol. 42, no. 10, pp. 1275–1314, 2012.

[23] H. Viswanathan, P. Pandey, and D. Pompili, ‘‘Maestro: Orchestrating
concurrent application workflows in mobile device clouds,’’ in Proc. IEEE
Int. Conf. Autonomic Comput. (ICAC), Wurzburg, Germany, Jul. 2016,
pp. 257–262.

[24] E. Philips, R. Van Der Straeten, and V. Jonckers, ‘‘NOW: Orchestrating
services in a nomadic network using a dedicated workflow language,’’ Sci.
Comput. Programm., vol. 78, no. 2, pp. 168–194, 2013.

[25] F. AlShahwan and K. Moessner, ‘‘Providing SOAP Web services and
RESTful Web services from mobile hosts,’’ in Proc. IEEE 5th Int. Conf.
Internet Web Appl. Services (ICIW), May 2010, pp. 174–179.

[26] S. N. Srirama, C. Paniagua, and J. Liivi, ‘‘MobileWeb service provisioning
and discovery in Android days,’’ in Proc. IEEE 2nd Int. Conf. Mobile
Services, IEEE Comput. Soc., Jun. 2013, pp. 15–22.

[27] H. Hamad, M. Saad, and R. Abed, ‘‘Performance evaluation of RESTful
Web services for mobile devices,’’ Int. Arab J. e-Technol., vol. 1, no. 3,
pp. 72–78, 2010.

[28] R.Mizouni, M. A. Serhani, R. Dssouli, A. Benharref, and I. Taleb, ‘‘Perfor-
mance evaluation of mobile Web services,’’ in Proc. IEEE 9th Eur. Conf.
Web Services, Luga, Switzerland, Sep. 2011, pp. 184–191.

[29] K. Mohamed and D. Wijesekera, ‘‘Performance analysis of Web ser-
vices on mobile devices,’’ Proc. Comput. Sci., vol. 10, pp. 744–751,
Jan. 2012.

[30] Y. Natchetoi, V. Kaufman, and A. Shapiro, ‘‘Service-oriented architecture
for mobile applications,’’ in Proc. 1st Int. Workshop Softw. Architectures
Mobility, 2008, pp. 27–32.

[31] R. T. Fielding, ‘‘Architectural styles and the design of network-based
software architectures,’’ Doctoral dissertation, Faculty Inf. Comput. Sci.,
California Univ., Irvine, CA, USA, 2000, pp. 76–106.

[32] Multi-Engine-Architecture. Accessed: Aug. 2017. [Online]. Available:
https://github.com/ztguang/Multi-Engine-Architecture

[33] cBPM. C/C++ Business Process Management (cBPM). Accessed:
Aug. 2017. [Online]. Available: https://github.com/ztguang/cBPM

VOLUME 6, 2018 14221



T. Zhang et al.: Lightweight SOA-Based Multi-Engine Architecture for Workflow Systems in MANETs

[34] CORE. Common Open Research Emulator (CORE). Accessed: Jun. 2015.
[Online]. Available: http://www.nrl.navy.mil/itd/ncs/products/core

[35] FEP. High Fidelity Experiment Platform (FEP). Accessed: May 2017.
[Online]. Available: https://github.com/ztguang/FEP

[36] T. Zhang, S. Zhao, B. Cheng, B. Ren, and J. Chen, ‘‘FEP: High
fidelity experiment platform for mobile networks,’’ IEEE Access, vol. 6,
pp. 3858–3871, 2018.

TONGGUANG ZHANG is currently pursuing the
Ph.D. degree in computer science and technology
with the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications. His current research
interests include mobile Internet technology, Inter-
net of Things technology, communication software
and distribute computing, and embedded system
and service computing.

SHUAI ZHAO received the Ph.D. degree in
computer science and technology from the
Beijing University of Posts and Telecommuni-
cations under the supervision of Prof. J. Chen
in 2014. He is currently a Lecturer of computer
science with the State Key Laboratory of Network-
ing and Switching Technology, Beijing University
of Posts and Telecommunications. His current
research interests include Internet of Things tech-
nology and service computing.

BO CHENG (M’12) received the Ph.D. degree in
computer science from the University of Electron-
ics Science and Technology of China, Chengdu,
China, in 2006. He is currently a Professor with the
State Key Laboratory of Networking and Switch-
ing Technology, Beijing University of Posts and
Telecommunications, Beijing, China. His research
interests network services and intelligence, Inter-
net of Things technology, communication soft-
ware, and distribute computing.

MAURIZIO FARINA was the CEO of Adaptive
Software Company, Italy. He is currently an IT
Solution Architect with Ericsson IT Solutions &
Services SpA. His current research interests
include business process and rules management,
natural processing language, and machine
learning.

JIWEI HUANG (S’13–M’14) received the B.Eng.
and Ph.D. degrees in computer science and tech-
nology from Tsinghua University, in 2014 and
2009, respectively. He was a Visiting Scholar with
the Georgia Institute of Technology. He is cur-
rently an Assistant Professor with the State Key
Laboratory of Networking and Switching Tech-
nology, Beijing University of Posts and Telecom-
munications. He has published over 30 papers in
international journals and conference proceedings,

e.g., the IEEE TRANSACTIONS ON SERVICES COMPUTING, SIGMETRICS, ICWS,
and SCC. His research interests are in services computing and performance
evaluation. He is a member of the ACM.

JUNLIANG CHEN received the B.S. degree
in electrical engineering from Shanghai Jiao
Tong University, China, in 1955, and the Ph.D.
degree in electrical engineering from the Moscow
Institute of Radio Engineering (formerly Soviet
Russia) in 1961. He is currently the Chairman and
a Professor of the Research Institute of Network-
ing and Switching Technology, Beijing University
of Posts and Telecommunications (BUPT), where
he has been since 1955. His research interests are

in the area of communication networks and next generation service creation
technology. He was elected as a member of the Chinese Academy of Science
in 1991, and a member of the Chinese Academy of Engineering in 1994,
for his contributions to fault diagnosis in stored program control exchange.
He was a recipient of the first, second, and third prizes of National Scientific
and Technological Progress Award, in 1988, 2004, and 1999, respectively.

BINGFEI REN received the B.S. degree in soft-
ware engineering from the Beijing University of
Posts and Telecommunications, China, in 2014,
where he is currently pursuing the Ph.D. degree
with the State Key Laboratory of Networking and
Switching Technology. His main research interests
include mobile computing, mobile security and
wireless network.

SHOULU HOU received the master’s degree from
the Shenyang University of Technology in 2014.
She is currently pursuing the Ph.D. degree in com-
puter science and technology with the State Key
Laboratory of Networking and Switching Technol-
ogy, Beijing University of Posts and Telecommu-
nications. She is also pursuing the Joint-Training
Ph.D. degree with Data61, CSIRO, Australia. Her
research interests include service computing and
Internet of Things technology.

14222 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	SOA-BASED MULTI-ENGINE ARCHITECTURE
	DESIGN CONCEPTS
	LIGHTWEIGHT SOA-BASED MULTI-ENGINE ARCHITECTURE
	MAIN COMPONENTS OF THE WORKFLOW ENGINE
	PROCESS EXECUTION
	WSLT
	GET WEB SERVICE URI
	HEARTBEAT
	COMMUNICATION PROTOCOL
	TRIGGER


	MULTI-ENGINE TRIGGER MECHANISM
	TESTING
	DESIGNING AND TESTING THE WHOLE CBPM4LINUX SYSTEM
	TEST FOR MULTI-ENGINE SYNERGISTIC ALGORITHM

	CONCLUSIONS
	REFERENCES
	Biographies
	TONGGUANG ZHANG
	SHUAI ZHAO
	BO CHENG
	MAURIZIO FARINA
	JIWEI HUANG
	JUNLIANG CHEN
	BINGFEI REN
	SHOULU HOU


