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ABSTRACT Over the past three decades, significant developments have beenmade in hyperspectral imaging
due to which it has emerged as an effective tool in numerous civil, environmental, and military applications.
Modern sensor technologies are capable of covering large surfaces of earth with exceptional spatial, spectral,
and temporal resolutions. Due to these features, hyperspectral imaging has been effectively used in numerous
remote sensing applications requiring estimation of physical parameters of many complex surfaces and
identification of visually similar materials having fine spectral signatures. In the recent years, ground
based hyperspectral imaging has gained immense interest in the research on electronic imaging for food
inspection, forensic science, medical surgery and diagnosis, and military applications. This review focuses
on the fundamentals of hyperspectral image analysis and its modern applications such as food quality and
safety assessment, medical diagnosis and image guided surgery, forensic document examination, defense and
homeland security, remote sensing applications such as precision agriculture andwater resourcemanagement
and material identification and mapping of artworks. Moreover, recent research on the use of hyperspectral
imaging for examination of forgery detection in questioned documents, aided by deep learning, is also
presented. This review can be a useful baseline for future research in hyperspectral image analysis.

INDEX TERMS Agriculture, document images, food quality and safety, hyperspectral imaging, medical
imaging, remote sensing.

I. INTRODUCTION
This human eye is only able to see in a limited part of electro-
magnetic spectrum and can distinguish between objects based
on their different spectral responses in that narrow spectral
range [1]. However, multispectral imaging sensors have been
developed that are able to acquire an image in infrared and
visible segments of electromagnetic spectrum. This allows
material identification on the basis of their unique spectral
sig-nature in a wide spectral range. Multispectral imaging
exploits the property that each material has its own unique
spectral signatures. Spectrum of a single pixel in a multispec-
tral image provides information about its constituents and
surface of the material.

Multispectral imaging technology is being used for envi-
ronment and land observation remote sensing in satellite and
airborne systems since late 1960s [2]. Multispectral imaging
systems acquire data in a small number of spectral bands
by using parallel sensor arrays. Most of the multispectral

imaging systems use three to six spectral bands with large
optical band intervals, ranging from visible to near infrared
regions of electromagnetic spectrum for scene observation.
However, such low number of spectral bands is the limiting
factor for discrimination of various materials. Recent devel-
opments in hyperspectral sensing during the past two decades
has made it possible to acquire several hundred spectral bands
of observational scene in a single acquisition. The increased
spectral resolution of these hyperspectral images allow for
detailed examination of land surfaces and different materials
present in the observational scene, which was previously not
possible with low spectral resolution ofmultispectral imaging
scanners.

Hyperspectral imaging (HSI) or imaging spectrometry [3]
is a spectral sensing technique in which an object is pho-
tographed using several well defined optical bands in broad
spectral range. It was originally implemented on satellite
and airborne platforms for remote sensing applications but
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during last two decades, HSI has been applied to numerous
applications including agricultural and water resources con-
trol [4], [5], military defense, art conservation and archeol-
ogy [6], [7], medical diagnosis [8], [9], analyses of crime
scene details [10], [11], document imaging [12], forensic
medicine [13], food quality control [14], [15] and mineralog-
ical mapping of earth surface [16].

This review details the fundamentals of hyperspectral
imaging, discusses the common hyperspectral remote sens-
ing terminologies and highlights the modern applications
of hyperspectral imagery in the areas of food quality and
safety assessment, medical diagnosis, precision agriculture,
water resource management, forensic document examination,
artwork authentication and defense and homeland security.

FIGURE 1. (a) A hyperspectral image represented as a 3D cube. A point
spectrum on the spectral cube is illustrated at the spatial location (x,y).
(b) An RGB image and (c) a grayscale image rendered from the
hyperspectral cube.

II. HYPERSPECTRAL IMAGING
Hyperspectral images are characterized by their spatial as
well as spectral resolution. The spatial resolution measures
the geometric relationship of the image pixels to each other
while the spectral resolution determines the variations within
image pixels as a function of wavelength. A hyperspectral
image has two spatial dimensions (Sx and Sy) and one spectral
dimension (Sλ). The hyperspectral data is represented in the
form of a 3D hyperspectral data cube in Figure 1 using
pseudo-colors in center. A point spectrum on the data cube at
the spatial location (x,y) and an RGB image and a grayscale
image rendered from the hyperspectral cube are also shown.
Each slice of the cube along spectral dimension is called
a band or channel. Table I shows the spatial and spectral

TABLE 1. Current space borne and airborne spectral sensors providing
data for land mapping.

resolution of the current airborne and space satellite imaging
sensors.

A. SPATIAL RESOLUTION
Spatial resolution can be defined as the smallest discernible
detail in an image [17] which can be described as the measure
of smallest object in an image that can be distinguished as a
separate entity in the image. In practical situations clarity of
the image is dictated by it spatial resolution, not the number
of pixels in an image. Spatial characteristics of an image
depend on the design of imaging sensor in terms of its field
of view and its altitude [18]. A finite patch of the ground is
captured by each detector in a remote imaging sensor. Spatial
resolution is inversely proportional to the patch size. Smaller
the size of the patch, higher the details that can be interpreted
from the observed scene.

B. SPECTRAL RESOLUTION
Spectral resolution can be defined as the number of spec-
tral bands and range of electromagnetic spectrum measured
by the sensor. An imaging sensor might respond to a large
frequency range but still have a low spectral resolution if it
acquires a small number of spectral bands. On the contrary,
if a sensor is sensitive to small frequency range but captures
large number of spectral bands has high spectral resolution,
due to its ability to distinguish between scene elements hav-
ing close or similar spectral signatures [19]. Multispectral
images have a low spectral resolution, thus unable to resolve
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finer spectral signatures present in the scene. HSI sensors
acquire images in numerous contiguous and extremely nar-
row spectral bands in mid infrared, near infrared and visible
segments of electromagnetic spectrum. This type of advance
imaging system shows tremendous potential for material
identification on the basis of their unique spectral signa-
tures [2]. Spectrum of a single pixel in a hyperspectral image
can give considerably more information about the surface of
the material than a normal image.

C. TEMPORAL RESOLUTION
In hyperspectral remote sensing, the temporal resolution
depends on the orbital characteristics of the imaging sensor.
It is generally defined as the time needed by the sensor
platform to revisit and obtain data from the exact same
location [20]. Temporal resolution is said to be high if the
revisiting frequency of the sensor platform for the exact same
location is high and is said to be low if revisiting frequency is
low. It is normally defined in days.

D. UNDERSTANDING SPECTRAL SIGNATURES
Materials present on the surface of Earth absorb, transmit and
reflect electromagnetic radiations from the sun in a unique
way. Hyperspectral sensors allows us to measure all types of
electromagnetic energy within a specified range as it inter-
acts with materials, thus allowing us to observe the distinct
features and changes on earth’s surface. Reflectance is the
measure of electromagnetic energy bouncing back from a
material’s surface. It is a ratio of reflected energy to incident
energy as a function of wavelength [18]. Reflectance is 100%
if all the light energy of specific wavelength striking the
object is reflected back to the imaging sensor; on the other
hand reflectance is 0% if the entire incident light of specific
wavelength is absorbed by the object. In most practical cases
reflectance values lie in the range [0,100].

In a specified range of electromagnetic spectrum,
the reflectance values of different materials present on the
earth’s surface such as soil, forest, water and minerals can
be plotted and compared. Such plots are labeled as spectral
signatures or spectral response curves’’ [21]. Figure 2 demon-
strates a general model of spectral signatures of different
materials present on the earth’s surface. Remotely sensed
images can be classified using these spectral signature plots,
as each material present in an observed scene has its own
unique spectral signature. The more the spectral resolution
of an imaging sensor, the more classification information can
be extracted from spectral signatures. Hyperspectral sensors
have high spectral resolution than multispectral sensors and
thus provide the ability to distinguish more subtle differences
in a scene. Hyperspectral imagery has been utilized by geolo-
gists for mapping the land and water resources [16]. It is also
utilized to map heavy metals and other hazardous wastes in
historic and active mining areas. The spectral responses of
green vegetation, dry bare soil, and clean water are compared
graphically in Figure 3. It is observed that the reflectance
curve for bare soil has fewer variations as compared to that

FIGURE 2. A generic scheme of HSI mapping of soil, vegetation and water.

FIGURE 3. Spectral response curves of soil, vegetation and water.

of green vegetation. This is because of the fact that the
factors that affect soil reflectance vary in a narrow range of
electromagnetic spectrum. These factors include soil texture,
presence of minerals such as iron, surface roughness and
moisture content in soil [21].

Spectral signatures of green vegetation have basins in the
visible range of the spectrum that indicates the pigmenta-
tion in the tissues of the plant. Chlorophyll is the primary
photosynthetic pigment in green vegetation [18], it absorbs
strongly in red (670 nm) and blue (450 nm) regions called
the chlorophyll absorption spectral bands. When a plant is
under stress so that the chlorophyll growth is reduced, in such
cases the amount of reflectance in red (670 nm) regions
increases [18]. The spectral response of water has distinctive
characteristics of absorption of light in near infrared and
beyond. Common factors affecting spectral response of water
are the suspended sediments and increases in chlorophyll
levels. In each case spectral response will be shifted accord-
ingly showing the presence of suspended sediments or algae
in water [22].
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III. MODERN APPLICATIONS OF
HYPERSPECTRAL IMAGING
Hyperspectral imaging (HSI) is increasingly being used for
a wide variety of commercial, industrial and military appli-
cations. In this section, we focus on the applications of HSI
to food quality and safety, image guided surgery and medical
diagnosis, remote sensing such as precision agriculture and
water resource management, forensic examination such as
document forgery detection and artwork authentication and
defense and homeland security.

A. FOOD QUALITY AND SAFETY ASSESSMENT
Due to the growing need for high efficiency and low
production costs of food products, the food industry is fac-
ing numerous challenges such as ensuring the quality and
safety of food products while avoiding liability issues. Food
quality and safety is assessed by the examination of various
physical, chemical and biological attributes of food. The
traditional methods based on visual inspection and chemi-
cal and biological inspection of food are destructive, time
consuming and also environmentally unfriendly in some
cases.

Technological advancements in instrumentation engineer-
ing and computer technology enabled efficient and faster
assessment of food. Computer vision and machine learn-
ing based methods using color image processing have been
successfully applied for assessment of external attributes of
food [23]–[28]. These methods are unable to examine the
internal characteristics of food because they lack the ability
to capture broad spectral information. Near Infrared (NIR)
spectroscopy helped overcome this limitation of machine
vision based methods due to close relationship between
food components and NIR spectra [29], [30]. However, NIR
spectroscopy could not help in examination of heteroge-
neous materials due to the lack of ability to capture spatial
information [31], [32].

Hyperspectral imagery contains rich amount of spectral as
well as spatial information which makes HSI based methods
well suited for assessment of food quality and safety [37].
Hyperspectral image analysis has been used for identifi-
cation of defects [35], [36] and detection of contamina-
tions [33], [34] in food items.

Valenzuela et al. [38] employed visual and infrared (VIR)
hyperspectral imaging to examine the firmness and solid
content of blueberries. Prediction accuracy of 87% and 79%
was obtained for firmness and solid content respectively.
Huang et al. [39] determined mealiness of apple using
VIR hyperspectral imaging, achieving classification accu-
racy of 82.5%. Huang et al. [40] employed Grey Level
Co-occurrence Matrix (GLCM) and Gabor Filter to deter-
mine fat content between muscles in pork achieving a clas-
sification accuracy of 89%. HSI is also used to determine
color distribution in salmon fillet [41]. Ivorra et al. [42] used
NIR hyperspectral imaging to detect expired vacuum packed
salmon, reaching a classification accuracy of 82.7%. In [43],

Principal Component Analysis (PCA) and PLS-DA based
classification model is presented for classification of oat and
grout kernels in NIR hyperspectral images. The proposed
method [43] achieved a high classification rate of almost
100% and thus, showed the efficacy of HSI as an industrial
tool in food analysis.

B. MEDICAL DIAGNOSIS
Computed Tomography (CT) andMagnetic Resonance Imag-
ing (MRI) have been traditionally used for clinical analysis.
Paty et al. [121] compared the potential of MRI and CT for
detection of multiple sclerosis (MS) during the evaluation
of over 200 patients. Hovels et al. [122] used both CT and
MRI diagnosis of lymph node metastases in prostate cancer.
MRI yielded better results in clinical diagnosis. Over the past
decades, modern spectral imaging techniques have proved
their significance in medical imaging by providing added
potential to medical experts at higher speed and accuracy. The
optical characteristics of tissues provide valuable diagnostic
information. Hyperspectral image analysis is being widely
used for medical diagnosis due to its ability to provide real
time images of biomarker information and spectral informa-
tion of tissues. Besides diagnosis, HSI systems are also used
in image guided surgery.

Kumar et al. [44] proposed a PCA and Fourier Transform
Infrared (FTIR) Spectroscopy based imaging system for diag-
nosis of breast cancer. FTIR was applied on histopathological
specimens of breast cancer with various histological grades
and spectral changes near carcinoma were reported. The data
was analyzed using PCA. Prominent features were found
in the 5882∼6250nm band which could be used for cancer
identification. The reflectance spectra of tongue were non-
invasively measured and analyzed by Liu et al. [45] for tumor
detection. Dicker et al. [86] distinguished between malig-
nant and benign dermal tissue in the spectral domain in the
routine H&E stained samples. In their findings, the spectral
signatures differences could be seen if the section thickness
and staining time are controlled. A melanoma lesion and
interstitial areas are shown in grayscale representation in
Figure 4.

FIGURE 4. A grayscale representation of a melanoma lesion showing the
transmission Spectra in the nuclear and interstitial areas.

Mitra et al. [46] scanned the biliary structure using both
fluorescence and reflectance imaging for classification of
different tissues and identification of the biliary anatomy.
Fluorescence imaging provided dynamic information about
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FIGURE 5. The structure of biliary tissue. (b) HSI based classification of
the biliary tissue types.

movement and flow in the surgical ROI whereas the hyper-
spectral image information helped in identification of the
bileduct shown in Figure 5. The hyperspectral information
also allowed for safe exclusion of contaminant fluorescence
in tissues which is not included in the biliary anatomy.

In [46], the biliary structure of tissues was scanned using
fluorescence and reflectance imaging for identification of
gall bladder diseases. Spectral analysis and image process-
ing techniques were employed for identification of biliary
anatomy and classification of tissues. Dynamic information
of motion in the surgical region was provided by fluorescence
imaging while hyperspectral imagery allowed for safe exclu-
sion of contaminated fluorescence from tissues and provided
valuable information for the identification of the bileduct.

Campbell et al. [47] have proposed the use of Laparo-
scopic Partial Nephrectomy (LPN) for diagnosis of renal
cortical tumors. Olweny et al. [48] used Digital Light Pro-
cessing (DLP) based HSI for computer assisted LPN to
characterize renal oxygenation. The clinical study was per-
formed in eighteen patients. The proposed system was
able to successfully characterize dynamic changes in renal
oxygenation during LPN.

C. PRECISION AGRICULTURE
Many studies have indicated that the world’s crop production
needs to be doubled by the end 2050 due to the rapidly grow-
ing population in the world [49]. However, various studies
have shown that the crop yields are no longer increasing
at a rate to fulfill the growing population needs [50], [51].
Recent studies have also indicated that increasing crop yields
without using more land for cultivation, is the most effective
way for ensuring food security [52], [53]. Global poverty
and undernourishment can directly be reduced by increas-
ing crop production; moreover most of the poor and under-
nourished population consists of farmers themselves [54].
Zhang et al. [124] reviewed the state of the art deep learning
techniques for representative feature extraction and scene
understanding in remote sensing hyperspectral images,

Traditionally crop monitoring for disease, water stress,
nutrients and insect attack was carried out by manual visual
inspection from the ground. These methods were limited by
the fact that the visual symptoms often appear at later stages
of disease, thus making it difficult to restore plant health.
Advancement in airborne and ground based HSI methods has
made possible the evaluation of crop stresses, analyzing soil
and vegetation characteristics in a cost effective manner, thus
replacing the traditional scouting methods.

Drought stress is an important factor affecting crop yields.
Chances of a successful crop can be highly increased by
timely detection of water related stresses. High water level
stresses are noticeable in variations in photosynthetic pig-
ments. These changes lead to yellowish tint in crops, due
to the increase reflectance of red wavelength. Unlike human
eye, HSI sensors can detect these changes at earlier stages.
Colombo et al. [55] indicated that changes in leaf equiva-
lent water thickness (EWT) were responsible for changes in
leaf reflectance in the visible and infrared spectrum. They
stated that hyperspectral regression indices calculated from
HSI were powerful tools for estimation of water content
at leaf as well as at landscape level. Rascher et al. [56]
used a portable HSI system and photochemical reflectance
index to estimate water stress in leaves of tropical tress and
observed the temporal effects of dehydrations on tree leaves.
Rossini et al. [57] found that HSI is useful in detecting
drought stress at farm level with corn. They showed that irri-
gation deficits can be accurately mapped well before drought
stress affected the canopy structure.

Deficiencies in nutrients and soil contamination cause
various symptoms that can be assessed by HSI.
Schuerger et al. [58] used HSI to observe zinc deficiency
and toxicity for identification of chlorophyll levels relat-
ing to stress symptoms. They indicated that traditional
direct sampling methods are much more costly than HSI.
Dunagan et al. [59] analyzedmercury levels in mustard plants
and found that spectral signatures were notably related to the
contaminant levels. Osborne et al. [60] showed that biomass,
yield under stress, nitrogen and phosphorous concentrations
can be estimated by using HSI. Mahlein et al. [61] studied
different development stages of diseased sugar beet leaves
using HSI. Figure 6 shows spectral signatures of healthy as
well as diseased sugar beet leaves. This study also showed
that HSI has a great potential for analyzing plant diseases.

Analysis of soil characteristics can play a vital role in
increasing crop yields. Ben-Dor et al. [62] al successfully
mapped vital characteristics of soil in a field scale experi-
ment including moisture, soil organic matter and soil sanity.
Gomez et al. [63] estimated the organic carbon content in soil
with accuracy. Growth monitoring of crops has made it pos-
sible to forecast production. Liu et al. [87] improved winter
wheat yield prediction using new spectral parameters. The
fine classification technology in agriculture has also matured
greatly. Figure 7 shows the HSI based fine classification of
vegetable growing regions.

D. WATER RESOURCE AND FLOOD MANAGEMENT
Water is one of the most important resources available on
Earth as is vital for survival of humanity. For this reason,
managing the water resource efficiently, analyzing and mon-
itoring the quality of water has attracted a lot of attention
from the researchers [64]–[69]. Hyperspectral remote sens-
ing technology has found enormous applications in water
resource management. Accurate estimates of water resource
parameters are possible by analyzing spatial, spectral and
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FIGURE 6. Spectral signatures comparison of healthy and diseased sugar
beet leaves.

FIGURE 7. HSI based fine classification of vegetable growing regions.

temporal variations in water bodies. Xingtang et al. [88]
systematically introduced their research on key technologies
related to robust hyperspectral water resource monitoring
system in China. This work was used by Li [89] to esti-
mate the suspended matter concentrations of Meiliang Bay
of Taihu Lake using the CHRIS data as shown in Figure 8.
The efficacy of flood detection and monitoring system
is limited by their incapacity to get important informa-
tion about water conditions from airborne and ground
observatories in a timely manner. Recent improvements in
remote sensing technology has improved the early flood
warning system and vastly reduced the time of detec-
tion and reaction to flood events to a few hours [70].
US geological survey and NASA are incorporating space
borne observations of rainfall resources, rivers and land

FIGURE 8. Distribution of the suspended matter concentration of
Meiliang Bay of Taihu Lake. (a) LANDSAT TM image of Taihu Lake.
(b) Estimation result using CHRIS data.

topography into early warning systems with potential global
applications [71]. Glaber and Reinartz [72] studied the opti-
mal procedure for detection of flooded areas with remote
sensing data. They investigated the erosive impact of floods,
moisture content in flood plain areas, accumulation of sedi-
ments. Roux and Dartus [73] explored the flood hydrographs
and estimated the river discharge from remotely sensed data.
They optimized their model to minimize the error between
system response and their proposed model to estimate the
river discharge. Honkavaara et al. [128] presented various
challenges regarding data processing faced by hyperspectral
sensors in adverse meteorological conditions and proposed
radiometric correction to minimize the effects of radiometric
variations in varying illumination conditions.

Hyperspectral remote sensing provides efficient and
reliable information about water quality parameters which
contain biochemical, hydro-physical and biological
attributes [74]–[76]. HSI enable us to measure chlorophyll,
turbidity and chemical oxygen demand and phosphorous in
water resources. Chlorophyll content in water is extensively
studied by hyperspectral remote sensing, which gives an
estimate of algal level and hence water quality. Studies have
been carried out for evaluation of ammonia changes for
wetland [77], classifying different parameters of lakes [78],
estuaries [79] and analyzing algal blooms [80]. Wetland
mapping has played a significant role in order to enhance
the quality of our ecosystem [81]. Hyperspectral imagery has
helped in detailed understanding of vegetation characteristics
of ecosystem. Extensive research studies have been carried
out using remote sensing to explore the significance of
acquiring timely data for monitoring and mapping aquatic
vegetation [82], which is said to be an important aspect in
ecosystem reconstruction and restoration.

E. FORENSIC DOCUMENT EXAMINATION
Traditionally, forensic document experts and paleographers
used chemical solution based methods to study the extrin-
sic and intrinsic components of the important historic
documents [83]. This is due to the fact that the inks used on
documents throughout the history were composed of diverse
substances having distinct chemical and physical proper-
ties. All of these substances have their own unique way for
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reacting with different substrates depending upon the reaction
environment. These chemical solution based methods helped
in document analysis. But unfortunately these techniques
were time consuming, sensitive to temperature changes and
destructive in nature i.e. harms to the important documents
were irreversible.

To overcome such limitations, HSI has emerged as an
effective non-destructive tool for improving readability [84],
ink aging and forensic document analysis [13]. Hyperspec-
tral document imaging works on the principle that each ink
present in the document has its own unique spectral signature.
Many mathematical tools that are being used in hyperspec-
tral remote sensing can be used on hyperspectral document
images for classification, improving legibility of extremely
deteriorated text, ink aging and fraud detection. Moreover
HSI is non-destructive, automated and environment insen-
sitive tool for document examination. In hyperspectral doc-
ument imaging, ink mismatch detection analysis provides
important information to forensic document examiners to
determine the authenticity of legal documents. Forgery, back-
dating and fraud can be detected using ink analysis of
documents.

HSI has been used for forensic document analysis in
the past [106]–[108]. The HSI based techniques have had
a significant impact on forgery detection as compared to
the traditional techniques. Different inks were successfully
classified after obliteration of the text in a document [106].
Abbas et al. [85] proposed hyperspectral unmixing for
discrimination between inks from different pens in a
document. Recently, we have worked on a nondestructive
automated forgery detection system, which was able to suc-
cessfully discriminate between different visually similar inks
taken from the publicly available UWA Writing Ink Hyper-
spectral Images (WIHSI) Database [85] with different num-
ber of inks and different mixing ratios (Combination A∼H).
Initially, we used Fuzzy C-Means Clustering (FCM) to dif-
ferentiate two inks present in a multispectral document in
different mixing ratios [129]. In our latest work, the state of
the art deep learning technique, Convolutional Neural Net-
work (CNN) has been employed for classification of spectral
responses of ink pixels for forgery detection in hyperspectral
document images. Figure 9 shows the final segmentation
results of our proposed technique. 98% classification accu-
racy was achieved which shows the high potential of HSI and
deep learning in document forgery detection.

F. ARTWORK AUTHENTICATION
The global art market is increasing rapidly over the past
decades [90]. A 7% year on year increase in total sales
of art and antiques was recorded in 2013 [91]. Most of
these high value dealings were made using non-scientific
expertise in art. Forensic testing was not used to assure
authenticity of the traded object. However, only a limited
number of artwork evaluations can be carried out by an
experienced specialist. Foolproof evaluations can be carried
out if supported by non-destructive scientific tests [92], [93].

FIGURE 9. Comparisons of ground truth images of documents with mixed
inks and our final segmentation results.

Fourier Transform Infrared (FTIR), X-ray fluorescence, and
Raman spectroscopy have been used previously for artwork
authentication [94], [95].

HSI is proposed as a novel and non-destructive artwork
examination method in the recent literature. HSI limits the
number of invasive tests needed and provides more infor-
mation from a sample. Several methods employing pigment
analysis provided by HSI and classification techniques have
been proposed in the recent literature [7], [96]–[100] for
conservation and restoration of artworks such as paintings.
These methods allow for identification of restored regions in
paintings and distinguish them from the important regions in
the original painting. Hyperspectral images captured in the
infrared range also revealed useful features of painters such
as preparatory drawings [101]. Two forged paintings and the
results of IR hyperspectral imaging and SVM classification
proposed in [105] are illustrated in Figure 10. The broad
spectral information provided by HSI combined with signal
processing also allows for identification of the underlying
material in artworks. Materials which are clearly visible in
a specific band and obscured in the other bands are reflec-
tive within the same band and thus easily detectable by the
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FIGURE 10. Two paintings with forgery. (a) Grid canvas and color coded
pigments. (b-c) Forged Paintings with classification results.

HSI system [102]. The appropriate bands in the HSI data of
historic texts and manuscripts allow for identification of inks
and pigments for dating of manuscripts [103] and recovery of
erased and overwritten scripts [104].

G. DEFENCE AND HOMELAND SECURITY
The usage of HSI has quickly spread to various civilian
applications and more recently to sectors of defense and
homeland security [109]. HSI is generally used as a counter-
countermeasure for detection and recognition of camouflaged
targets in military applications. HSI can easily detect strategic
deployments in unpopulated areas such as forests, desserts
and mountains, where targets such as military vehicles and
mines are distinct from the background even if camouflaged.

Anomaly detection methods [110]–[112] that use spectral
information to differentiate between targets and background
without any prior knowledge have gained significant popular-
ity over the past few years. Yuen and Bishop [110] proposed
an HSI based anomaly detection algorithms ‘‘MUF2’’, which
uses a multiple approach fusion methodology. Experiments
were performed on images with crops, vegetation and bare
soil from the Barrax dataset. An image from the Barrax
dataset and the results of target detection using MUF2 algo-
rithm are shown in Figure 11. An extremely high detection
rate of 100% was achieved at a false alarm rate of 2 × 10−4.
Remote detection of small targets such as mines is a very
challenging task. MUF2 algorithm [110] was also tested for
detection of camouflaged land mines as shown in Figure 12.
Due to the very small area of the target in the images and
noise in the dataset, 60% detection accuracy was achieved at
a false alarm rate of 3×10−3. Suganthi and Korah [113] pro-
posed an Artificial Neural Network (ANN) based technique

FIGURE 11. (a) A scene with crops and vegetation from Barrax HSI
dataset, (b) Target detection using HSI based MUF2 anomaly
detection algorithm.

for landmine detection and segmentation in infrared images.
Letalick et al. [114] tested the possibility and feasibility of
using multiple optical sensors and concluded that HSI has
high potential in detection and recognition of semi-hidden,
hidden and camouflaged landmines if prior knowledge of the
spectral signature of the target. However, limited detection
rate is achieved when landmines are completely hidden or
camouflaged with vegetation.

FIGURE 12. Land mine detection using HSI based MUF2 algorithm.

Zhao et al. [123] proposed a sparse learning technique
for hyperspectral anomaly detection, in which they employed
dictionary based transformation of background features and
iterative reweighting to exaggerate the differences between
anomalies and background. Du et al. [125] proposed a hybrid
sparsity and statistics anomaly detector to overcome the limi-
tations of sparsity models in hyperspectral images containing
spectral variability with limited endmembers. Discriminative
metric learning method [126] and local geometric structure
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features [127] have also been used for hyperspectral anomaly
detection in the recent literature.

Thomas et al. [115] conducted a research on detection of
grid patterns of landmines to improve the efficacy of land-
mine detection in LWIR hyperspectral imagery. Anomalies
are detected using Dual Window based Eigen Separation
Transform (DWEST) and pattern parameters are extracted.
A pattern projection image is formed using the extracted
parameters followed by pattern based reduction of false alarm
rate. Higher detection probability at lower false alarm rate
was noted which shows that the use of spatial pattern parame-
ters in anomaly detection improves landmine detection [115].
Gagnon et al. [116] used hyperspectral image analysis to
detect buried targets using a LWIR airborne hyperspectral
camera. The temperature of disturbed soil over the buried
target was found to be higher than the temperature of undis-
turbed soil around the target area. Classification techniques
such as SVM and linear unmixing are used to distinguish
between the targets and naturally hot areas.

FIGURE 13. Results of stress detection by HSI based sensing of variations
in blood oxygenation due to stress of different intensities.

In the 21st century, development of state-of-the-art tech-
nologies for counterterrorism is one of the fastest growing
demands. One of the significant ideas proposed for coun-
terterrorism is detecting improvised explosive devices (IED).
It is a technical challenge to directly detect explosives packed
in airtight and light manner. Contrary to the direct detection of
IEDs, cognitive methods use effective computing to analyze
the contextual and body language, behavior, gestures, facial
expressions and activity to assess the intent of a person.
Mental stress is one of the key indicators of threat which is
a short term induced neurological imbalance caused by any
situation which involves a possible threat or danger. During
neurological stress, the sympathetic nervous system induces
adrenaline hormones to the blood triggers increase in blood
flow to muscles and dilation of pupil. These unavoidable
physiological changes during stress are detected as an indica-
tion of stress level using HSI [25]. Assessment of hemoglobin
oxygenation using spectroscopic tuning is proposed in [26]
and [27]. Figure 13 shows the oxy-hemoglobin levels of a
person at different levels of stress.

IV. CONCLUSION
Among remote sensing technologies, the role of hyper-
spectral imagery in the geo-observation, identification and
detection of materials and estimation of physical param-
eters cannot be stated enough. Due to this very reason
there is increasing number of airborne and spaceborne
hyperspectral platforms based applications being researched.
Recent advancements in sensor technologies have encour-
aged researchers to use hyperspectral imagery in many mod-
ern applications.Manymathematical tools and algorithms are
being researched such as data fusion, hyperspectral unmix-
ing, hyperspectral classification, anomaly detection and fast
computing for efficient utilization of hyperspectral data.
These mathematical tools can be used on hyperspectral data
across many different applications.

In general, this review focuses on the vast extent to which
hyperspectral imaging has been used to increase andmaintain
the crop yields, managing water resources, assessment of
food quality and safety, diagnosing diseases, authentication
of artworks, forensic examination of questioned documents,
detection of military targets and counterterrorism. Promising
results have been found in the proposed automatic forgery
detection system based on HSI and deep learning. Future
research is being carried out for further improvement as well.
This review can be a useful baseline for future research in
hyperspectral image analysis.
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