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ABSTRACT In this paper, the optimally rigid topology control problem in wireless sensor networks is
considered to improve the algebraic rigidity properties. This problem is first formulated as a constrained
optimization problem which can be solved by two stages. A minimally rigid network is constructed in the
first stage, then the optimally rigid topology in the second stage. A potential game approach is proposed for
solving the optimization problem by choosing a different performance metric as the potential function. It can
be seen that the proposed algorithm can significantly improve the network performance, such as reducing
communication complexity and transmit power, prolonging network lifetime, and so on. Finally, some
simulations demonstrate the effectiveness of the proposed algorithms from multiple perspectives: topology
complexity, average degree, consensus convergence speed, average radius, average link length, and network
lifetime.

INDEX TERMS Wireless sensor network, topology control, rigid graph, game theory.

I. INTRODUCTION
Topology control is an effective technique for the best
possible network performance to the chosen optimization
criteria in wireless sensor networks (WSNs) [1]–[7].
By adjusting the radio transmission power of each individual
sensor, many energy-efficient topology control algorithms
have been proposed inWSNs [8]–[10]. Chu proposed a game-
theoretic approach based distributed topology control algo-
rithm in [11]. They considered the influences of many factors
on the lifetime of WSNs. In order to achieve the minimum
energy consumption, a distributed position-based network
protocol named COMPOW is proposed in [12] which can
support the peer-to-peer communications in mobile wireless
networks. In [13], an adaptive localized minimum spanning
tree (LMST) generation algorithm is proposed, by build-
ing LMST on individual node adaptively and independently
and only keeps on tree nodes. Guo et al. [14] proposed a
distributed selective diversity topology control approach to
jointly optimize the energy efficiency, the network capacity
and the energy consumption. In [15], Xu et al. proposed a
lifetime-extension topology control algorithm which consid-
ered the selfish nodes in WSN. The topology has a low node
degree and a better energy balance performance. However,
the previous works are all concerned with the problem that
how the power influence the topology structure, but not
consider how the topology structure influence the network
performance.

In this paper, we focus on the energy-efficient topology
structure of the WSNs. In fact, the topology structure has a
great influence on the network performance, e.g., the topol-
ogy complexity determines the energy consumption; the
node degree influences the robustness of network connection.
Recently, as a special topology structure with low complexity
and great robustness, the rigid network design problem has
received much attention [16]–[24]. In [25], Rai et al. pro-
posed inputs-based methods for localization judgement and
topology control inWSNs by controlling the formation shape
to deploy the sensor nodes according to the rigid graphs con-
cepts. In Luo et al. [22] and Zhang et al. [23], have presented
the rigid network optimization and control scheme in WSNs
for node scheduling and energy-efficient topology control.
However, very few papers considered designing the network
structure with considering desirable algebraic rigidity prop-
erties. Shames and Summers [24] considered the topology
design problem that exhibited desirable algebraic rigidity
properties, e.g., the trace of a rigidity Gramian, via a sub-
modular set function optimization approach. The designed
rigid network generation algorithm can provide significant
performance improvements for rigid topology construction,
but they did not consider the optimally rigid graph and the
limited sensing ability of sensors.

Since the sensor nodes can only communicate with their
neighbor sensors, the local topology is determined by coop-
eration or competition between the nodes. Game theory is

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

16599

https://orcid.org/0000-0003-0404-9533


X. Luo et al.: Potential-Game Based Optimally Rigid Topology Control in WSNs

a powerful tool for the intelligent rational decision-makers
to describe the phenomenon of competition and cooperation.
The research efforts to address topology control as a game
approach has been extensively studied [14], [15], [26]–[28].
In this paper, we firstly formulate topology design problem as
a constrained optimization problem and divide the solution
procedure into two stages. Then the optimization problem
is transformed into a potential game [29]. By designing
the algebraic rigidity properties of topology as a potential
function, the existence of Nash Equilibrium (NE) is guar-
anteed. The contributions of this paper are summarized as
follows.

1) The optimally rigid topology control problem is solved
by a game approach with designed potential function.
By formulating the topology control problem as a
constrained optimization problem, the optimally rigid
topology is constructed as the game converges to Nash
equilibrium. The designed optimally rigid topology for
WSNs has a superior network performance. Comparing
with the geographical adaptive fidelity (GAF) topol-
ogy [30], the rigid network has great energy efficiency
and low complexity; comparing with D-Improvement
Algorithm (DIA) in [13] and [26], the rigid network
has a great robustness of connection.

2) The designed optimally rigid topology has great
algebra rigidity properties. Few existing works
considered the properties of the topology itself.
By designing a utility function according to the prop-
erties of the network, which characterizes the willing-
ness of a sensor in constructing a connected network,
the minimally and optimally rigid topology is con-
structed.

3) The proposed algorithms can be used in different
scenarios by choosing different utility weight. The
utility weight of the potential function can be cho-
sen according to the application scenarios. Then the
algorithms iterate elegant solutions and the optimally
rigid topology is constructed with great algebra rigidity
properties.

The rest of the paper is organized as follows: the problem
formulation and preliminaries including game theory and
rigid graph theory are introduced in Section II. We present
the potential game model for the rigid topology design and
corresponding algorithms in Section III. Section IV gives
characteristic analysis of the proposed algorithms. Some sim-
ulations are performed to illustrate the effectiveness of our
proposed algorithms in Section V. Section VI concludes the
paper.

II. PRELIMINARIES AND PROBLEM STATEMENT
In this section, we firstly introduce some preliminaries of
rigid graph theory and game theory. The rigidity Gramian
matrix constructed from rigidity matrix is used to quantify
the algebraic rigidity properties of a network. Then the prob-
lem formulation as a constrained optimization problem is
proposed.

A. RIGID GRAPH THEORY
The WSN can be expressed by an undirected graph G(V, E)
with the vertex set V = {1, 2, . . . ,N } and the edge set
E = {(i, j) ∈ V × V : i 6= j} in which (i, j) represents the
interconnection edges among the vertices. Since the WSN is
a typical terrestrial wireless network, we consider the graph
framework and realization in 2-dimension case. Some stan-
dard definitions are given below.
Definition 1 (Framework and Realization [31]): A

2-dimensional framework is a pair (G, p), where G = (V, E)
is a graph and p : V 7→ R2|V | denotes the coordinate vector
associated with vertex i ∈ V . p is called a 2-dimensional
realization of G.
Definition 2 (Equivalent and Congruent Frameworks

[31]): Two frameworks G(V, p) and G(V, q) are equivalent
if
∥∥pi − pj∥∥ = ∥∥qi − qj∥∥ holds for every pair i, j ∈ V

connected by an edge. Two frameworks G(V, p) and G(V, q)
are congruent if

∥∥pi − pj∥∥ = ∥∥qi − qj∥∥ holds for every pair
i, j ∈ V no matter whether there is an edge between them.
The rigidity is an important notion of undirected graph.

A framework (G, p) is rigid if there exists ε ≥ 0 such that
if (G, q) is equivalent to (G, p) and ‖p(v)− q(v)‖ ≤ ε for
all v ∈ V then (G, q) is congruent to (G, p) [32], otherwise
it is flexible [31]. More precisely, we have the following
minimally rigid graph definition.
Definition 3 (Minimally Rigid Graph [33]): A rigid

framework is minimally rigid if it becomes flexible after any
one edge is removed.

Some details can also be found in [22] and [23]. An exam-
ple is given in Fig.1 to show flexible, rigid and minimally
rigid frameworks. The minimally rigid graph can be con-
structed by Henneberg sequences [34] via vertex addition
operation and splitting edge operations. In this paper, themin-
imally rigid graph is firstly constructed and then the optimal
rigid graph is also constructed. In R2, the rigidity test of a
graph can be done by using the following lemma. According
to this lemma, we construct the minimally rigid graph by
using edge addition operation and rigidity test operation.

FIGURE 1. Flexible and rigid frameworks. (a) is flexible graph, (b) is rigid
graph, and (c) is minimally rigid graph.

Lemma 1 (Laman’s Theorem [31]): Let G(V, E) be a
graph in R2, where |V| > 1; then G is generically rigid if and
only if there exists a subset E ′ ⊆ E such that

∣∣∣E ′ ∣∣∣ = 2 |V|−3,

and for subset E ′′ ⊆ E ′ ,
∣∣∣E ′′ ∣∣∣ ≤ 2

∣∣∣V(E ′′ )∣∣∣− 3.
To describe rigid graph accurately, the notion of rigidity

matrix is introduced. The vertices coordinates are ordered
as {p11, p

2
1, . . . , p

n
1, p

1
2, . . . p

n
2, . . . , p

1
N , . . . , p

n
N }, then build a
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matrix R(G,q) ∈ R|E |×2N whose rows and columns indexed
by the edges and coordinates of the vertices, respectively.
For example, the nonzero row entries of R(G,q) in columns
2i − 1, 2i, 2j − 1, 2j are p1i − p

1
j , p

2
i − p

2
j , p

1
j − p

1
i , p

2
j − p

2
i ,

respectively. The matrix R(G,q) is called rigidity matrix. Tay
and Whitely [35] proved the following lemma.
Lemma 2 ( [35]): G(V, p) is a generic framework in R2

with N vertices. The framework G(V, p) with N ≥ 2 in R2

is infinitesimally rigid if and only if the rank of the rigidity
matrix R(G,p) of G(V, p) is equal to 2N−3, i.e. rank(R(G,p)) =
2N − 3.

The rank of the rigidity matrix is an important quantitative
metric to quantify the rigidity of the topology. Meanwhile,
the singular values and the traces of the rigidity matrix are
also used to quantify the algebraic quality of a network.
In [24], Shames and Summers defined two symmetric matri-
ces named vertex rigidity Gramian and edge rigidity Gramian
according to rigidity matrix. The vertex rigidity Gramian is
defined as

X(G,p) = RT(G,p)R(G,p) ∈ R|2V |×|2V | (1)

Similarly, the edge rigidity Gramian is defined as X(G,p) =
R(G,p)RT(G,p) ∈ R|E |×|E | in [24]. It can be seen that the rigid-
ity Gramian contains the complete information of rigidity
matrix, it should be noted that the vertex and edge Gramians
have the same spectrum, but have different eigenvalues. The
optimally rigid graph is defined as follows.
Definition 4: A framework is said to be optimally rigid if

the underlying graph satisfies the following conditions
1) The underlying graph is infinitesimally rigid.
2) The rigid graph satisfies the prescribed performance

metrics.

B. GAME THEORY
In a pure strategic game, the choice of any one player always
depends on the choice of others [36]. Similarly, by applying
the game theory to the topology control in WSNs, every node
expects to optimize the topology quality, the edges among the
nodes are dependent on each other, hence topology control
can be modeled as a pure strategic game. A strategy game
generally consists of three parts: 1) player i; 2) strategic
space S; 3) utility function u. In this paper, we model the
topology control problem into a pure strategic game, in which
by viewing the linked edges of the node i as its strategy space.
The symbols used in game theory are listed in Table 1.

The pure strategy game is denoted as 0(V, S, u), then S,
S−i can be expressed as

S =
N∏
i=1

Si, S−i =
∏
j 6=i

Sj. (2)

Nash equilibrium is an important concept of the strategy
game. When each involved player in the game choosing the
best response strategy, if the other players do not change
their strategies, no one will move away from the current

TABLE 1. Description of symbols in the game model.

strategy. The combination of the current strategy is called
Nash equilibrium.
Definition 5 (Nash equilibrium, NE): A strategy combi-

nation s∗ = (s∗1, s
∗

2, . . . , s
∗
N ) is the Nash equilibrium of a

game 0(V, S, u), if ∀i ∈ V and si ∈ Si the following
inequalities are satisfied

ui(s∗i , s
∗
−i) ≥ ui(si, s

∗
−i).

In [29], Monderer and Shapley presented a kind of special
strategy game called potential game and proved that it has at
least one Nash equilibrium.
Definition 6 Ordinal Potential Game (OPG), Ordinal

Potential Function, (OPF) [36]): A game 0(V, S, u) is an
OPG, if there exists a function U (s) : S → R, for ∀i ∈
V,∀s−i ∈ S−i and ∀sai , s

b
i ∈ Si, then

U (sai , s−i)− U (sbi , s−i) > 0

⇔ ui(sai , s−i)− ui(s
b
i , s−i) > 0.

The function Ũ (s) is called ordinal potential function (OPF).

C. PROBLEM FORMULATION
The optimally rigid topology design problem in WSNs can
be formulated as a constrained optimization problem, it is
formulated as follows.
Problem 1: Consider the nodes set V and the position

vector p ∈ R2|V |, then the optimally rigid topology control
problem in WSNs with underlying graph G is equivalent to
solve the following optimization problem

maximize fS (E),
sbuject to (G, p) is rigid graph.

G(V, E), |E | ≤ κ, (3)

where E is the variable edge set, fS (E) is an optimal objective
function that quantifies the algebraic rigidity of the topol-
ogy, it corresponds to the utility function in game theory,
κ ≥ 2 |V| − 3 is a given constant.
As stated in [24], this NP-hard combinatorial optimization
problem is split into two stages by choosing different alge-
braic rigidity metrics. In the first stage, we construct a mini-
mally rigid graph and an optimally rigid topology for WSNs
is constructed in the second stage. The major differences
between this paper and [24] are twofold. One is that we solve
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this combinatorial optimization problem by potential game
theory. The other is that the limited wireless communicative
capacity and sensing range of the sensors are considered in
WSNs.

In the first stage, by setting |E | = 2 |V| − 3, the minimally
rigid graph can be constructed as a special case of Problem 1:

maximize fS1 (E)
sbuject to rank (R(G,p)) = 2 |V| − 3

G(V, E), |E | = 2 |V| − 3. (4)

Then by adding the remainder κ−(2N−3) edges in the second
stage, the optimally rigid topology can be constructed.

maximize fS2 (E)
sbuject to rank (R(G,p)) = 2 |V| − 3

G(V, E), |E | ≤ κ. (5)

Remark 1: Consider the WSNs in a two-dimensional
plane, we focus on optimizing the algebraic rigidity perfor-
mance of the topology structure. By adding different sets
of edges, the underlying graph can achieve different rigidity
performance. The algebraic rigidity performance is signif-
icant for consensus network [37], formation control [20]
and localization [24], [38]. The cost functions associated
with the selected edges can be chosen according to different
scenarios.

III. THE OPTIMALLY RIGID NETWORK DESIGN
In this section, we consider the optimally rigid topology
control problem. The optimally rigid network design prob-
lem for WSNs will be solved by OPG in the following two
stages.

A. STAGE 1: THE GENERATION OF MINIMALLY
RIGID GRAPH
According to different scenarios, the utility function for the
game model 01(V, S, u) is presented as

ui(si, s−i) = α1fi(si, s−i)+ α2trace(X(G,Si)), (6)

where α1 is a large positive number, α2 is a positive num-
ber. si denotes the edge set connected to node i, s−i is the
edge set connected to other nodes. In each round game,
at least one edge changes for si. In other words, by adjust-
ing the edges connected to node i, the utility function is
maximized. fi(si, s−i) is called the rigidity indicator function.
fi(si, s−i) = 1, if rank(R(G,q)) = 2N − 3, |E | = 2 |V| − 3 and
fi(si, s−i) = 0 otherwise. fi(si, s−i) is a monotone nondecreas-
ing function. X(G,Si) = RT(G,Si)R(G,Si) is the vertex rigidity
Gramian for a network G(V, E) with the strategy Si. This is
the first main result by considering the trace of the rigidity
Gramian.
Theorem 1: The game model 01(V, S, u) for minimally

rigid topology control is an OPG.

Proof 1: TheOPF is defined as Ũ1(si, s−i) =
∑
i∈V

ui(si, s−i)

and let 1ui = ui(sbi , s−i)− ui(s
a
i , s−i) which gives

1Ũ = Ũ1(sbi , s−i)− Ũ1(sai , s−i)

=

∑
i∈V

(ui(sbi , s−i)− ui(s
a
i , s−i))

=

∑
i∈V
{[α1fi(sbi , s−i)+ α2trace(X(G,Sbi ))]

− [α1fi(sai , s−i)+ α2trace(X(G,Sai ))]}

= 1ui +
∑

j∈V,j 6=i
([α1fj(sbi , s−i)

+α2trace(RT(G,q)R(G,q))]− [α1fj(sai , s−i)

+α2trace(RT(G,q)R(G,q))])

= 1ui +
∑

j∈V,j 6=i
([α1fj(sbi , s−i)+ α2trace(r

T
j rj)]

− [α1fj(sai , s−i)+ α2trace(r
T
j rj))]) (7)

where Sai , S
b
i are the strategy sets when the node i adopts

sai and sbi , respectively. Then the signs of 1Ũ and 1ui are
analyzed as follows

1ui



= 0 if fi(sai , s−i) = fi(sbi , s−i) = 0

< 0 if fi(sai , s−i) = 1, fi(sbi , s−i) = 0

> 0 if fi(sai , s−i) = 0, fi(sbi , s−i) = 1

= 1Ũ if fi(sai , s−i) = fi(sbi , s−i) = 1, sai > sbi
= 1Ũ if fi(sai , s−i) = fi(sbi , s−i) = 1, sai < sbi

(8)

and

1Ũ =


= 0 iffi(sai , s−i) = fi(sbi , s−i) = 0
< 0 if fi(sai , s−i) = 1, fi(sbi , s−i) = 0
> 0 if fi(sai , s−i) = 0, fi(sbi , s−i) = 1
= 1ui if fi(sai , s−i) = fi(sbi , s−i) = 1.

(9)

It can be seen that the sign of 1Ũ is the same as the sign
of 1ui. Therefore, 01(V, S, u) is an ordinal potential game.
This completes the proof.

It has been proven in [36] that there exists at least one
NE in pure strategies potential games. Thus, the minimally
rigid graph can be constructed. The OPG based minimally
rigid graph design (OPG-MRGD) algorithm is listed in
Algorithm 1 (A1).
Remark 2: The sensors implement game in accordance

with the ID number. During every round of the game pro-
cess, only one sensor is allowed to change its strategy, other
nodes’ strategies remain unchange. In order to coverage to
NE, we use a better response strategy update scheme. It has
been proven that a finite ordinal potential game will con-
verge to NE in finite steps via a Better Response strategy
update scheme [36]. The game process is shown in Fig.2.
Every sensor firstly initialize its strategy space, in this paper,
it means the sensor recognizing its neighbour links. Then by
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FIGURE 2. Schematic diagram of the game process in Stage 1.

Algorithm 1OPG Based Minimally Rigid Topology Control
Algorithm
1: Initialization: The node ID={1, 2, . . . ,N }, the position

of all sensors p =
{
p11, p

2
1, . . . , p

1
i , p

2
i , . . . , p

1
N , p

2
N

}
,

the optional strategies spaces Si.
2: The game carries out according to the node ID, ŝi = sci ,
∀i ∈ V with sc1 is optional strategies.

3: Ŝi =
{
ŝ1, ŝ2, . . . , ˆsN

}
4: For all i ∈ V ,
5: ŝi = argmaxsbi ∈Si ui(s

b
i , s−i)

6: |Si| = |Si| + 1
7: End until |Si| = 2N − 3, rank(R(G,q)) = 2N − 3, Si does

not change.
8: Output the minimally rigid graph with the strategy s∗i =
{s∗1, s

∗

2, . . . , s
∗
N }.

maximizing the utility function, the minimally rigid topology
can be derived. The first term and the second term of the util-
ity function increase alternately or synchronously as shown
in Fig.2.

B. STAGE 2: THE GENERATION OF OPTIMALLY
RIGID GRAPH
Due to the information flows through the network, the entire
Gramian spectrum and trace related to Fisher Information
affect the performance of control and communication task,
i.e., formation shape control and localization estimation.
It has been proven in [24] that the trace of the Gramian
pseudo-inverse and the log product of non-zero eigenval-
ues can well quantify the rigidity of network. In this stage,
in order to get great algebra rigidity properties, we will con-
struct the utility function for the game model 02(V, S, u) as
follows

ui(si, s−i) = α1fi(si, s−i)+ α2 log(

rank(R(G,Si))∏
i=1

λi(X(G,Si)))

−α3trace(X
†
(G,Si)) (10)

where α1 is a large positive number used to guarantee the
rank condition, α2, α3 are positive constants. fi(si, s−i) = 1,
if rank(R(G,p)) = 2N − 3, otherwise fi(si, s−i) = 0. The non-
negative parameters α2, α3 are weighted coefficients related
to the importance of different objectives, therefore, this WSN

topology control model can be applied for diverse objective
by adjusting the weighted coefficients. X†

(G,Si) denotes the
Moore Penrose pseudoinverse of X(G,Si). λi(X(G,Si)) is the ith
nonzreo eigenvalue of X(G,Si) and λ1(X(G,Si)) < λ2(X(G,Si)) <
· · · < λn(X(G,Si)). The other parameters can be seen in
Stage 1.

Next is the second result of this section.
Theorem 2: The game model 02(V, S, u) for optimally

rigid topology control is an OPG.
Proof 2: TheOPF is defined as Ũ2(si, s−i) =

∑
i∈V

ui(si, s−i)

and let 1ui = ui(sbi , s−i)− ui(s
a
i , s−i) which gives

1Ũ2 = Ũ2(sbi , s−i)− Ũ2(sai , s−i)

=

∑
i∈V

(ui(sbi , s−i)− ui(s
a
i , s−i))

= 1ui +
∑

j∈V,j 6=i
{[α1fj(sbi , s−i)+ α2 log(

2N−3∏
i=1

λi

× (X(G,Sbi )))− α3trace(X
†
(G,Sbi )

)]− [α1fj(sai , s−i)

+α2 log(
2N−3∏
i=1

λi(X(G,Sai )))−α3trace(X
†
(G,Sai )

)]} (11)

Then the signs of 1Ũ2 and 1ui are analyzed as follows

1ui


= 0 if fi(sai , s−i) = fi(sbi , s−i) = 0,
< 0 if fi(sai , s−i) = 1, fi(sbi , s−i) = 0,
> 0 if fi(sai , s−i) = 0, fi(sbi , s−i) = 1,

(12)

and

1Ũ2 =


= 0 if fi(sai s−i) = fi(sbi , s−i) = 0,
< 0 if fi(sai , s−i) = 1, fi(sbi , s−i) = 0,
> 0 if fi(sai , s−i) = 0, fi(sbi , s−i) = 1,

(13)

Next, we analyze the signs of1ui for the case fi(sai , s−i) =
fi(sbi , s−i) = 1, sbi > sai or sbi < sai , which means
adding or removing an edge. Then we get

1ui = α2[log(
2N−3∏
i=1

λi(X(G,Sbi )))− log(
2N−3∏
i=1

λi(X(G,Sai )))]

+α3[trace(X
†
(G,Sai )

)− trace(X†
(G,Sbi )

)]. (14)
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For the case sbi > sai which means an edge e is added to the
topology by using the strategy sbi . Ea and Eb denote the edge
sets after completing the strategy sai and s

b
i , respectively. Ea ⊆

Eb ⊆ E\{e}, then according to the additivity property of the
Gramian, one can see that Ea ⊆ Eb ⇒ X(G,Sai ) ≤ X(G,Sbi ).
Define

HE = log(
2N−3∏
i=1

λi(X(G,Sbi )))− log(
2N−3∏
i=1

λi(X(G,Sai )))

= log det(X̃Ea∪{e})− log det(X̃Ea ) (15)

FE = trace(X†
(G,Sai )

)− trace(X†
(G,Sbi )

)

= trace(X†
Ea )− trace(X†

Ea∪{e}), (16)

and XE (t) = X(G,Sai )+t(X(G,Sbi )−X(G,S
a
i )
) for t ∈ [0, 1]. It has

been proven by [24, Th. 5]that HE and FE are monotone
increasing. This means that if fi(sai , s−i) = fi(sbi , s−i) = 1 and
sbi > sai , then 1ui > 0. The similar conclusion can be gotten
for the case sbi < sai , namely if fi(sai , s−i) = fi(sbi , s−i) = 1
and sbi < sai , then 1ui < 0. Then for 1Ũ2, it yields

1Ũ2 = 1ui +
∑

j∈V,j 6=i
{[α1

+α2 log(
2N−3∏
i=1

λi(X(G,Sbi )))− α3trace(X
†
(G,Sbi )

)]

− [α1 + α2 log(
2N−3∏
i=1

λi(X(G,Sai )))

−α3trace(X
†
(G,Sai )

)]}

= 1ui +
∑

j∈V,j 6=i
{α2[log(

2N−3∏
i=1

λi(X(G,Sbi )))

− log(
2N−3∏
i=1

λi(X(G,Sai )))]

+α3[trace(X
†
(G,Sai )

)− trace(X†
(G,Sbi )

)]}. (17)

According to the analysis of 1ui and (17), we can see
that the signs of 1Ũ2(si, s−i) and 1ui are the same for the
case fi(sai , s−i) = fi(sbi , s−i) = 1. In conclusion, the signs
of 1Ũ2(si, s−i) and 1ui are always the same for any cases.
Therefore, 02(V, S, u) is an ordinal potential game. This
completes the proof.

Theorem 2 shows that the optimally rigid topology control
problem can be solved by a potential game approach. Then
the ordinal potential game based optimally rigid graph design
(OPG-ORGD) algorithm is listed in Algorithm 2 (A2).
A2 begins with the strategy derived by A1. Then according to
the new OPF, the optimally rigid topology is derived finally.
Remark 3: Note that the utility functions in the two stages

of the game do not need to be the same, the both approaches
can achieve the objective. In the Stage 1, we construct a
minimally rigid graph according to the trace(X(G,Si)), it can

Algorithm 2 OPG Based Optimally Rigid Topology Control
Algorithm
1: Input: The node ID={1, 2, . . . ,N }, the position of all

sensors p =
{
p11, p

2
1, . . . , p

1
i , p

2
i , . . . , p

1
N , p

2
N

}
, the NE

of Stage 1 s∗i = {s
∗

1, s
∗

2, . . . , s
∗
N }. The optional strategies

spaces Si.
2: The game implements according to the node ID, ŝi = sci ,
∀i ∈ V with sc1 is optional strategies.

3: Ŝi =
{
ŝ1, ŝ2, . . . , ŝN

}
4: For all i ∈ V ,
5: ŝi = argmaxsbi ∈Si ui(s

b
i , s−i)

6: End until |Si| = κ , rank(R(G,q)) = 2N − 3, Ŝi does not
change.

7: Output the optimally rigid graph with the strategy s∗i =
{s∗1, s

∗

2, . . . , s
∗
N }.

also be done by using
2N−3∏
i=1

λi(X(G,Si)). It is just considered

from different key points. The process of Stage 2 can be seen
in Fig.3. Moreover, since the utility function is chosen as
similar to the objective function in [24], the prove process
can be seen in this paper.

IV. ALGORITHM ANALYSIS
In this section, the performances of the proposed algorithm
are analyzed from the following two perspectives.

A. CONVERGENCE
The two algorithms are theoretically proven to be
convergent.
Theorem 3: OPG-based minimally rigid graph design

(OPG-MRGD) algorithm converges to NE.
Proof 3: For all i ∈ V , the strategy is denoted as s(si, s−i)

to achieve the minimally rigid graph, which is a monotonic
and nonincreasing function of s−i, that means if sb

−i ≥ sa
−i,

then s(si, sb−i) ≤ s(si, sa−i). Accordingly, the strategy space
S(s−i) = {s(si, s−i), . . . , s(si, s

χ
−i)} with sχ

−i denoting the
maximal strategy vector. To adjust the strategy of i, ŝi =
argmaxsbi ∈Si ui(s

b
i , s−i) can be rewritten as

s∗i = {max ui(s∗i , s−i), s(sbi , s−i) ≥ s(si, s−i)}. (18)

After strategy updating, utility function of the ith sensor
will be maximized with the strategy vector s(s∗i , s−i); if j
updates strategy to s∗j as well, there must be s∗j ≤ sχj ,
s(s∗j , s−i−j) ≤ s(s∗i , s−i) and s∗i ∈ S(s∗j , s−i−j). In this
case, the new strategy vector (s∗i , s

∗
j , s−i−j) continues to

maximize the utility of ith sensor. Therefore, the result of
OPGMRGD algorithm execution s = (s∗1, s

∗

2, . . . , s
∗
N ) is

determinately NE.
Theorem 4: OPG-based optimally rigid topology control

(OPG-ORGD) algorithm converges to NE.
Proof 4: The proof is similar to the proof of Theorem 3 and

is omitted here.
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FIGURE 3. Schematic diagram of the game process in Stage 2 by n = 6, κ = 12.

B. COMPLEXITY
The algorithm complexity can represent the computing
resource cost during the algorithm realization. The message
complexity and time complexity are two important aspects
to quantify the algorithm complexity [39]. The quantity of
messages in OPG-MRGD or OPG-ORGD depends mostly on
the calculation of trace(X(G,Si)). According to Theorem 1 and
Theorem 2, the strategy choice of every individual node may
influence the global rigidity function of trace(X(G,Si))× N .
Then, the total quantity of the communication

messages is
∑N

i=1(trace(X(G,Si))+rank(X(G,Si)))·N ; therefore,
the message complexity of OPG-MRGD and OPG-ORGD
is O(N 3). By executing N rounds of OPG-MRGD or
OPG-ORGD, the time complexity of OPG-MRGD or
OPG-ORGD is considered as O(N ). The polynomial com-
plexity OPG-MRGD or OPG-ORGD means their realization
has a relatively low implementation cost.

V. PERFORMANCE EVALUATION
In this section, some simulation results are provided to ana-
lyze the algorithm performance of A2 (A1 is a substage
of A2). Since GAF in [30], XTC in [40], LMST in [13]
come close to our work in this paper, we compare their
performances with A2 proposed in this paper. As stated
in [40], the topology derived by the maximal transmission
power (MTP) is always used as a baseline in topology con-
trol problem of WSNs. In this paper, we consider that the
WSNs nodes have limited communication ability and have
the same unit circle communication range, which means the
nodes can communicate with each other if and only if their
Euclidean distance is less than their communication radius.
The parameters are shown in Table 2. Assuming that there
exist a rigid network in the neighboring topology of WSNs,
this is easy to realize for the terrestrial WSNs. In order to
reflect the superior performance of the proposed algorithm,
we will analyse and compare the algorithm performance from
the following aspects.

A. ALGORITHM PERFORMANCE
We firstly analyse the validity of the proposed algorithms by
randomly deploying 100 nodes in the region. Since the sensor
nodes can only exchange information with their neighbours,

TABLE 2. Parameters.

the WSNs firstly connect with each other according to the
neighbour rules. This is important to initial the strategy space
for the nodes. Fig.4 shows the topology derived by MTP,
GAF, A2 in this paper, XTC and A-LMST. The optimally
rigid network is designed by A2 in Fig.4(c). By compar-
ison, the topology structure generated by GAF algorithm
ensures at least 4-connected network which has an excessive
vertex connectivity. As shown in Fig.4(c-e), A2, XTC and
A-LMST reduced the topology complexity significantly
while the network is still connected. But some nodes contain
only one neighbor in its communication radius in Fig.4(d),
also in Fig.4(e), the A-LMST topology contains only one
path. Once the only one connected path is destroyed, then
the whole topology is destroyed. Therefore, the XTC and
A-LMST topologies have a poor robustness. We also evalu-

ate the change of the trace(X(G,Sbi )) and log(
2N−3∏
i=1

λi(X(G,Sbi )))

in Fig.5. The κ = 2N . The log(
2N−3∏
i=1

λi(X(G,Sbi ))) is left out of

consideration in the first stage. Then, the trace(X(G,Sbi )) and

log(
2N−3∏
i=1

λi(X(G,Sbi ))) are gradually increasing until κ = 2N .

Obviously, the rigidity properties are getting better during the
game process and they are consistent. In this paper, we do not
compare the rigid topology derived by A2 and the one in [22],
because we focus on different emphasis in these two papers.

It is widely recognized that network topology properties
play a key role in consensus network. In order to further verify
the superior algebraic properties of the topology derived by
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FIGURE 4. Topologies derived by Unit Disk, GAF, A2, XTC and LMST and the algebra properties of A2 topology. (a) MTP topology. (b) GAF topology. (c)
Optimal rigid topology by A2. (d) XTC topology. (e) A-LMST topology.

FIGURE 5. Algebra properties of the optimal rigid topology.

A2 in this paper, we consider the following consensus net-
work dynamics

ẋi =
∑
j∈Ni

(xj − xi)

where xi is the state of the ith network node, Ni is a set of
neighbours of node i. Consensus is an important dynamical

process in a variety of networks. Fig.6 shows the average
consensus in different network topology derived by GAF, A2,
XTC and A-LMST. For convenience, we only apply 10 nodes
to derived the topology and GAF topology is similar to MTP
topology with 10 nodes. It can be seen that the consensus
performance of A2 topology is better only behind GAF. But
A2 topology has less edges, less energy consumption than
GAF. The consensus convergence speed in A2 topology is
much faster than XTC topology and A-LMST topology.

B. AVERAGE NODE DEGREE
Average node degree (AND) is another important criterion of
network topology control. In the this subsection, we vary the
number of nodes in the region from 100 to 1000 to calculate
the AND of the four algorithms. AND can not only reflect
the topology complexity, but also the great significance of
energy balance. The energy balance in WSNs will seriously
affect the sensor lifetime even the whole network lifetime.
In [41], Tel have theoretically proved that the optimal average
degree of WSNs is approximately 6. We can see in Fig.7
that the optimally rigid graph has an approximate 4 AND,
which means it has a better network performance than other
three algorithms. The average radius and the average link
length for the topologies derived using the four algorithms is
shown, respectively, in Fig.8(a) and (b). The average radius

16606 VOLUME 6, 2018



X. Luo et al.: Potential-Game Based Optimally Rigid Topology Control in WSNs

FIGURE 6. Consensus performance of the GAF, A2, XTC, A-LMST topology. (a) Consensus in GAF topology. (b) Consensus in
A2 topology. (c) Consensus in XTC topology. (d) Consensus in A-LMST topology.

FIGURE 7. Comparison of the average degree.

of A2 topology outperforms the GAF and A-LMST topology,
the reason is that A2 topology has a lower complexity. The
average link length in Fig.8(b) also means the A2 topology is

a better tradeoff between the algebraic properties and energy
consumption.

C. AVERAGE ENERGY CONSUMPTION
In order to further analysis the energy efficiency of the
topology under GAF, A2, XTC and A-LMST, the following
definition of the network lifetime is given.
Definition 7: The network lifetime represents the time

when one of the nodes run out of energy.
The following model used in [42] is usually used to model

the energy consumption of the WSN.

ETx(l, dij) = εelec(l)+ εamp(l, dij)

= εelecl + εampld2ij (19)

ERx(l) = εelecl (20)

where ETx(l, dij) means the energy consumed in transmitting
l units of data from i to j and ERx(l) is the energy consumed
by sensor i in receiving l units of data, with dij is the trans-
mit distance. It can be seen that the energy consumption
is proportional to the communication distance. Fig.9 shows

VOLUME 6, 2018 16607



X. Luo et al.: Potential-Game Based Optimally Rigid Topology Control in WSNs

FIGURE 8. Average radius and average link length comparisons among
different algorithms. (a) Average radius. (b) Average link length.

FIGURE 9. Comparisons of network lifetime.

the comparisons of energy efficiency among GAF, A2, XTC
and A-LMST. We can see that the A-LIST topology has the
longest lifetime. This is in accordance with the average radius

and link length. On the other hand, the optimal rigid topology
is a better tradeoff network structure.

VI. CONCLUSIONS AND FUTURE WORK
This paper addresses the optimally rigid network design prob-
lem of WSNs via potential game approach. We consider this
problem as a constrained optimization problem and can be
solved by two stages. By choosing the algebra rigid properties
as the OPF, both stages are proved to be OPG. In this paper,
we innovatively consider the topology properties in WSNs.
Some examples are given to illustrate the effectiveness of the
proposed algorithms. However, there are many open prob-
lems in topology control of WSNs. Next, we will study a
fully distributedway to generated the optimal rigid network in
WSNs. In addition, other indexes used to appraise the algebra
rigid properties will be investigated.
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