
Received December 21, 2017, accepted February 10, 2018, date of publication March 12, 2018, date of current version April 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2814738

Multi-controller Based Software-Defined
Networking: A Survey
TAO HU 1, ZEHUA GUO 2, PENG YI1, THAR BAKER3, AND JULONG LAN1
1National Digital Switching System Engineering and Technological Research and Development Center, Zhengzhou 450002, China
2University of Minnesota, Minneapolis, MN 55455, USA
3Liverpool John Moores University, Liverpool L3 3AF, U.K.

Corresponding authors: Zehua Guo (guolizihao@hotmail.com) and Peng Yi (yipengndsc@163.com)

This work was supported in part by the Project of National Network Cyberspace Security under Grant 2017YFB0803204, in part by the
National High-Tech Research and Development Program of China (863 Program) under Grant 2015AA016102, in part by the Foundation
for Innovative Research Group of the National Natural Science Foundation of China under Grant 61521003, and in part by the National
Natural Science Foundation of China under Grant 61502530.

ABSTRACT Software-defined networking (SDN) is a novel network paradigm that enables flexible
management for networks. As the network size increases, the single centralized controller cannot meet the
increasing demand for flow processing. Thus, the promising solution for SDN with large-scale networks
is the multi-controller. In this paper, we present a compressive survey for multi-controller research in
SDN. First, we introduce the overview of multi-controller, including the origin of multi-controller and its
challenges. Then, we classify multi-controller research into four aspects (scalability, consistency, reliability,
and load balancing) depending on the process of implementing the multi-controller. Finally, we propose
some relevant research issues to deal with in the future and conclude the multi-controller research.

INDEX TERMS Software-defined networking, multi-controller, scalability, consistency, reliability, load
balancing.

I. INTRODUCTION
The Internet has been identified as an essential infrastructure
that supports social development and technological progress
in the past 30 years, and it has profoundly changed the peo-
ple’s working, studying and living styles [1], [2]. However,
traditional network technology has inherent defects of rigid
structure and complex configuration and cannot meet the
requirement of network innovation [3]. Thus, it is deemed
urgent to design and develop a new network architecture that
can dynamically and flexibly manage the network [4].

Software-Defined Networking (SDN) [5]–[7] is proposed
to overcome the aforementionedweaknesses of the traditional
network. As a new network paradigm, the SDN revolutionizes
network technology by breaking the fundamental idea of
traditional networks. An SDN comprises three layers: data
plane, control plane, and application plane. Data plane com-
prises of network devices (e.g., a router, and switch) and
forwards packets according to a decision made by the control
plane. Control plane acts as a mediator for the data plane
and the application plane and handles the traffic flow in the
network. Application plane is on the top of the control plane
and achieves customized application logic (e.g., intrusion
detection systems [8], big data analyses [6]).

The preliminary design of the control plane only uses
one controller for a network. Though the advantages of cen-
tralized control in SDN network, SDN faces some prob-
lems challenging its nature (i.e., centralized control) due to
day-to-day increasing network demands. Further, network
operators try their best to strengthen the performance of
the network controller, but it is still hard to meet the high
demands (e.g., flow request sent by switches and network
statistics) due to the limited capacity of the single controller.
For instance, Ryu [9], as the early controller, can server only
6000 Packet-in requests per second with an average latency
less than (6ms). Particularly, this deficiency presents more
obviously in the large-scale network. Moreover, the single
point of failure is also the crucial factor in the one controller
SDN network. The controller failure will cause disconnec-
tions between the controller and the switches. Since the
controller software runs on a server and it may suffer from
the hardware or software failure, characterization of a server
failure in a production network or cluster gives us the descrip-
tion of the controller failure [10]. Therefore, the controller
failure is common in the network because of hardware or soft-
ware breakdown [11]. In a word, the above problems trig-
gered by the single controller will hinder the deployment

15980
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-7641-5622
https://orcid.org/0000-0001-7314-410X


T. Hu et al.: Multi-controller Based SDN: A Survey

of SDN in actual production networks. To overcome those
issues, several works propose using multi-controller working
together to achieve the function of the logically centralized
controller [12]–[14]. There are some surveys of SDN, but they
have different concentrations. For example, [15] and [16]
introduce a comprehensive literature survey on SDN, includ-
ing the motivation, architecture and an overview of three
layers; [17]–[19] survey SDN network update, testbeds, and
security architecture, respectively. Songtao et al. [17] focus
on the control plane scalability of multi-controller; and the
work is deemed closer to our work.

In this paper, we focus on the survey of multi-controller
research in SDN.We discuss the multi-controller overview in
SDN and present the SDN issues of multi-controller: scala-
bility, consistency, reliability, and load balancing. Following
the design logic, we first present the scalability research
of multi-controller to cope with single controller problem
(single point of failure, limited control resources, etc.). More-
over, we present consistency, reliability, and load balanc-
ing research caused by multi-controller. Further, we propose
some promising research directions as future work. Finally,
we summarize this paper in the conclusion. To the best of
our knowledge, our work is the first comprehensive survey
for multi-controller research in SDN from the perspective
of design logic. The main contributions of this paper are
summarized below:
• We present the controller evolution that discusses the
origin of multi-controller; and we introduce the two
basic multi-controller architectures.

• We summarize the four challenges (i.e., scalability, con-
sistency, reliability and load balancing) in the multi-
controller research, and present existing solutions.

• We introduce major research problems that need to
be considered to implement multi-controller in real
scenarios.

The rest of this paper is organized as follows. Section 2
presents the overview of multi-controller. From Section 3 to
Section 6, we discuss the research challenges of multi-
controller scalability, consistency, reliability and load bal-
ancing, respectively. In Section 7, we discuss the promising
research directions and issues to deal with in the future.
In Section 8, we conclude this survey.

II. MULTI-CONTROLLER OVERVIEW
A. CONTROLLER EVOLUTION
In this subsection, we will firstly introduce the origin of
multi-controller by using two examples, then illustrate the
two basic multi-controller architectures that are flat design
and hierarchical design.

1) FROM SINGLE CONTROLLER TO MULTI-CONTROLLER
In the initial stage of SDN design, a single controller manages
the entire network. In Fig. 1, the controller (c1) manages
four switches in the network. When the source host sends
a new packet to switch (s1), the switch cannot achieve the
forwarding function due to the lack of routing information

FIGURE 1. An example of single controller works in routing packets.

of the new packet. Then, the switch (s1) sends (Packet-in)
messages to the controller (c1) to get the routing for the
new packet. After getting the response message from the
controller, the switch forwards the packet to the next device.
Finally, the packet reaches the destination host successfully.
The controller plays a major role in the process of traffic
transmission. Unfortunately, as the network traffic increases
fast, one single controller cannot deal with a great number of
flow requests send from switches because of the limited con-
troller capacity. Meanwhile, once the single controller fails,
the switches cannot plan the routing for the newly arrived
packet, which affects the communication and applications
of the network. Consequently, it is necessary to propose a
modern controller design.

FIGURE 2. An example of multi-controller works in routing packets.

Benefiting from the development ofOpenFlow (e.g., Open-
Flow 1.2 [20] has proposed the concept of the master, slave,
and equal controller, and one switch could connect one
master controller and several slaves or equal controllers),
multi-controller becomes a new SDN design scheme, which
could solve the problem caused by the single controller.
In Fig. 2, there are two controllers in the network topology,
and each of them manages the part of the network. In this
scenario, (c1) and (c2) are sharing the same logic in a logi-
cally centralized manner such that when new packets arrive
at (s1), both (c1) and (c2) can directly install forwarding
paths in all corresponding switches. By this means, it can
effectively alleviate the flow processing pressure of a single
controller. Meanwhile, these two controllers are backup each
other, which could resolve the single point of failure for the
controller.

Based on the above analysis, we can discover that com-
pared with a single controller, a multi-controller design
can effectively improve the performance of SDN network.

VOLUME 6, 2018 15981



T. Hu et al.: Multi-controller Based SDN: A Survey

Therefore, multi-controller gradually becomes a popular
research in the recent years.

2) TWO BASIC MULTI-CONTROLLER ARCHITECTURES
When placing multi-controller, the key point is how to design
the multi-controller architecture. After surveying the litera-
ture, we conclude that the basic multi-controller architecture
can be divided into flat design and hierarchical design. In flat
design, a network is structured into several domains, where
each domain is controlled by a controller situated within
its own local network view. Controllers communicate with
others through their east-westbound interfaces to get the
global view of the network. Fig. 3 shows the flat design of
multi-controller. Typical examples are HyperFlow [21] and
Onix [22].

FIGURE 3. Flat design of multi-controller.

HyperFlow is designed on Network Operating Sys-
tem (NOX) for the distributed file system WheelFs [23].
In HyperFlow, each controller only processes flow requests
sent from the switches in its local domain. Network events
(e.g., flow information, routing information) are transmitted
based on specific ‘‘publish/subscribe’’ mode [24] among con-
trollers.

Onix adopts the distributed architecture to offer the pro-
grammatic interface for the upper control logic and uses Net-
work Information Base (NIB) to maintain the global network
state. Onix gets network status from physical infrastructure
and conducts operation from the control logic via the con-
nectivity infrastructure.

The flat design extends the capability of the control plane,
but it also requires complicated controller management and
extra control overheads. For example, the controllers must
frequently communicate with each other to guarantee the
consistent network view. The hierarchical design is proposed
to solve the problems.

Hierarchical design usually uses two-layer controllers:
domain controller, which manages switches in its local
domains and runs local control applications, and root con-
troller, which manages domain controllers and maintains a
global network view. Kandoo [25] is a typical hierarchi-
cal controller structure. In the Kandoo, the root controller

communicates with domain controllers to get the domain
information, but the domain controllers do not contact with
each other. Fig. 4 shows the basic architecture of hierarchical
design.

FIGURE 4. Hierarchical design of multi-controller.

FIGURE 5. The research of multi-controller challenges.

B. RESEARCH CHALLENGES
The design of the multi-controller has solved the problems
encountered by a single controller, but it also presents a set
of overlooked challenges. Fig. 5 summarizes the research
roadmap of multi-controller challenges. One of the most
critical challenges in multi-controller is the way to cope with
its scalability problem. Therefore, the researchers introduce
to place multi-controller in the SDN network. However, how
to place those controllers to solve scalability is still an out-
standing challenge, which includes two layers of meaning:
one refers to finding controller locations, the other allocates
the switches for different controllers. Further, once there
is a multi-controller in the network, the consequent results
bring about the challenges of consistency, reliability and load
balancing. Though different controllers manage the respec-
tive SDN domains, they must maintain consistent network
views. It is necessary to guarantee the consistency of the
multi-controller. Meanwhile, different types and locations of
controllers may suffer from the indeterminate failure and
indeterminate attack, which influence the reliability of the
control plane. Besides, unbalanced distribution of controller
loads will degrade the network performance, and how to
balance multi-controllers’ loads is also a key point of multi-
controller research.

15982 VOLUME 6, 2018



T. Hu et al.: Multi-controller Based SDN: A Survey

FIGURE 6. The multi-controller scalability solutions.

III. MULTI-CONTROLLER SCALABILITY
Based on the two basic multi-controller architectures, the pro-
posed for multi-controller is to overcome the shortages of the
single controller, such as single controller failure and limited
controller capacity. However, multi-controller also raises the
challenges of scalability: how to select the controller loca-
tions and how to allocate the switches for multi-controller in
the network. In fact, the multi-controller’s scalability depends
on the number of controllers and the deployment mode.
If controllers are irrationally deployed, it could assign unbal-
anced processing load on controllers and lower the control
plane’s capacity. The coarse-grained domain partition could
also make it difficult to guarantee the agreeable effect of
scalability. After analysis, we categorize existing solutions in
two aspects: (1) controller placement; (2) domain partition,
as shown in Fig. 6. Controller placement focuses on selecting
appropriate locations to improve the scalability while domain
partition emphasizes on partitioning the entire network into
several SDN domains.

A. CONTROLLER PLACEMENT
Placing multi-controller is an effective method to cope with
the challenge of scalability, and existing multi-controller
placements in [26]–[30] consider some network parameters
(e.g., delay, traffic, distance) to identify the number and
locations of controllers in the network.

1) CONTROLLER PLACEMENT PROBLEM (CPP)
Heller et al. [26] firstly improves the scalability of multi-
controller for solving CPP. The CPP focuses on two ques-
tions: how many controllers are required, and where should
they go? The authors conduct experiments on the Inter-
net 2 [31] production deployments and 100 publicly avail-
able WAN topologies to examine control plane propagation
latency. The results indicate the latency is topology dependent

and one controller location is often sufficient to meet exist-
ing reaction-time requirements (though certainly not fault
tolerance requirements). Unfortunately, the authors have no
algorithm design and theoretical demonstration.

2) OPTIMAL CONTROLLER PLACEMENT
In [27], Rath et al. present a non-zero-sum game [32]
based distributed technique to optimally deploy the multi-
controller. With the non-zero-sum game, each controller has
an optimization engine, which computes a payoff function
and compares its own payoff value to save costs and improve
Quality of Service (QoS) through optimizing the locations of
controllers.

3) BARGAINING GAME
Similarly, in [28], Ksentini et al. also introduce a game model
to study the placement ofmulti-controller. Thismodel consid-
ers multiple metrics: the communication delay between con-
trollers and switches, the communication overhead among
controllers, processing loads on controllers. Based on the
metrics, the paper formulates an optimization problem with
two contradictory objectives: minimizing communication
delay and minimizing communication overhead. The authors
use a bargaining game to find the optimal placement of
controllers to achieve a trade-off between the two objectives.

4) MATHEMATICAL MODEL
In [29], Sallahi and St-Hilaire propose a mathematical model,
which simultaneously determines the optimal number, loca-
tion, and type of controllers in SDN. The model seeks to
minimize the controller placement cost of the network while
considering different constraints (e.g., controller capacity,
path latency). The simulation results demonstrate that the
model can be used to plan small-scale SDN. Meanwhile,
this model can also be applied to various enterprises and

VOLUME 6, 2018 15983



T. Hu et al.: Multi-controller Based SDN: A Survey

TABLE 1. An overview of current controller placement techniques for multi-controller scalability.

cloud-based networks to start integrating SDN or plan a new
SDN. However, this model needs a long-time computation
time and huge memory when used in large topologies of the
controller placement.

5) HYBRID HIERARCHICAL CONTROL PLANE
For large-scale SDN networks, in [30], Fu et al.introduce
a hierarchical hybrid control plane, named Orion to effec-
tively reduce the computational complexity of an SDN con-
trol plane by several orders of magnitude. Orion uses two
control layers: (1) area controller layer is responsible for
handling the physical switches and collecting link informa-
tion; (2) domain controller layer includes several controllers
that supervise the area controllers as devices. Differing from
Kandoo [25], Yeganeh and Ganjali design an abstracted hier-
archical routing method between area controller layer and
domain controller layer to solve the path stretch problem
and achieve fast rerouting in the hierarchical hybrid control
plane.

We investigate and analyze the controller placement tech-
niques for multi-controller scalability in Table 1.We compare
different techniques from the aspects of authors, mode, objec-
tive, complexity, real time, simulation/evaluation and applica-
tion scenarios including enterprise, Data Centers (DC), Cloud
and Wide Area Network (WAN). The

√
represents feasible

and × represents not feasible. The rest tables in the paper
follow the same notation.

B. DOMAIN PARTITION
Deploying multi-controller in one domain restricts the large-
scale implementation and scalability of SDN. Therefore,
the literature proposes to divide a network into multiple
domains to improve the scalability of multi-controller [33],
[34], [36], [37].

1) DISTRIBUTED MULTI-DOMAIN SDN CONTROLLER
(DISCO)
DISCO [33], implemented on top of Floodlight, is introduced
to partition wide area network (WAN) with constrained over-
lay networks. A DISCO controller manages its own domain
and communicates with other controllers via a lightweight
and manageable control channel to provide end-to-end net-
work services. In particular, DISCO adopts the innovative
technology (e.g., link discovery agent, path computation
agent) to well discriminate heterogeneous inter-domain links
(e.g., high-capacity MPLS tunnels) and improve the utiliza-
tion of link bandwidth.

2) APPROXIMATE ALGORITHM
In [34], Wang et al.efficiently configure controllers in a
multi-domain SDN to find the least number of controllers
for the network. They formulate the multi-domain parti-
tion as a NP-hard problem and transfer the problem to the
Greedy Sub-Graph Cover Problem (GSGCP) by abstracting
domain as nodes. The authors then solve the GSGCP with

15984 VOLUME 6, 2018



T. Hu et al.: Multi-controller Based SDN: A Survey

TABLE 2. An overview of current domain partition techniques for solving multi-controller scalability.

a modified approximate optimal solution, and the simula-
tion results demonstrate the solution achieves the equivalent
multi-domain partition and has an acceptable computation
complexity for any given network topology.

3) K SELF-ADAPTIVE
Based on the spectral clustering [35], Xiao et al. introduce
a self-adaptive partition and placement algorithm for con-
trollers in wide area networks [36]. This algorithm uses
matrix perturbation theory to determine the topology of
domains and the optimal number of domains automatically.
The authors also present a Beacon-based test framework and
verify the algorithm’s validity in Internet2 OS3E topology.

4) SDN PARTITIONING (SDNP)
In [37], Caria et al. propose new SDN-IP hybrid network
architecture, named SDNP, for multi-domain partition in
large-scale SDN network. The SDNP builds centralized con-
trol over a distributed routing protocol by dividing the net-
work into sub-domains with SDN-enabled border nodes.
SDNP can evenly partition the topology and dynamically
modify the size of domains. Therefore, SDNP achieves
high network control capabilities with a few SDN-enabled
routers.

We investigate and analyze the domain partition techniques
for multi-controller scalability. The results are presented
in Table 2.

IV. MULTI-CONTROLLER CONSISTENCY
Multi-controller design can divide the entire network into
several domains, and each controller manages its own SDN
domain. To make sure that packets are transmitted correctly
in the network, the controllers must interact the domain infor-
mationwith each other to keep the consistent view. Therefore,
controller consistency also becomes an important issue for the
multi-controller SDN.

The multi-controller must make a decision based on the
consistent and coherent network information. However, dur-
ing the data transmission, the out-sync between controllers
and concurrent strategic conflicts of controllers may lead to
the inconsistency of the controller state.

Meanwhile, due to propagation delay and flow table order,
control strategies of multi-controller are easy to be inconsis-
tent, which would produce the packet loss and service inter-
ruption. Both DIFANE [38] and DevoFlow [39] improve the
consistency of controller through adding the partial control
functions into SDN switch. However, this action is contrary
to the original design of SDN.

Based on the aforementioned analysis, in Fig. 7, we clas-
sify the existing research results of multi-controller consis-
tency into two aspects: (1) consistency of controller state;
(2) consistency of control strategy. The controller state con-
sistency emphasizes on keeping the consistent local domain
view once the network state changes. The control strategy
consistency devotes to avoid the conflict of flow tables

VOLUME 6, 2018 15985



T. Hu et al.: Multi-controller Based SDN: A Survey

FIGURE 7. The multi-controller consistency solutions.

pushed by controllers. Both two ways can effectively guar-
antee the consistency of multi-controller.

A. CONTROLLER STATE CONSISTECNY
When the network state changes, the controllers must have
the consistent view for the global network to make the correct
decision for networks, which require the controllers with the
consistent state [21], [22], [40]–[42].

1) PUBLISH/SUBSCRIBE MODE
Based on the ‘‘publish/ subscribe’’ mode, HyperFlow [21]
achieves consistent state among controller via WheelFs dis-
tributed file system. This is obviously due to WheelFs
facilitates rapid prototyping and is resilient against network
partitioning. The ‘‘publish/ subscribe’’ mode has a network-
wide scope and three channel types (control channel: con-
trollers advertise themselves there; data channel: events of
general interest published here; individual controllers’ chan-
nels: send commands and replies to a specific controller).
If an event (e.g., OpenFlow messages) that changes the net-
work happens, the controller that identifies the event will
publish the event to switches. Other controllers receive the
published event and update their network state to achieve
status synchronization.

2) NETWORK INFORMATION BASE (NIB)
Onix [22] stores the network information in the NIB and
writes and reads the contents of NIB to synchronize the
state of each controller. As the control platform, Onix is
responsible for giving the control logic programmatic access
to the network (reading and writing network state). In order
to scale to very large networks (millions of ports) and to
provide the requisite resilience for production deployments,
Onix instance is also responsible for disseminating network
state to other instanceswithin the cluster.When one controller
node has been changed in Onix, this information will be
distributed among NIBs.

3) FAST CONSENSUS ALGORITHM
As a new fast consensus algorithm, Fast Paxos-based Con-
sensus (FPC) is proposed based on a strong consistency
model [40]. FPC creatively defines three roles for controllers:
listener, proposer, and chairman. Through applying the voting
mechanism, the proposer can handle the request from the
switch if receiving acceptance votes from a majority of the
controllers. Moreover, each controller has a definite priority,
and an aging mechanism is applied to avoid the starvation for
the low priority. These settings could promise that FPC has
stable consensus control logic.

4) CONSISTENCY FOR CROSS-DOMAIN
In [41], Zhouboyang et al.consider the consistency of con-
troller states in WAN. They propose a consistent layer that
actively and passively snapshots the cross-domain control
states to reduce the complexities of service realization. The
consistent layer is applied and evaluated in the PlanetLab
testbed by putting OpenFlow switch implementation on the
overlay networks for evaluating performance in an enlarged
WAN environment. The results show this method has four
properties: (1) the scalability of the snapshot on large-scale
domains, (2) the reliability for dealing with the physical
network instabilities, (3) the responsiveness for reacting on
a few state changes of domains, (4) the security of cross-
domain control.

5) LOAD VARIANCE-BASED SYNCHRONIZATION (LVS)
In [42], Guo et al. propose a new type of controller state
synchronization scheme, Load Variance-based Synchroniza-
tion (LVS), to improve the load-balancing performance in the
multi-controller multi-domain SDN network. Compared with
PS (Periodic Synchronization)-based schemes, LVS-based
schemes conduct effective state synchronizations among con-
trollers only when the load of a specific server or domain
exceeds a certain threshold, which significantly reduces the
synchronization overhead of controllers. The results of simu-
lation show that LVS achieves loop-free forwarding and good

15986 VOLUME 6, 2018



T. Hu et al.: Multi-controller Based SDN: A Survey

TABLE 3. An overview of current controller state consistency techniques for solving multi-controller consistency.

load-balancing performance with much less synchronization
overhead, as compared with existing schemes.

We investigate and analyze the controller state consistency
techniques for multi-controller consistency in Table 3.

B. CONTROL STRATEGY CONSISTECNY
The concurrent control strategy will bring about inconsis-
tency issue, which can be resolved by strategy rules formed in
the control layer. In order to avoid the involvement of phys-
ical devices, the controller could combine the strategies and
use the fine-grained locking to ensure there are no conflicts
between different control strategies [33], [43], [44].

1) ADVANCED MESSAGE QUEUING PROTOCOL (AMQP)
In [33], Phemius et al. propose DISCO, an extensible
DIstributed SDN COntrol plane able to deal with the
distributed and heterogeneous nature of modern overlay
networks. DISCO sets a messenger module and four agents,
including monitoring, reachability, connectivity, and reser-
vation. The messenger module is based on the AMQP [86]
and its function is to identify neighboring controllers and
establish a distributed publish/subscribe channel. Different
agents use this channel to share network information with
other controllers. Each agent publishes messages according
to controller status and publishes the synchronous messages.
Finally, the results demonstrate that DISCO can adapt to het-
erogeneous network topologies while being resilient enough
to maintain the consistency of control strategy.

2) CUSTOMIZABLE CONSISTENCY GENERATOR (CCG)
In [43], Xiong and Fu propose CCG, a fast and generic
framework to support customizable consistent policies during
network updates. CCG adopts the hierarchical strategy, which
divides the concurrent strategies into an organized tree. In this
tree, each node can achieve the independent forwarding prin-
ciple. They put in place the self-defined conflict processing
for each node, so the entire processing will be turned into a
reverse search tree. Mininet and physical testbed evaluations
prove strategy’s capability to achieve various types of con-
sistency, such as path and bandwidth properties, with zero
switch memory overheads.

3) FLOW CONFIGURATION SCHEME
Similarly, in [44], Zhou et al. research control strategy from
the perspective of flow configuration, and they combine
the flow allocation cost to minimize the number of control
strategies.

We investigate and analyze the control strategy consistency
techniques for multi-controller consistency in Table 4.

V. MULTI-CONTROLLER RELIABILITY
Using multi-controller resolves the single point of failure
problem for the controller, but it cannot guarantee the high
reliability of the control plane. The connection links among
switches and controllers have limited capacity. If these links
experience congestion, interruption or failure, controllers
and switches cannot normally communicate with each other,

VOLUME 6, 2018 15987



T. Hu et al.: Multi-controller Based SDN: A Survey

TABLE 4. An overview of current control strategy consistency techniques for solving multi-controller consistency.

FIGURE 8. The multi-controller reliability solutions.

leading to the isolation among controllers and switches.
Additionally, controllers could be failed or overwhelmed by
malicious attacks (e.g., excessive packet-in requests). Thus,
the multi-controller reliability is also important for actual
deployment of multi-controller. In Fig. 8, we classify the
existing research results of multi-controller reliability into
two aspects: (1) control path reliability; (2) controller node
reliability. Control path reliability considers multi-controller
design from the perspective of reliable network links. On the
contrary, the controller node reliability faces on the multi-
controller design from the perspective of reliable and depend-
able network nodes.

A. CONTROL PATH RELIABILITY
Control actions (e.g., Packet-in sending, flow entry distribu-
tion) must be transmitted through the control paths. There-
fore, optimizing control path is an efficient method to achieve
the reliability of controllers [45]–[48].

1) RELIABILITY-OPTIMIZED SCHEME
In [45], Hu et al. define a new metric, named ‘‘expected
percentage of control path loss’’, to characterize the reliabil-
ity of SDN. First, they analyze the reliability framework of
the control plane and the control path. Then, the reliability-
aware control placement is proved as an NP-hard problem.
Moreover, several placement algorithms and their advantages
are examined based on the actual topology. The authors
demonstrate that reliability-aware controller can effectively
improve the reliability of the control plane without introduc-
ing unacceptable latencies.

2) FAST FAILOVER DESIGN
In [46], Beheshti and Zhang achieve fast failover for control
traffic when controllers fail. The authors propose a protection
metric for the connections between controllers and switches,
and take into account both distance and resiliency factors:

15988 VOLUME 6, 2018



T. Hu et al.: Multi-controller Based SDN: A Survey

TABLE 5. An overview of current control path reliability techniques for solving multi-controller reliability.

the algorithm builds a routing tree that results in a short
distance and high resiliency in the connection between
the switches and the controller. The solution suggests pre-
configuring some backup outgoing links for switches and re-
connecting switches to controllers if a link failure is detected.
Therefore, this optimization scheme can be used to select
the best controller location for maximizing the number of
protected switches.

3) SURVIVOR
Survivor is an enhanced controller placement strategy that
reduces connectivity loss and enables smart recovery to
improve the SDN survivability [47]. It enhances connectivity
by employing path diversity, adds the capacity awareness for
controllers and builds the failover mechanism through the
methodology for composing the backups. Survivor also has
the strong topological adaptability and can be run on any
given network topology.

4) CONTROL PATH MANAGEMENT
Control Path Management framework [48] addresses the
problem of reliability from the perspective of the control path.
The framework designs two strategies: (1) Reliable Con-
troller Placement-Disjoint Control Path (RCP-DCP), which
protects the control plane against single link and node failures
by connecting switches to a controller over two disjoint con-
trol paths, and (2) Reliable Controller Placement-Different

Controller Replicas (RCP-DCR), which provides seamless
failover by connecting each switch to two different controller
replicas over two disjoint paths. By combining the controller
placement problem with resilient routing principle, both two
strategies minimize the latency of the control plane and sim-
plify the management of the control path.

We investigate and analyze the control path reliability tech-
niques for multi-controller reliability in Table 5.

B. CONTROLLER NODE RELIABILITY
If a node fails, it can be quickly mapped or migrated to
another node, or flows are rerouted on new paths disjoint
with the node. However, different from traditional network
nodes, a controller is responsible for traffic management in
a network or domain and cannot be migrated and remapped.
If a controller fails or crashes, the operation of the network
controlled by the controller would be severely interrupted.
Therefore, researching the controller node reliability has an
important effect on multi-controller reliability [49]–[51].

1) ROBUST CONTROL
In [49], Jiménez et al. design an algorithm called K-Critical
that places controllers to achieve a robust control. K-Critical
discovers the minimum number of controllers and their loca-
tions to create a robust control topology that deals robustly
with failure and balances the load among the selected con-
trollers. This solution finds the best controller location as the

VOLUME 6, 2018 15989



T. Hu et al.: Multi-controller Based SDN: A Survey

TABLE 6. An overview of current controller node reliability techniques for solving multi-controller reliability.

network scale dynamically increases or decreases. However,
it neglects several network performance metrics (e.g., con-
troller throughput, link bandwidth, processing delay).

2) OPTIMAL CONTROLLER SELECTION
In [50], Sahoo et al. combine Greedy method and simu-
lated annealing to optimize the selection of controller nodes
to achieve the high reliability of the control plane. In the
proposed optimization problem, the aim is to minimize the
transmission paths between switches and controllers, and
the constraints involve linking distance and latency. The
results show that proposed solution Greedy-SA improves the
reliability of the control plane and manages more switches
with few controllers. However, this heuristic algorithm is only
practically feasible for small and medium-size networks and
cannot satisfy the time and resource demand for large-scale
networks.

3) CAPACITATED CONTROLLER
In [51], Killi and Rao formulate a mathematical model for
the capacitated controller placement that aims to reduce
the worst-case latency between switches and controllers
to deploy a limited number of controllers. Meanwhile,
the authors also introduce a variant of the proposedmodel that
minimizes the worst-case latencies with and without failure
together. The results show that this controller placement that
plans ahead for the failure result in much lower latency com-
pared with the placement without planning ahead. However,
they do not provide detailed algorithm design for implement-
ing the strategy.

We investigate and analyze the controller node reliability
techniques for multi-controller reliability in Table 6.

VI. MULITI-CONTROLLER LOAD BALANCING
The introduction of multi-controller partitions the network
into several SDN domains, while the controllers monitor the
local switches in the domain, respectively. However, due to
the network traffic variation and the static mapping between
switches and controllers, it is likely to produce overloaded
controller and underloaded controller in the network. Further,
imbalanced load distribution among controllers will seriously
degrade the network performance (e.g., high packet loss rate,
high response time of controller and low controller through-
put). Therefore, for a given multi-controller SDN

network, it is essential to ensure the nice load balanc-
ing performance of multi-controller. By investigating the lit-
erature, we conclude that the existing research solves the
problem in two ways: (1) controller clustering; (2) switch
migration, as is illustrated in Fig. 9. As a comparison, con-
troller clustering pays greater attention to architecture design
by constructing the dynamic controller resource pool, while
the switch migration concentrates on adjusting the distribu-
tion of controller loads to keep load balancing.

A. CONTROLLER CLUSTERING
The state-of-the-art works propose controller cluste-
ring [52]–[55] to achieve load balancing. Generally,
a network contains one super controller and multiple regular
controllers, which construct the controller resources pool.
The super controller is exclusively used in managing all

15990 VOLUME 6, 2018



T. Hu et al.: Multi-controller Based SDN: A Survey

FIGURE 9. The multi-controller load balancing solutions.

controller loads and periodically collects the number of flows
in each domain from the regular controllers. A regular con-
troller manages its domain and uploading load information
with a cross-controller interaction system periodically. When
the traffic load surges, the super controller executes the load
balancing algorithm and maps each switch to a specific
controller. By controller clustering, the load information
can be centralized collected, and the super controller makes
the balanced load management without producing the other
superfluous overheads between regular controllers.

1) BALANCEFLOW
BalanceFlow [52] is a typical controller clustering solution
based on hierarchical deployment. The main advantage of
this method is flexible tuning the flow requests handled by
each controller without introducing extra propagation laten-
cies. It follows the multi-controller feature in the Open-
Flow 1.2. All controllers in the BalanceFlow maintain their
own load information and publish this information periodi-
cally to each other through a cross-controller communication
system. Upon traffic condition changes, one of the Balance-
Flow controllers is selected as the super controller, which
partitions the traffic and reallocates different flow setups to
appropriate controllers. BalanceFlow also proposes a reason-
able extension action for switches: CONTROLLERX action.
By using this extension action, the overloaded controller will
reduce the process of flow request, and those requests will be
allocated to the controller with light load dynamically.

2) COOPERATIVE LOAD BALANCING
Similar to BalanceFlow, [53] and [54] also define a super
controller to manage controllers’ loads. Differently, [53]
introduces Cooperative Load Balancing Scheme for hier-
archical controller deployment (COLBAS) relying on con-
troller cooperation via cross-controller communication. The
main thought of this scheme is similar to BalanceFlow,
but the authors adopt a Greedy algorithm to reassign the
controllers’ loads. In particular, COLBAS can keep the

system performance high and the load reassigning cost
low.

3) CLUSTER VECTOR (CV)
In [54], Sufiev and Haddad simplify the load balancing
operation with a self-defined label CV, which is a vector
that contains addresses of the controllers in the same clus-
ter. Meanwhile, it also breaks the dependency between the
super controller and regular controllers. The proposed design
consists of two levels: high-level operations in a super con-
troller and low-level operations in a regular controller. Each
controller has its own CV, and a regular controller finds the
address of other regular controllers from its CV and uses the
address to query other regular controllers about their load.

4) DORMANT MECHANISM MODEL
in [55], Yonghong et al. design a dormant mechanism model
based on flat deployment for multi-controller to save network
resource, reduce energy consumption and improve the utiliza-
tion of controller. The key idea is to let some idle controllers
enter the dormant state to be inactive or power off when
the network’s load is light. The authors propose a genetic
algorithm to locate the optimal values of various parameters
(e.g., latency, traffic, distance) to minimize system cost for
the deployment decision-making and use queuing model to
analyze the scheme’s performance.

We investigate and analyze the controller clustering tech-
niques for multi-controller load balancing in Table 7.

B. SWITCH MIGRATION
Benefit from three roles of controllers (OpenFlow 1.2),
researchers propose balancing multi-controller loads through
switch migration [56]–[60] based on dynamic multi-
controller architecture. In a domain, when the controller over-
loads or the flow requests of switches increase sharply, some
switches would be reassigned to the controller of the other
domain with a light load. The core idea of switch migration
is to dynamically change the relationships between switches

VOLUME 6, 2018 15991



T. Hu et al.: Multi-controller Based SDN: A Survey

TABLE 7. An overview of current controller clustering techniques for solving multi-controller load balancing.

FIGURE 10. Switch migration process.

and controllers by migrating switches from the overloaded
controller to the underloaded controller.

Fig. 10 shows a complete description of the switch migra-
tion procedure, which consists of four phases. In phase 1, it
achieves changing the role of the target to equal. The initial
master (A) sends a start migration message to B through
controller-to-controller channel. Then, (B) sends Role-quests
to the switch that needs to be migrated. After (B) receives
Role-Reply from the switch, it notifies (A) that the role
changing has accomplished. After (B) changes its role to
equal, it receives asynchronous messages from the switch,

but does not provide a response. In phase 2, it inserts and
removes a dummy flow. (A) firstly sends Flow-mod to (X)
to add a new flow entry, which does not match any packet.
Then, it sends another Flow-mod to delete the entry. In return,
the switch can send a Flow-removed message to controllers
because of (B) is an equal controller right now. The Flow-
removed offers a transfer of ownership for the switch (X)
from (A) to (B). Besides, a barrier message is requested after
the insertion of the dummyflow. In phase 3, it flushes pending
requests for a barrier. (A) transmits a Barrier-request and
waits for the Barrier-reply, only after which it sends ‘‘end

15992 VOLUME 6, 2018



T. Hu et al.: Multi-controller Based SDN: A Survey

migration’’ to the final master (B). In phase 4, it makes the
target controller final master. The final master (B) sets its role
to master for the switch by sending a Role-request message
to the switch. Finally, it updates the distributed data store.

FIGURE 11. Elastic framework.

1) ELASTIC CONTROL (ElatiCon)
ElastiCon [56] is the first switch migration framework based
on dynamic multi-controller architecture. Fig. 11 sets the
complete framework of ElastiCon, which contains three
modules: load measurement modules, load adaptation deci-
sion modules, and action modules. The load measurement
module collects the load of each controller and sends the
load information to load adaptation decision module, which
decides load allocation among controllers. The action mod-
ule conducts control actions (e.g., migrating switch, adding
and removing controllers) to achieve the dynamic control
of controllers and switches. ElastiCon periodically monitors
the load on each controller, detects imbalances, and auto-
matically balances the load across controllers by migrating
switches from the overloaded controller to a lightly loaded
one. Meanwhile, in order to harmonize the migration, a novel
switch migration protocol is designed for enabling such load
shifting, which conforms to the OpenFlow standard. Finally,
a prototype of ElastiCon is built and its performance is eval-
uated based on Mininet. Therefore, ElastiCon ensures pre-
dictable controller performance even under highly dynamic
workloads.

2) GAME-THEORETIC APPROACH
In [57], Chen et al. solve the switch migration algorithm with
game theory. By taking light controllers as the game players
and switches as the commodities, a zero-sum game model is
exploited to emulate the competitions for migrating switches
among overloaded controllers. The controller selects the opti-
mal elements to implement the transaction by increasing or
decreasing the commodity value of the switch. The game

model is fast and efficient to achieve switch migration but
is not suitable for large-scale network due to the high com-
plexity of algorithm design.

3) DISTRIBUTED DECISIONS SCHEME
In [58], Cheng et al. define the Switch Migration Prob-
lem (SMP) and a Network Utility Maximization (NUM)
problemwith the objective ofmaximizing the number of serv-
ing requests under the available control resource. Distributed
Hopping Algorithm (DHA) is designed to achieve optimal
switch migration via Log-Sum-Exp function. The DHA pro-
cedure is a time-reversible markov chain process. The sim-
ulation results show DHA outperforms existing schemes by
reducing flow setup time and improving the average utiliza-
tion ratio of controller.

4) LOAD INFORMING STRATEGY
In [59], Yu et al. present a load balancing mechanism based
on a load informing strategy for controllers. Emphatically,
it builds distributed decision architecture, including four com-
ponents that were load measurement, load informing, and
balancing decision and switchmigration. In this strategy, each
controller can periodically actively report its load information
to other controllers, and it also handles and stores the load
information from others. While the periodical active load
informing can decrease the decision delay, it also causes
additional processing and communication overhead in the
control plane. Especially, when the current load value does
not change much compared to the last value, reporting it to
other controllers is a redundant operation.

5) BALANCED CONTROLLER (BalCon)
BalCon is a heuristic solution proposed in [60]. It is based
on two key observation: (1) an effective switch migration
should consider the communication patterns of the SDN
switches, (2) the switch migration should be processed at
the granularity of clusters: switches with strong connec-
tions, which has the shorter distance to controller, should
always be assigned to the same controller. BalCon is achieved
by a realistic prototype based on Ryu, and the results
show BalCon significantly reduces the number of migrating
switches.

We investigate and analyze the controller clustering tech-
niques for multi-controller load balancing in Table 8.

VII. FUTURE WORK
The existing research focuses on solving challenges on multi-
controller scalability, reliability, consistency and load balanc-
ing. However, there are still several problems that deserve
deep research. We briefly discuss the research emphasis and
development direction of multi-controller in the future.

A. THE DEVELOPMENT OF CONTROL SOFTWARE
Control software is an important application in the con-
trol plane, and its main form is the controller. There-
fore, implementing multi-controller architecture is greatly

VOLUME 6, 2018 15993



T. Hu et al.: Multi-controller Based SDN: A Survey

TABLE 8. An overview of current switch migration techniques for solving multi-controller load balancing.

related to the development of control software. Based on the
existing controller versions, simplifying the deployment way
and improving compatibility are the most important tasks
for the exploitation of control software that supports multi-
controller architecture.

B. CONTROLLER SAFETY
The controller plays a critical role in monitoring and dis-
patching the network traffic, but the existing multi-controller
architecture is lack of safety mechanism and anomaly detec-
tion. The hostile attack is not difficult to break the pro-
tection measures of controllers. Therefore, Enhancing the
anti-attack performance of multi-controller architecture is
another important research topic.

C. MULTI-CONTROLLER ARCHITECTURE
In the initial phase, application scenarios of SDN mostly
focus on colleges, enterprises or data centers, and SDN is
lack of deployment experience in the large-scale network
due to the constraint of scalability. The introduction of
multi-controller provides the possibility for the widespread
deployment of SDN. Unfortunately, the actual deployment
of multiple controllers still lacks relevant technical guidance.
There is still a long way to go before the multi-controller is
promoted.

D. HETEROGENEOUS MULTI-CONTROLLER
The existing researches about the heterogeneous controller
focus mainly on security and convergence area. However, in

analogy with the homogeneous multi-controller, the explo-
ration of the heterogeneous multi-controller must be
applied into more research fields, such as availability
and consistency. Meanwhile, the performance interruption
between different types of controllers also should get more
attention.

VIII. CONCLUSION
The design and performance of the control plane are the
critical part of SDN. In order to achieve the large-scale appli-
cation of SDN, the control plane has evolved from the single
centralized controller to multiple controllers. In this paper,
based on the existing literature, we first provide an overview
of multi-controller, including the origin of multi-controller
and its challenges. Then, we summarize the main research
challenges of multi-controller: scalability, consistency, relia-
bility, and load balancing. Meanwhile, we also consider the
corresponding solution for these challenges. Further, we give
some promising research problems of multi-controller in the
future.

REFERENCES
[1] H.-C. Wang and H.-S. Doong, ‘‘Validation in Internet survey research:

Reviews and future suggestions,’’ in Proc. 40th Annu. Hawaii Int. Conf.
Syst. Sci. (HICSS), Waikoloa, HI, USA, 2007, p. 243.

[2] A. M. Ahmed, T. Qiu, F. Xia, B. Jedari, and S. Abolfazli, ‘‘Event-based
mobile social networks: Services, technologies, and applications,’’ IEEE
Access, vol. 2, pp. 500–513, 2014.

[3] T. Benson, A. Akella, and D. Maltz, ‘‘Unraveling the complexity
of network management,’’ in Proc. 6th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), Berkeley, CA, USA, 2009,
pp. 335–348.

15994 VOLUME 6, 2018



T. Hu et al.: Multi-controller Based SDN: A Survey

[4] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J.Wilcox,
‘‘Intelligent design enables architectural evolution,’’ in Proc. 10th ACM
Workshop Hot Topics Netw. (HotNets-X), New York, NY, USA, 2011,
pp. 3:1–3:6.

[5] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and
S. Shenker, ‘‘Software-defined Internet architecture: Decoupling archi-
tecture from infrastructure,’’ in Proc. 11th ACM Workshop Hot Topics
Netw. (HotNets-X), New York, NY, USA, 2012, pp. 43–48.

[6] N. Feamster, J. Rexford, and E. Zegura, ‘‘The road to SDN: An intellectual
history of programmable networks,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[7] T. D. Nadeau and K. Gray, SDN: Software Defined Networks. Sebastopol,
CA, USA: O’Reilly Media, Inc., 2013.

[8] V. López, O. Gonzalez de Dios, B. Fuentes, M. Yannuzzi,
J. P. Fernandez-Palacios, and D. López, ‘‘Towards a network operating
system,’’ in Proc. OFC, San Francisco, CA, USA, 2014, pp. 1–3.

[9] Ryu. Accessed:Mar. 2018. [Online]. Available: http://osrg.github.com/ryu/
[10] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao, ‘‘STAR:

Preventing flow-table overflow in software-defined networks,’’ Comput.
Netw., vol. 125, pp. 15–25, Oct. 2017.

[11] L. Sidki, Y. Ben-Shimol, and A. Sadovski, ‘‘Fault tolerant mechanisms for
SDN controllers,’’ in Proc. IEEE Conf. Netw. Funct. Virtualization Softw.
Defined Netw. (NFV-SDN), Palo Alto, CA, USA, Nov. 2016, pp. 173–178.

[12] Y. E. Oktian et al., ‘‘Distributed SDN controller system:A survey on design
choice,’’ Comput. Netw., vol. 121, pp. 100–111, Jul. 2017.

[13] Y. Jia, N. Hua, Y. Yu, Y. Li, and X. Zheng, ‘‘Experimenting with multi-
controller collaboration for large-scale intra-data center networks,’’ in
Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), Los Angeles, CA, USA,
2017, pp. 1–3.

[14] M. Karakus and A. Durresi, ‘‘A survey: Control plane scalability issues
and approaches in software-defined networking (SDN),’’ Comput. Netw.,
vol. 112, pp. 279–293, Jan. 2017.

[15] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, ‘‘A survey on software-
defined networking,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 27–51, 1st Quart., 2014.

[16] D. Kreutz et al., ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 10–13, Jan. 2014.

[17] D. Li, S. Wang, K. Zhu, and S. Xia, ‘‘A survey of network update in SDN,’’
Frontiers Comput. Sci., vol. 11, no. 1, pp. 4–12, 2017.

[18] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu, ‘‘A survey on
large-scale software defined networking (SDN) testbeds: Approaches and
challenges,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 891–917,
2nd Quart., 2017.

[19] D. B. Rawat and S. R. Reddy, ‘‘Software defined networking architecture,
security and energy efficiency: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 1, pp. 325–346, 1st Quart., 2017.

[20] OpenFlow. Accessed: Mar. 2018. [Online]. Available: https://www.
scribd.com/document/117471434/OpenFlow-1-2

[21] D. Dotan and R. Y. Pinter, ‘‘HyperFlow: An integrated visual query and
dataflow language for end-user information analysis,’’ inProc. IEEE Symp.
Vis. Lang. Human-Centric Comput. (VL/HCC), Sep. 2005, pp. 27–34.

[22] R. Y. Shtykh and T. Suzuki, ‘‘Distributed data stream processing with
Onix,’’ in Proc. IEEE 4th Int. Conf. Big Data Cloud Comput., Sydney,
NSW, Australia, Dec. 2014, pp. 267–268.

[23] A. M. Al-Sadi, A. Al-Sherbaz, J. Xue, and S. Turner, ‘‘Routing algorithm
optimization for software defined network WAN,’’ in Proc. Al-Sadeq Int.
Conf. Multidisciplinary IT Commun. Sci. Appl. (AIC-MITCSA), Baghdad,
Iraq, May 2016, pp. 1–6.

[24] M. Hungyo and M. Pandey, ‘‘SDN based implementation of pub-
lish/subscribe paradigm using OpenFlow multicast,’’ in Proc. IEEE Int.
Conf. Adv. Netw. Telecommun. Syst. (ANTS), Bangalore, India, Nov. 2016,
pp. 1–6.

[25] S. H. Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient
and scalable offloading of control applications,’’ in Proc. 1st Workshop
HotSDN, 2012, pp. 19–24.

[26] B. Heller, R. Sherwood, and N. McKeown, ‘‘The controller placement
problem,’’ in Proc. 1st Workshop HotSDN, 2012, pp. 7–12.

[27] H. K. Rath, V. Revoori, S. M. Nadaf, and A. Simha, ‘‘Optimal controller
placement in Software Defined Networks (SDN) using a non-zero-sum
game,’’ inProc. IEEE Int. Symp.WorldWireless, MobileMultimedia Netw.,
Sydney, NSW, Australia, Jun. 2014, pp. 1–6.

[28] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, ‘‘On using bargaining
game for Optimal Placement of SDN controllers,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 1–6.

[29] A. Sallahi and M. St-Hilaire, ‘‘Optimal model for the controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 19,
no. 1, pp. 30–33, Jan. 2015.

[30] Y. Fu et al., ‘‘A hybrid hierarchical control plane for flow-based large-scale
software-defined networks,’’ IEEE Trans. Netw. Service Manage., vol. 12,
no. 2, pp. 117–131, Feb. 2015.

[31] F. Yeung, ‘‘Internet 2: Scaling up the backbone for R&D,’’ IEEE Internet
Comput., vol. 1, no. 2, pp. 36–37, Feb. 1997.

[32] B. Soper and J. Musacchio, ‘‘A non-zero-sum, sequential detection game,’’
in Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Monticello, IL, USA, May 2015, pp. 361–371.

[33] K. Phemius, M. Bouet, and J. Leguay, ‘‘DISCO: Distributed multi-domain
SDN controllers,’’ in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS),
Krakow, Poland, May 2014, pp. 1–4.

[34] G. Wang, Z. Zhao, J. Peng, and R. Li, ‘‘An approximate algorithm of
controller configuration in multi-domain SDN architecture,’’ in Proc. 9th
Int. Conf. Commun. Netw., China, Maoming, 2014, pp. 601–605.

[35] P. Xiao et al., ‘‘A traffic classification method with spectral cluster-
ing in SDN,’’ in Proc. 17th Int. Conf. Parallel Distrib. Comput., Appl.
Technol. (PDCAT), Guangzhou, China, Dec. 2016, pp. 391–394.

[36] P. Xiao, Z.-Y. Li, S. Guo, H. Qi,W.-Y. Qu, andH.-S. Yu, ‘‘AK self-adaptive
SDN controller placement for wide area networks,’’ Frontiers Inf. Technol.
Electron. Eng., vol. 17, no. 7, pp. 620–633, 2016.

[37] M. Caria, A. Jukan, and M. Hoffmann, ‘‘SDN partitioning: A centralized
control plane for distributed routing protocols,’’ IEEE Trans. Netw. Service
Manag., vol. 13, no. 3, pp. 381–393, Sep. 2016.

[38] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, ‘‘Scalable flow-based
networking with difane,’’ SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. 1–6, 2014.

[39] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, ‘‘DevoFlow: Scaling flow management for highperformance
networks,’’ Comput. Commun. Rev., vol. 41, no. 4, pp. 254–265, 2011.

[40] C. C. Ho, K. Wang, and Y. H. Hsu, ‘‘A fast consensus algorithm for
multiple controllers in software-defined networks,’’ in Proc. Int. Conf. Adv.
Commun. Technol., 2016, p. 1.

[41] Z. Boyang, W. Chunming, G. Wen, X. Hong, M. Jiang, and C. Shuangxi,
‘‘Achieving consistence for cross-domain WAN control in software-
defined networks,’’ China Commun., vol. 12, no. 10, pp. 136–146,
Oct. 2015.

[42] Z. Guo et al., ‘‘Improving the performance of load balancing in software-
defined networks through load variance-based synchronization,’’ Comput.
Netw., vol. 68, pp. 95–109, Aug. 2014.

[43] X. Xiong and J. Fu, ‘‘Active status certificate publish and subscribe based
on AMQP,’’ in Proc. Int. Conf. Comput. Inf. Sci., Chengdu, China, 2011,
pp. 725–728.

[44] W. Zhou et al., ‘‘Enforcing customizable consistency properties in
software-defined networks,’’ in Proc. Usenix Conf. Netw. Syst. Design
Implement. USENIX Assoc., 2015, pp. 73–85.

[45] Y. Hu,W.Wang, X. Gong, X. Que, and S. Cheng, ‘‘On reliability-optimized
controller placement for software-defined networks,’’ China Commun.,
vol. 11, no. 2, pp. 38–54, Feb. 2014.

[46] N. Beheshti and Y. Zhang, ‘‘Fast failover for control traffic in software-
defined networks,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Anaheim, CA, USA, Dec. 2012, pp. 2665–2670.

[47] L. F. Müller, R. R. Oliveira, M. C. Luizelli, M. P. Barcellos, and
L. P. Gaspary, ‘‘Survivor: An enhanced controller placement strategy for
improving SDN survivability,’’ in Proc. IEEE Global Commun. Conf.,
Austin, TX, USA, Dec. 2014, pp. 1909–1915.

[48] S. Song, H. Park, B.-Y. Choi, T. Choi, and H. Zhu, ‘‘Control path man-
agement framework for enhancing software-defined network (SDN) relia-
bility,’’ IEEE Trans. Netw. Service Manage., vol. 14, no. 2, pp. 302–316,
Jun. 2017.

[49] Y. Jimenez, C. Cervello-Pastor, and A. J. García, ‘‘On the controller
placement for designing a distributed SDN control layer,’’ in Proc. IFIP
Netw. Conf., Trondheim, Norway, 2014, pp. 1–9.

[50] K. S. Sahoo, B. Sahoo, R. Dash, and N. Jena, ‘‘Optimal controller selection
in software defined network using a greedy-SA algorithm,’’ in Proc. IEEE
Conf. Indiacom, Mar. 2016, pp. 2342–2346.

[51] B. P. R. Killi and S. V. Rao, ‘‘Optimal model for failure foresight capaci-
tated controller placement in software-defined networks,’’ IEEE Commun.
Lett., vol. 20, no. 6, pp. 1108–1111, Jun. 2016.

[52] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, ‘‘BalanceFlow: Con-
troller load balancing for OpenFlow networks,’’ in Proc. IEEE Int. Conf.
Cloud Comput. Intell. Syst., Nov. 2013, pp. 780–785.

VOLUME 6, 2018 15995



T. Hu et al.: Multi-controller Based SDN: A Survey

[53] H. Selvi, G. Gür, and F. Alagöz, ‘‘Cooperative load balancing for hier-
archical SDN controllers,’’ in Proc. IEEE 17th Int. Conf. High Perform.
Switching Routing (HPSR), Yokohama, Japan, Jun. 2016, pp. 100–105.

[54] H. Sufiev and Y. Haddad, ‘‘A dynamic load balancing architecture for
SDN,’’ in Proc. IEEE Int. Conf. Sci. Elect. Eng. (ICSEE), Eilat, Israel,
Nov. 2016, pp. 1–3.

[55] Y. Fu, J. Bi, J. Wu, Z. Chen, K. Wang, and M. Luo, ‘‘A dormant multi-
controller model for software defined networking,’’ China Commun.,
vol. 11, no. 3, pp. 45–55, 2014.

[56] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
‘‘ElastiCon; an elastic distributed SDN controller,’’ in Proc. ACM/IEEE
Symp. Archit. Netw. Commun. Syst. (ANCS), Marina del Rey, CA, USA,
Oct. 2014, pp. 17–27.

[57] H. Chen, G. Cheng, and Z. Wang, ‘‘A game-theoretic approach to elastic
control in software-defined networking,’’ China Commun., vol. 13, no. 5,
pp. 103–109, May 2016.

[58] G. Cheng, H. Chen, Z. Wang, and S. Chen, ‘‘DHA: Distributed decisions
on the switch migration toward a scalable SDN control plane,’’ in Proc.
IFIP Netw. Conf. (IFIP), May 2015, pp. 473–477.

[59] J. Yu, Y. Wang, K. Pei, S. Zhang, and J. Li, ‘‘A load balancing mechanism
for multiple SDN controllers based on load informing strategy,’’ in Proc.
Netw. Oper. Manage. Symp., Oct. 2016, pp. 1–6.

[60] M. Cello, Y. Xu, A.Walid, G.Wilfong, H. J. Chao, andM.Marchese, ‘‘Bal-
Con: A distributed elastic SDN control via efficient switch migration,’’ in
Proc. IEEE Int. Conf. Cloud Eng., Apr. 2017, pp. 40–50.

TAO HU received the bachelor’s degree from
Xi’an Jiaotong University. He is currently pursu-
ing the master’s degree with the National Digital
Switching System Engineering and Technological
Research and Development Center, Zhengzhou,
China. His research interests include software-
defined networking, control plane, and network
optimization. He has published papers in China
Communications and Peer-to-Peer Networking
and Applications.

ZEHUA GUO received the B.S. degree from
Northwestern Polytechnical University, China,
in 2007, the M.S. degree from Xidian Univer-
sity, China, in 2010, and the Ph.D. degree from
Northwestern Polytechnical University, China,
in 2014. He was a Visiting Research Scholar and a
Research Fellowwith the Department of Electrical
and Computer Engineering, New York University
Tandon School of Engineering, USA, from 2011 to
2014. He is currently a Research Associate with

the University of Minnesota. He has published papers in Computer net-
works (Elsevier), Computer Communications (Elsevier), the IEEE Access,
the IEEE Communications Letters, the IEEE IWQoS, the IEEE ICC, and
the IEEE LCN. His research interests include software-defined networking,
network function virtualization, data center network, cloud computing, and
Internet exchange. He is a Reviewer for 24 journals and 15 conferences.

PENG YI is currently a Professor with the National
Digital Switching System Engineering and Tech-
nological Research and Development Center. His
contributions encompass aspects of security, net-
work architecture and signal processing.

THAR BAKER is currently a Senior Lecturer in
software systems engineering, the Head of the
Computer Science Research Group, and a mem-
ber of the Applied Computing Research Group,
Liverpool John Moores University, U.K. He has
published numerous referred research papers in
multidisciplinary research areas including: Cloud
Computing, algorithm design, SDN, and IoT.
He has been actively involved as a member of edi-
torial board and review committees for a number
international journals and conferences.

JULONG LAN is currently a Professor with the
National Digital Switching System Engineering
and Technological Research and Development
Center. His contributions encompass aspects of
information theory and security, network architec-
ture, and signal processing.

15996 VOLUME 6, 2018


	INTRODUCTION
	MULTI-CONTROLLER OVERVIEW
	CONTROLLER EVOLUTION
	FROM SINGLE CONTROLLER TO MULTI-CONTROLLER
	TWO BASIC MULTI-CONTROLLER ARCHITECTURES

	RESEARCH CHALLENGES

	MULTI-CONTROLLER SCALABILITY
	CONTROLLER PLACEMENT
	CONTROLLER PLACEMENT PROBLEM (CPP)
	OPTIMAL CONTROLLER PLACEMENT
	BARGAINING GAME
	MATHEMATICAL MODEL
	HYBRID HIERARCHICAL CONTROL PLANE

	DOMAIN PARTITION
	DISTRIBUTED MULTI-DOMAIN SDN CONTROLLER (DISCO)
	APPROXIMATE ALGORITHM
	K SELF-ADAPTIVE
	SDN PARTITIONING (SDNP)


	MULTI-CONTROLLER CONSISTENCY
	CONTROLLER STATE CONSISTECNY
	PUBLISH/SUBSCRIBE MODE
	NETWORK INFORMATION BASE (NIB)
	FAST CONSENSUS ALGORITHM
	CONSISTENCY FOR CROSS-DOMAIN
	LOAD VARIANCE-BASED SYNCHRONIZATION (LVS)

	CONTROL STRATEGY CONSISTECNY
	ADVANCED MESSAGE QUEUING PROTOCOL (AMQP)
	CUSTOMIZABLE CONSISTENCY GENERATOR (CCG)
	FLOW CONFIGURATION SCHEME


	MULTI-CONTROLLER RELIABILITY
	CONTROL PATH RELIABILITY
	RELIABILITY-OPTIMIZED SCHEME
	FAST FAILOVER DESIGN
	SURVIVOR
	CONTROL PATH MANAGEMENT

	CONTROLLER NODE RELIABILITY
	ROBUST CONTROL
	OPTIMAL CONTROLLER SELECTION
	CAPACITATED CONTROLLER


	MULITI-CONTROLLER LOAD BALANCING
	CONTROLLER CLUSTERING
	BALANCEFLOW
	COOPERATIVE LOAD BALANCING
	CLUSTER VECTOR (CV)
	DORMANT MECHANISM MODEL

	SWITCH MIGRATION
	ELASTIC CONTROL (ElatiCon)
	GAME-THEORETIC APPROACH
	DISTRIBUTED DECISIONS SCHEME
	LOAD INFORMING STRATEGY
	BALANCED CONTROLLER (BalCon)


	FUTURE WORK
	THE DEVELOPMENT OF CONTROL SOFTWARE
	CONTROLLER SAFETY
	MULTI-CONTROLLER ARCHITECTURE
	HETEROGENEOUS MULTI-CONTROLLER

	CONCLUSION
	REFERENCES
	Biographies
	TAO HU
	ZEHUA GUO
	PENG YI
	THAR BAKER
	JULONG LAN


