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ABSTRACT Object detection is a significant issue in visual surveillance. Faster region-based convolutional
neural network (R-CNN) is a typical object detection algorithm of deep learning; however, neither its
generalization ability nor its detection accuracy of small object is high. In this paper, an effective object
detection algorithm is proposed for the small and occluded objects, which is based on multi-layer convolution
feature fusion (MCFF) and online hard example mining (OHEM). First, the candidate regions are generated
with region proposal network optimized by MCFF. Then, an effective OHEM algorithm is employed to
train the region-based ConvNet detector. The hard examples are automatically selected to improve training
efficiency. The avoidance of invalid examples accelerates the convergence speed of the model training.
The experiments are performed on KITTI data set in intelligent traffic scenario. The proposed method
outperforms the popular methods, such as Faster R-CNN, Regionlets, in terms of the overall detection
accuracy. Furthermore, our method is good at the detection of small and occluded objects.

INDEX TERMS Deep leaning, multi-layer convolution feature fusion, object detection, online hard example

mining, region proposal network.

I. INTRODUCTION

Object detection, as a remarkably important research field
in computer vision, provides crucial information for the
semantic understanding of image and video [1], [2]. Object
detection is also employed in many other fields, like visual
surveillance for public security [3], face detection and
recognition [4]-[6], person re-identification [7], automatic
drive [8], object detection in medical image [9], etc. Unfortu-
nately, object detection suffers from several challenges, such
as diversity of object scale, scene complexity, illumination
variance, and occlusion [10], [11].

Object detection algorithms can be briefly categorized
into two classes, namely classical methods and deep-
learning-based methods [12]-[14]. Classical algorithms
include sliding window selection [15], [16], manual feature
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design [17]-[19], and classifier design [20]. Firstly, the can-
didate regions are generated with sliding windows of dif-
ferent sizes, and then the features in the candidate regions
are extracted by manual design. Finally, the classifiers are
trained for detection. Deep-learning-based algorithms can be
divided into region-free methods and region-based methods.
The representative methods of the former include Single
Shot MultiBox Detector (SSD) [21] and You Only Look
Once (YOLO) [22], [23]; the representative methods of the
latter include Region-based Convolutional Neural Network
(R-CNN) [24], SPP-Net [25], Fast R-CNN [26] and Faster
R-CNN [27].

Sliding windows were employed to extract candidate
regions in classical object detection; however, the redun-
dancy among the windows was substantial, which leaded to
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Fusion Feature Maps

FIGURE 1. Framework of the proposed object detection algorithm.

high computational complexity. Selective search was used in
R-CNN for object detection [28], instead of sliding window,
to generate candidate windows more accurately. In addition,
Convolutional Neural Network (CNN) outperforms manual
design in robust feature extraction. The mean Average Pre-
cision (mAP) of R-CNN on Pascal VOC2010 data set [29]
reached 53.7%; however, the speed was slow due to the
convolution operations on all candidate regions. The input
size of fully-connected layer had to be fixed, so the feature
distortion and damage were unavoidable due to the cropping
of candidate region.

Pyramid method was applied so that the input of any size
was suitable for SPP-Net [25]. Moreover, the detection speed
was accelerated because only one convolution was performed
on the original image. The candidate boxes were mapped to
the shared convolution layer of Fast R-CNN. The features in
an image were extracted only once to speed up the detection;
nevertheless, the selective search for candidate region gener-
ation in [26] was still time-consuming.

Region Proposal Network (RPN) was proposed for Faster
R-CNN in [27] to directly generate candidate regions, which
resulted in remarkable acceleration. An image of any arbi-
trary size could be input into RPN to generate a series of
rectangular candidate regions with confidence levels. Fully-
convolutional network in the RPN shared the convolution
parameters with Fast R-CNN [30]. The convolution param-
eters in the first 5 layers were shared in Zeiler and Fergus’
model (ZF) [31]; while those in the first 13 layers were shared
in Simonyan and Zisserman’s model (VGG-16) [32].

In order to generate candidate regions, a sliding window
with the size of 3 x 3 sampled the shared convolution feature
map of the last layer. Each sliding window was mapped
to a low dimensional vector (256-dimension in ZF model,
512-dimension in VGG-16 model). These vectors were sent
to the classification fully-connected layer and the regression
fully-connected layer to obtain the category and location of
the object. It is necessary to determine whether the objects
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are in the receptive field corresponding to each sliding win-
dow center. Multi-scale windows are required because both
the sizes and height-width ratios of object are not uniform.
RPN generated the reference window sizes, and then the
sizes of ‘““‘anchors”, namely sliding windows, were adjusted
according to the scales and height-width ratios. Faster
R-CNN in [27] provided 9 reference windows and three
scales so that 9 anchors were generated.

Faster R-CNN, as a state-of-the-art object detection algo-
rithm, achieved the mAP of 70.4% on VOC 2012 data set.
However, only the feature map generated on the convolution
layer of Conv5_3 was input to RPN network, so it was not
good at small object detection. Assume that the sizes of the
input image and the feature map are 512 x 512 and 32 x 32,
respectively. One point on the feature map is responsible for
the feature expression of the surrounding area with the size
of at least 16 x 16. Thus the features of small object cannot
be expressed effectively.

In order to improve the accuracy of object detection, espe-
cially the detection of small objects, we propose a novel
object detection algorithm based on multi-layer convolution
feature fusion (MCFF) and online hard example mining
(OHEM) [33]. The strengths of the proposed algorithm are
prominent in terms of the detection of small and occluded
objects with different scales. The experimental results on
the Intelligent Transportation data set (KITTI) [34] confirm
the advantages of our algorithm for the detection of “Car”,
“Pedestrian”, and “Cyclist”.

The rest of this paper is organized as follows: Section II
elaborates the proposed algorithm. The experimental results
and discussions are in Section III. Finally conclusions are
drawn in Section IV.

Il. METHODOLOGY
A. FRAMEWORK

Three principal types of objects, namely “Car”, ‘“Pedes-
trian”, and “Cyclist”, are ordinary in the scenario of
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intelligent transportation, whose detection is frequently
plagued with severe scale problem. High-level features con-
tain low-resolution and high-semantic information. On the
contrary, low-level features contain high-resolution and low-
semantic information. Therefore, in this paper, high-level
and low-level features are fused to address scale problem.
Moreover, the feature maps, which are extracted with MCFF,
are input to RPN network to generate candidate regions accu-
rately. In the stage of object detection, OHEM is used to select
the effective examples for the training of detection model.
The framework of the proposed object detection algorithm
is shown in Fig 1.

B. MULTI-LAYER CONVOLUTION FEATURE FUSION

The candidate region generated with RPN and the classifica-
tion of candidate region are two main steps in Faster R-CNN.
Obviously, the quality of candidate region is critical to object
detection. The selective search in Fast R-CNN for candidate
region generation results in computational complexity and
time-consuming processing. RPN network, which is embed-
ded in the entire CNN, shares the convolution features with
the detection network so that the training speed is substan-
tially accelerated.

Unfortunately, only the last layer of VGG-16, namely
Conv5_3, is used as the input of RPN for feature extraction,
which does not take into account both the pixel information
and semantic information. The feature maps generated from
low-level convolution contain more pixel information, which
are helpful to the detection of small objects. In contrast, those
generated from high-level convolution contain more seman-
tic information, which are useful for the detection of large
objects. Multi-layer data contain more complete information,
which can detect the objects of different scales, so MCFF is
effective for the extraction and detection of candidate regions.

In order to select good features for fusion, three mod-
els of VGG-16 network are trained on KITTI data set.
KITTI contains 7,481 training images and 7,518 test
images. Since none ground truth is provided in the test
set, we divide the original training set into a training set
and a test set with the quantity ratio of 7:3 according
to [35] and [36]. The cross-validation method is used for
the comparison. Conv3_3+Conv5_3, Conv4_3+Conv5_3,
Conv3_3+Conv4_3+Conv5_3 are designed in Model 1,
Model 2 and Model 3, respectively. “+* denotes fusing. All
network parameters are configured identically.

Table 1 shows the detection accuracy by fusing different
layers. The difficulty levels will be defined in Section III.D.
Model 3, namely Conv3_3+4Conv4_3+Conv5_3, outper-
forms the other models, and can better detect small objects.
Fig. 2 shows the visualization of fusion feature, which not
only reflects the response intensity of the feature map, but
also shows the object location. The region of interest (ROI)
commonly has a stronger response than the background.

Model 3, namely Conv3_3+Conv4_3+Conv5_3 fusion,
is used to generate convolution fusion map. The framework
of the fusion feature extraction is shown in Fig. 3. The scales
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TABLE 1. Detection accuracy by fusing different layers (mAP, %).

Easy Med Hard
Cars
53 80.35 69.58 58.27
33+53 82.36 70.15 63.56
4 3+5 3 82.54 71.01 62.89
3 3+4 3+5 3 83.28 72.65 65.76
Pedestrians
53 75.78 65.26 54.16
33453 77.01 68.69 63.48
4 3+5 3 76.49 70.26 64.63
3 3+4 3+5 3 77.28 71.43 65.20
Cyclists
53 70.63 62.49 53.12
33+53 74.54 67.68 64.52
4 3+5 3 75.38 68.32 63.59
3 3+4 3+5 3 76.31 69.98 65.81

FIGURE 2. Fusion feature visualization. (a) Car; (b) Pedestrian; (c) Cyclist.

of the feature maps are not uniform, moreover, the size of
the feature map is reduced with the layer level increment,
so different sampling strategies are suitable for different lay-
ers. The sizes of the feature maps generated on Conv3_3 and
Conv5_3 are converted into the size of Conv4_3. Maximum
pooling sampling and deconvolution up-sampling are per-
formed on the feature maps of Conv3_3 and Conv5_3, respec-
tively. Local response normalization [37] is used to process
the feature maps before fusion to improve the generalization
capability. All new layers are initialized with “Xavier”.
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FIGURE 3. Fusion feature extraction.
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FIGURE 4. Size distribution of car object. (a) VOC2007; (b) KITTI.

9 anchors are used in RPN network, which are of 3 scales
and 3 height-width ratios. Actually, they are the prediction
boxes with 3 different areas (1282, 256%,5 122) and 3 different
height-width ratios (1:2, 1:1, 2:1). In order to accurately
detect the objects of different scales, the anchor size should
be as close as possible to the desired object size. Differ-
ent from the objects in Pascal VOC data set, KITTI Vision
Benchmark Suite data set contains more objects with different
scales.

Fig. 4 compares the size distribution of car object in VOC
and KITTI data sets. KITTI data set contains more small
objects, even with the width of only 20~60 pixels. Faster
R-CNN predicts the anchor size based on VOC data set,
whereas the prediction does not fit well with KITTI data set.

The extraneous information around real objects incurs
detection deterioration. According to the coordinates of
ground truth, the aspect ratios of three object types are shown
in Table 2. In order to detect small objects and improve the
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TABLE 2. Aspect ratio of objects in KITTI data set.

Type Aspect ratio
Cars 1.8:1 2:1 2.2:1 2.5:1 3:1
Pedestrians 1:1.2 1:1.5 1:1.8 1:2 1:2.5
Cyclists 2:1 1.8:1 1:1 1:1.8 1:2

overall detection, the anchor sizes are predicted with 6 dif-
ferent sizes (162, 322, 642, 1282, 2562, 512%) and 5 different
scales (1:2, 1:1, 2:1, 2.5:1, 3:1), which are suitable for the
small objects.

C. ONLINE HARD EXAMPLE MINING
Intersection-over-Union (IoU) between the anchor and
ground truth is used to select the samples for RPN network
training. The samples with the IoU greater than 0.7 and less
than 0.3 are selected as the positive and negative examples,
respectively. If none IoU is greater than 0.7, the sample with
the maximum IoU is selected as the positive example. The
candidate regions generated with region growing are mostly
negative examples, so the quantity ratio between positive
and negative examples is normally set to 1:3 to prevent the
quantity imbalance between them. However, a large number
of invalid negative examples are randomly selected, which
causes the degradation of detection model.

The mini-batch in Faster R-CNN is set to 2 images, each
of which generates 128 ROIs and feeds into ROI network.
In fact, the RPN network in Faster R-CNN generates more
than 128 ROIs, which are randomly selected from all ROIs.
The quantity ratio between the positive and negative exam-
plesis 1:3, which indicates that the number of negative exam-
ples is larger than that of positive examples. The quantity
imbalance and random selection of examples result in a poor
expression capability and unsatisfactory detection of small
object. Therefore, the hard examples with diversity and high
loss are selected according to the loss values computed with
OHEM. The selected examples are input to ROI network in
way of back propagation. The architecture of OHEM is shown
in Fig. 5.

Hard
examples

FIGURE 5. Architecture of OHEM.

The original Faster R-CNN is extended to two ROI net-
works that share the parameters. The parts connected with
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FIGURE 6. Comparison of small object detection. (a) Original image; (b) Ground truth; (c) Faster R-CNN; (d) Fusion of RPN and MCFF;

(e) Proposed algorithm; (f) Comparison between (e) and (b).

solid arrows constitute a read-only ROI network. All the
operations in the read-only ROI network are forward, whose
functions include ROI loss computation, ROI sequencing,
and hard example selection. The output of the read-only ROI
network predicts the classification result and the coordinates
of the prediction boxes. Multi-task loss function is applied
to optimize the minimum objective function. Multi-task loss
function is defined as:

1
Lpid Ath) = 5= D Lastpio p7)
cls i
1
Hh—Y PiLreg(tin ) (1)
Nreg i

The classification layer computes p;, the probability of
correct prediction of object class, where i denotes the index
of the anchor in a mini-batch. When the anchor predicts
a positive example, the probability of the ground-truth tag
p} = 1; for a negative example, p; = 0. 1; = {ty, 1y, ty, 1}
is a vector that represents the 4 parameterized coordinates of
the predicted bounding box. ¢ is the coordinate vector of the
ground-truth corresponding to a positive anchor.
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Les(pi, p?) denotes the logarithmic loss of object
prediction:

Leis(pi, py) = —loglpipi + (1 — pHd — pi)] (2

Lyeg(t;, t;") denotes regression loss:

Lyeg(ti, ) = R(t; — 1) 3)
where R is smooth L1 function:
~ [0.5x2 if x| <1
smoothy(x) = {le — 0.5 otherwise @

The regression function is not considered if the classifi-
cation result is background, i.e., p?‘ = 0. Classification and
regression layers are normalized with N5, Ny, and equilib-
rium coefficient .. When A = 10, the normalized size of
classification layer, N, is the same as that of mini-batch,
i.e., Nojs = 256. The normalized size of regression layer, Ny,
is the quantity of anchor, i.e., Ny ~ 2400.

The examples are sorted and selected. The other ROI net-
work contains both forward and backward operations. The
inputs of this ROI network are hard examples. The loss values
are computed and the gradients are propagated backward.
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FIGURE 7. Comparison of occluded object detection. (a) Original image; (b) Ground truth; (c) Faster R-CNN; (d) Fusion of RPN and MCFF;

(e) Proposed algorithm; (f) Comparison between (e) and (b).

This algorithm does not need to set the quantity proportion
between the positive and negative examples to solve the
quantity imbalance problem, so it eliminates the heuristic
hyper-parameters. OHEM is more well-directed and further
improves the accuracy of object detection.

IIl. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. EXPERIMENTAL SETUP

The experiments are performed on the PC with a CPU,
i. e., Intel Xeon (R) E5-2603 including 6 cores (1.60GHz),
16GB RAM, and 64-bit Ubuntu 14.04. An NVIDIA GeForce
GTX 1080 GPU is used for CNN computation.

B. DATA SET AND EVALUATION CRITERIA

The detection models are trained and the experiments are
performed on the benchmark data set, namely KITTI data
set in intelligent traffic scenario. KITTI, as an evaluation
platform developed by Karlsruhe Institute of Technology,
Germany, and Toyota Institute of Technology in Chicago,
USA, is used to evaluate the performance of object detection
and other computer vision technologies in practical complex
environments.

19964

Different from the object detection in common scenarios,
like PASCAL VOC, etc., most objects in KITTI data set are
medium-size and small objects. The minimum width of the
object is only 25 pixels, and the maximum width exceeds
300 pixels, so the size range is wide. In addition, the occlu-
sions between the objects are more complex. Moreover, the
result is considered as correct only if the IOU between the
detection box and the ground truth box is larger than 0.7.
The aforementioned requirements undoubtedly increase the
difficulty.

KITTTI contains three object classes, namely Car, Pedes-
trian and Cyclist, and three evaluation levels, namely
Easy, Moderate and Hard. We split the KITTI data set
(7,481 images) into training set and test set with the quantity
ratio of 7:3. It is found that the results do not change much
if the quantity ratio approximates 7:3. At last, the number of
training iteration is 10K.

C. QUALITATIVE RESULTS

The deep learning framework of Caffe in [38] is applied for
training. The parameter weights of the pre-training model
come from the results of VGG-16 trained on ImageNet, and

VOLUME 6, 2018
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TABLE 3. Elaboration on difficulty level.

Difficulty Object height Occlusion Hmc[:tlilglzv:g: ratio
Easy =40 pixels None [0, 15%)]

Moderate =25 pixels Part (15%, 30%)]
Hard =25 pixels Large-area (30%, 50%]

then are tuned slightly according to the specific detection
tasks. The object detection model is re-trained in intelligent
traffic scenario.

1) THE DETECTION OF SMALL OBJECT

Fig. 6 shows the experimental results of different algorithms
for small object detection. (a) is the original image that
contains several small objects. (b) is the ground truth. (c) is
the result of the original Faster R-CNN algorithm, in which
some small objects are not detected successfully. (d) is the
result of RPN fused with MCFF, in which the detection per-
formance is improved but a few small objects are still missed.
(e) shows the result of the proposed algorithm. (f) compares
the detected object boxes in (e) labeled in yellow and the
ground truth boxes labeled in blue. All the small cars are cor-
rectly detected with our algorithm. Furthermore, the object
localization is accurate. Thus our algorithm outperforms the
compared methods in terms of small object detection.

2) THE DETECTION OF OCCLUDED OBJECT

Fig. 7 shows the experimental results of different algorithms
for occluded object detection. (a) is the original image that
contains 5 small cars and 1 pedestrian. The cars are occluded
by the traffic signs or other cars. (b) is the ground truth
box. (c) is the result of the original Faster R-CNN algorithm,
in which some occluded objects are not detected successfully,
and the pedestrian is not detected neither. (d) is the result
of RPN algorithm fused with MCFF, in which the detection
performance is improved but a few objects are still missed.
(e) shows the result of the proposed algorithm. (f) compares
the detected and the ground truth boxes. The ground truth
boxes of “car” and ‘“‘pedestrian” are labeled in blue and
purple, respectively; while the detected object boxes of “car”
and ‘“‘pedestrian” are labeled in yellow and green, respec-
tively. The distant cars, occluded cars, and the pedestrian are
all correctly detected with our algorithm, and the object local-
ization is accurate. Therefore, our algorithm outperforms the
compared methods in terms of occluded object detection.

D. QUANTITATIVE RESULTS
Accuracy is computed to evaluate the proposed algorithm,
and accordingly Precision-Recall curve is plotted. Three eval-
uation levels, namely “easy”’, “moderate’” and “‘hard”, are
elaborated in Table 3.

Fig. 8 shows the good object detection performance of the
proposed algorithm. The number of ““Car” is larger than those

of “Cyclist” and “Pedestrian” in KITTI data set, accordingly
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FIGURE 8. Precision-Recall curve of the proposed algorithm. (a) Car;
(b) Pedestrian; (c) Cyclist.

the detection accuracy of “Car” is higher than those of
“Cyclist” and ““Pedestrian”, which indicates that the data are
important to the model training for object detection based on
deep learning.

Table 4 compares the proposed algorithm with the pop-
ular object detection algorithms. Original Faster R-CNN,
as a state-of-the-art algorithm, performs unsatisfactorily for
“Pedestrian” and “Cyclist” with small sizes, but well for
“Car”. This indicates that the original Faster R-CNN is not
very generalized, and does not work well for small objects.
In this paper, more expressive features are extracted with
MCEFEF. Furthermore, OHEM is used to mine more effective
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TABLE 4. Performance comparison (PR, %).

Methods Car Pedestrian Cyclist
Easy Mod Hard Easy Mod Hard Easy Mod Hard
SubCat [39] 84.14 75.46 59.71 54.67 42.34 37.95 - - -
pAUCEnsT[40] -- -- -- 65.26 54.49 48.60 51.62 38.03 33.38
Regionlets[41] 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83
3DVP[42] 87.46 75.77 65.38 - - -- -- -- --
AOGJ[43] 84.80 75.94 60.70 - - - - -- --
Faster R-CNN[27] 87.90 79.11 70.19 78.35 65.91 61.19 71.41 62.81 55.44
DeepParts[]44 -- -- -- 70.49 58.67 52.78 - - -
FilteredICF[45] -- -- -- 67.65 56.75 51.12 -- -- --
Ours 88.50 78.70 70.36 82.25 75.36 69.90 83.07 73.73 69.10
examples to train and generalize the model, so more small [9] L. Yao,J. Tian, and H. He, “Image segmentation via fuzzy object extraction
objects can be accurately detected, and accordingly the over- and edge detection and its medical application,” J. X-Ray Sci. Technol.,
. . . vol. 10, nos. 1-2, pp. 95-106, 2001.
all detection accuracy is improved. The' algorithms, such as [10] S. K. Choudhury, P. K. Sa, S. Bakshi, and B. Majhi, “An evaluation of
SubCat [39], pAUCEIlST [40] and Reglonlets [41], are not background subtraction for object detection vis-a-vis mitigating challeng-
suitable for small or occluded objects. The performances of ing scenarios,” IEEE Access, vol. 4, pp. 6133-6150, 2017.
Faster [11] J. Chu et al., “Target tracking based on occlusion detection and spatio-
. L. » . temporal context information,” Pattern Recognit. Artif. Intell., vol. 30,
R-CNN [27] and our algorithm are similar for “Car” detec- no. 8, pp. 718727, 2017.
tion, but our algorithm performs better for small and medium [12] H. Peng, B. Chen, Y. Cai, and Z. D. Liu, “Vision-based object detec-
objects tion and tracking: A review,” Acta Automatica Sinica, vol. 42, no. 10,
’ pp. 1466-1489, 2016.
[13] H.Zhang, K. Wang, and F. Wang, “‘Advances and perspectives on applica-
IV. CONCLUSIONS AND FUTURE WORKS tions of deep learning in visual object detection,” Acta Automatica Sinica,
In this paper, a novel object detection algorithm is proposed vol. 43, no. 8, pp. 1289-1305,2017. o
based on multi-laver convolution feature fusion (MCFF) and [14] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
. Y o . with deep convolutional neural networks,” in Proc. Int. Conf. Neural Inf.
online hard example mining (OHEM). The anchor sizes are Process. Syst. Curran Assoc. Inc, 2012, pp. 1097-1105.
adjusted according to the objects in the inte]]igent traffic [15] F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
scenario. so the small obiects are detected accurately. More- “Object detection with discriminatively trained part-based models,” IEEE
? K d ; ¥ Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627-1645,
over, MCFF also improves the detection accuracy of small Sep. 2010.
objects. OHEM is applies to mine more effective examples [16] P.Violaand M. J. Jones, ‘“Robust real-time face detection,” Int. J. Comput.
for training. The avoidance of invalid examples speeds up the Vis., vol. 52, no. 2, pp. 137154, 2004. ) i
.. . [17] B. Triggs et al., “Histograms of oriented gradients for human detection,”
convergence of the model training. The comprehenswe com- in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Comput.
parison confirms the advantages of our algorithm. We will Soc., Jun. 2005, pp. 886-893.
optimize classification network, detection speed and model [18] G. Cinbis, J. Verbeek, and C. Schmid, “Segmentation driven object detec-
.. fut Kk tion with Fisher vectors,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2014,
S1Z€ 1n our ruture works. pp. 2968-2975.
[19] J. Wan, G. Guo, and S. Li, “Explore efficient local features from RGB-D
REFERENCES data for one-shot learning gesture recognition,” IEEE Trans. Pattern Anal.

(1] W.0 ¢ al. “DeenID-Net: Def ble d lutional | Mach. Intell., vol. 38, no. 8, pp. 1626-1639, Aug. 2016.

. uyang et at., eeplD-INet: eTormaolie deep convolutional neura. . « . i
networks for object detection,” in Proc. IEEE Comput. Vis. Pattern Recog- 201 G G,}lo’ S. Li, and K. Chan, “Support vector machines gfor face recogni
nit., Jun. 2015, pp. 2403-2412. tion, ' Image Vis. Comp.ut., vol. 19, nos'. 9-10, pp. 631—'6; 8, 2010.

[2] M-C. Roh and J.-Y. Lee, “Refining faster-RCNN for accurate object [21] W. Liu et ql., “S.SD: Single shot multibox detector,” in Proc. Eur. Conf.
detection,” in Proc. IEEE 15th IAPR Int. Conf. Mach. Vis. Appl., May 2017, Comput. Vis. Spr'mger, Chan?, 2916’ pp- 21-37. e
pp. 514-517. [22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

[3] W. Wang and M. Yao, “Intelligent transportation monitoring system Unified: real-time object detection,” in Proc. IEEE Comput. Vis. Pattern
based on computer vision,” J. Zhejiang Univ. Technol., vol. 38, no. 5, Recognit., Jun. 2016, pp. 77'97788'
pp. 574-579, 2010. [23] J. Redmon and A. Farhadi. (Dec. 2016). “YOLO9000: Better, faster,

[4] Z.Zheng and G. Guo, “A joint optimization scheme to combine different stron'ger."’ [Online]. Available: https:// arxw‘orfg/ abs/ }61%'08242 ) )
levels of features for face recognition with makeup changes,” in Proc. [24] R.Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
IEEE Int. Conf. Image Process., Sep. 2016, pp. 3001-3005. for accurate object detection and semantic segmentation,” in Proc. IEEE

[5] A.Rattani, D.R. Kisku, M. Bicego, and M. Tistarelli, “‘Feature level fusion Conf. Comput. Vis. Pattern Recognit., Jun. 20'14’ pp. 58_0*587-' '
of face and fingerprint biometrics,” in Proc. IEEE Int. Conf. Biometrics [25] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
Theory, Appl., Syst., Sep. 2007, pp. 1-6. convolutional networks for visual recognition,” IEEE Trans. Pattern Anal.

[6] H. Proenga, J. Neves, and J. Bricefio, “Face recognition: Handling data Mach. Intell., vol. 37, no. 9, pp. 1904-1916, Sep. 2015.
misalignments implicitly by fusion of sparse representations,” IET Com- [26] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.,
put. Vis., vol. 9, no. 2, pp. 216-225, 2014. Dec. 2015, pp. 1440-1448.

[7] N. Aparajita, P. K. Sa, S. K. Choudhury, S. Bakshi, and B. Majhi, [27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
“A neuromorphic person re-identification framework for video surveil- time object detection with region proposal networks,” IEEE Trans. Pattern
lance,” IEEE Access, vol. 5, pp. 6471-6482, 2017. Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

[8] J. Ajin, V. Jayanthi, and D. Baskar, “Automatic object detection in car- [28] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and

driving sequence using neural network and optical flow analysis,” in Proc.
IEEE Int. Conf. Comput. Intell. Comput. Res., Dec. 2015, pp. 1-4.

19966

A. W. M. Smeulders, “Selective search for object recognition,” Int.
J. Comput. Vis., vol. 104, no. 2, pp. 154-171, 2013.

VOLUME 6, 2018



J. Chu et al.: Object Detection Based on MCFF and OHEM

IEEE Access

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The Pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303-338, 2010.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431-3440.

M. D. Zeiler and R. Fergus, ‘“Visualizing and understanding convolutional
networks,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818-833.

K. Simonyan and Z. Andrew. (Sep. 2014). “Very deep convolu-
tional networks for large-scale image recognition.” [Online]. Available:
https://arxiv.org/abs/1409.1556

S. Abhinav, A. Gupta, and R. Girshick, “Training region-based object
detectors with online hard example mining,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2016, pp. 761-769.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘““Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231-1237,
2013.

X. Chen et al., “3D object proposals for accurate object class
detection,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2015,
pp. 424-432.

Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale
deep convolutional neural network for fast object detection,” in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 354-370.

A. E. Robinson, P. S. Hammon, and V. R. de Sa, “Explaining brightness
illusions using spatial filtering and local response normalization,” Vis.
Res., vol. 47, no. 12, pp. 1631-1644, 2007.

Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675-678.

E. Ohn-Bar and M. M. Trivedi, “‘Learning to detect vehicles by clustering
appearance patterns,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 5,
pp. 2511-2521, Oct. 2015.

S. Paisitkriangkrai, C. Shen, and A. van den Hengel, ‘‘Pedestrian detec-
tion with spatially pooled features and structured ensemble learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 6, pp. 1243-1257,
Jun. 2016.

X. Wang, M. Yang, S. Zhu, and Y. Lin, “Regionlets for generic
object detection,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2017,
pp. 17-24.

X. Yu, W. Choi, Y. Lin, and S. Savarese, ‘““Data-driven 3D Voxel patterns
for object category recognition,” in Proc. IEEE Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 1903-1911.

B. Li, T. Wu, and S.-C. Zhu, “Integrating context and occlusion for car
detection by hierarchical and-or model,” in Proc. Comput. Vis. ECCV,
2014, pp. 652-667.

Y. Tian, P. Luo, X. Wang, and X. Tang, “Deep learning strong parts for
pedestrian detection,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 1904-1912.

S. Zhang, R. Benenson, and B. Schiele, “Filtered channel features for
pedestrian detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2015, pp. 1751-1760.

VOLUME 6, 2018

JUN CHU received the Ph.D. degree from
Northwestern Polytechnic  University, Xi’an,
China, in 2005. She was a Post-Doctoral
Researcher with the Exploration Center of Lunar
and Deep Space, National Astronomical Obser-
vatory of Chinese Academy of Sciences, from
2005 to 2008. She was a Visiting Scholar with the
University of California at Merced, Merced, CA,
USA.

She is currently the Director of the Key Labo-
ratory of Jiangxi Province for Image Processing and Pattern Recognition,
the Vice President, and a Full Professor with the School of Software,
Nanchang Hangkong University. She was also a member of the Computer
Vision Special Committee, China Computer Federation, and the Director
of the Jiangxi Institute of Computer Science. Her research interests include
computer vision and pattern recognition.

ZHIXIAN GUO received the bachelor’s degree
from Gannan Normal University, Ganzhou, China.
He is currently pursuing the master’s degree
with Nanchang Hangkong University. His research
interests include computer vision and image
processing.

LU LENG (M’ 12) received the Ph.D. degree from
Southwest Jiaotong University, Chengdu, China,
in 2012. He did his post-doctoral research at
Yonsei University, Seoul, South Korea, and the
Nanjing University of Aeronautics and Astronau-
tics, Nanjing, China. He was a Visiting Scholar
with West Virginia University, USA. He is cur-
rently an Associate Professor with Nanchang
Hangkong University.

He has authored or co-authored over 60 interna-
tional journal and conference papers, and been granted several scholarships
and funding projects in his academic research. He is the reviewer of several
international journals and conferences. His research interests include image
processing, biometric template protection, and biometric recognition.

Dr. Leng is a member of the Association for Computing Machinery and
China Computer Federation.

19967



	INTRODUCTION
	METHODOLOGY
	FRAMEWORK
	MULTI-LAYER CONVOLUTION FEATURE FUSION
	ONLINE HARD EXAMPLE MINING

	EXPERIMENTAL RESULTS AND DISCUSSIONS
	EXPERIMENTAL SETUP
	DATA SET AND EVALUATION CRITERIA
	QUALITATIVE RESULTS
	THE DETECTION OF SMALL OBJECT
	THE DETECTION OF OCCLUDED OBJECT

	QUANTITATIVE RESULTS

	CONCLUSIONS AND FUTURE WORKS
	REFERENCES
	Biographies
	JUN CHU
	ZHIXIAN GUO
	LU LENG


