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ABSTRACT Real industrial processes usually are equipped with onboard control or diagnostic systems
and limit to store a complicated model. Also, measurement samples from real processes are contaminated
with noises of different statistical characteristics and are produced by one-by-one way. In this case, learning
algorithms with better learning performance and compact model for systems with noises of various statistics
are necessary. This paper proposes a new online extreme learning machine (ELM) algorithm, namely, sparse
recursive least mean p-power ELM (SRLMP-ELM). In SRLMP-ELM, a novel cost function, i.e., the sparse
least mean p-power (SLMP) error criterion, provides a mechanism to update the output weights sequentially
and automatically tune some parameters of the output weights to zeros. The SLMP error criterion aims to
minimize the combination of the mean p-power of the errors and a sparsity penalty constraint of the output
weights. For real industrial system requirements, the proposed on-line learning algorithm is able to provide
more higher accuracy, compact model, and better generalization ability than ELM and online sequential
ELM, whereas the non-Gaussian noises impact the processes, especially impulsive noises. Simulations are
reported to demonstrate the performance and effectiveness of the proposed methods.

INDEX TERMS Sparse recursive least mean p-power, extreme learning machine, online sequential learning,
non-gaussian noises, alpha-stable noises.

I. INTRODUCTION
Online system identification is a significant problem that
people often need to face in the fields of engineering tech-
nologies, natural sciences or social sciences [1]–[5]. In many
practical applications, e.g., forecasting of renewable energy
generation [1], stock forecast [2], and weather forecast [3],
the datum samples are often stained with the large stochastic
noises of different statistic characteristics, such as Gaussian,
impulsive, or mixed distribution. Furthermore, the amount of
expensive memory is always less and limit to store a com-
plicated model in many practical systems. The onboard con-
trol or diagnostic systems in industries are the typical cases.
Therefore, on-line sequential learning algorithms which are
highly efficient, better learning performance and compact
structure for systems with various noise statistics are keenly
sought for both researchers and enterprise groups.

Neural networks have been intensively studied as the
basis for solving this problem [6]–[8]. Extreme Learning
Machine (ELM), a new fast neural learning algorithm, is pro-
posed to train a single layer feedforward network (SLFN)
with hidden neuron weights randomly initialized and fixed.
It’s obviously different from other traditional training
algorithms, hidden neuron weights need to be tuned, such us
back-propagation (BP) algorithm and its various improved
algorithms [9], [10]. In contrast to the full parameter deter-
mination algorithms, ELM has fast learning speed [11],
universal approximation capability [11], [12] and provides
a unified learning paradigm for regression and classifica-
tion [13]. For online identification problem, the datum sam-
ples are often arriving in the order of time, Liang et al. [14]
propose the online sequential ELM (OS-ELM), which
can learn the data one-by-one or chunk-by-chunk with
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fixed or varying chunk sizes. And many different improve-
ments have been proposed and successfully applied in some
applications [15]–[22].

In ELM, OS-ELM and many variants of them, mean
squared error (MSE) criterion is exclusively adopted to con-
struct their cost functions. Since the MSE criterion only takes
into account the second-order statistics, it makes sense in the
signal processing with Gaussian assumption. Consequently,
ELM suffers from two drawbacks: 1) MSE minimization
learning can easily suffer from overfitting. The problem will
be serious while the characteristic of the learned dataset can’t
be represented by the training data [23], [24]. 2) ELM may
perform poorly in the data under nonlinear and non-Gaussian
situations, as it only captures the second-order statistics in the
samples [25].

To overcome the overfitting drawback, Deng et al. [17]
proposed a l2-type regularized ELM based on structural
risk minimization principle and weighted least square. The
generalization performance of the proposed algorithm was
improved significantly inmost cases without increasing train-
ing time. A kernel ELM with higher generalization was
proposed in [13] where a unified framework is provided
to simplify and unify different learning methods, including
LS-SVM, PSVM, feedforward neural networks and etc.
However, a more complicated networks and longer testing
time are required while the sparsity of the network is lost.

The second drawback is obvious in some practical appli-
cations. In many real-world circumstances, e.g., the energy
spectrums of brain magnetic resonance images [26], multiple
access interference in communication systems (broadband
power-line communications [27], [28], wireless sensor net-
works [29], [30]), and other scenarios [31]–[35], the datum
encountered have more impulsive characteristic than that
predicted by a Gaussian distribution, even the combination
of the impulsive and Gaussian distribution. These impulsive
distribution problems, i.e., the non-Gaussian heavy-tailed
distribution problems, cannot be satisfactorily solved by the
MSE criterion. On the other hand, in many real industrial pro-
duction processes, the measurement noises of the instrument
have another kind of statistical characteristics, named non-
Gaussian light-tailed distribution, of which bounded uniform
distribution is a particular case. At this time, the best perfor-
mance is also difficult to be achieved by the MSE criterion.
To solve this problem, a new online ELM algorithm, namely
recursive leastmean p-power ELM (RLMP-ELM) [25] is pro-
posed in our previous work. The least mean p-power (LMP)
error criterion for cost function provides a mechanism to
tune the output weights sequentially. The aim of the LMP
error criterion is to minimize the mean p-power of the error.
Generally, the mean square error criterion is used in the ELM.
Under the non-Gaussian noises situation, the novel learn-
ing algorithm is able to provide on-line predictions of vari-
ables with different statistics and obtain better performance
than ELM and OS-ELM with the same number of hidden
neurons. However, the accuracy of the proposed model is
obviously influenced by the hidden units’ number, just like

ELM model [24]. The classic ELM usually requires more
hidden neurons than that of conventional neural networks to
achieve matched performance, since ELM generates hidden
layers randomly. A long running time is resulted in the testing
phase of ELM for its large network size. This is a hinder
for ELM to efficiently develop in some test time sensitive
scenarios. Thus, the topic on improving the compactness of
ELM while maintaining high model accuracy has attracted
great interest [36].

To find the optimal number of hidden neurons, the ELM
model is trained in a dynamic way that the number of
hidden neurons will be changed during the training pro-
cess [36]. In the way of neurons growing, only appropriate
neurons are added into the network, such as incremental
ELM (I-ELM) [12], [37]–[39] and bidirectional ELM
(B-ELM) [40]. Thus, the more compact networks can be
obtained. In pruning ELM (P-ELM) [41]–[43], the traditional
ELM is used to construct an initial network, then some hid-
den neurons will be removed since they contribute less to
the training performance. A least angle squares regression
(l1-type regularization) to minimize training error is used
to rank neurons [41] and later improved with a cascade of
l1- and l2-types regularization [42] by the same authors.
Deferent from I-ELMs with frozen existing hidden nodes,
the adaptive growth ELM (AG-ELM) [44] can automatically
increase, decrease or stay the same hidden neurons at any
step of the training process. A sparse Bayesian approach [24]
is presented to learn a compact ELM model through auto-
matically tuning most of the output weights to zeros with
an assumed prior distribution. Bai et al. [45] proposed a
sparse ELM (S-ELM) by involving in the quadratic program-
ming (QP) problem and analytically solves the problems,
which greatly reduces the storage space and testing time.
These two sparse models are both proposed for classification
problems.

In the fields of the systems identification and the adap-
tive filtering, a sparsity constraint approximating l0-norm is
applied as a penalty term to the widely used algorithms, such
as least mean square (LMS) or recursive least square (RLS)
algorithms to achieve sparsity models. For systems identi-
fication, Chen et al. [46] combines a l1-norm penalty on
the coefficients into the quadratic LMS cost function, which
generates a zero attractor in the LMS iteration and takes
advantage of the sparsity of the underlying signal to improve
the MSE performance of the LMS algorithm. A weighted
l1-norm sparsity constraint is used in the RLS algorithm to
estimate a sparse tap-weight vector in the adaptive filtering
setting. The proposed algorithm improves the MSE perfor-
mance of the conventional RLS algorithm and decreases the
computational requirements of the RLS [47]. For the system
identification setting, Eksioglu develops a new sparse RLS
algorithm using a general convex function of the system
estimate as a regularizing term [48]. The sparsity penalty
constraint (SPC) used as regularization term can improve
the generation ability of the learning system by removing
redundant data and keeping a minimal set of centers that
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covers the area where inputs will likely appear, i.e., to prevent
overfitting [49]. On the other hand, a sparsemodel reduces the
complexity in terms of computation and memory [47]–[49].

Inspired by these literatures and sparse ELM algorithms
above, we present a novel sparse ELM algorithm by incor-
porating a sparsity penalty term into the least mean p-power
error criterion as the cost function, while the more initial
hidden neurons are selected first and the parameters of hid-
den layer are randomly generated as in the conventional
ELM. It is deferent from our previous work RLMP-ELM
algorithm, which constructs its cost function only with the
least mean p-power error criterion. For simplicity, the new
method is named as the sparse recursive least mean p-power
ELM (SRLMP-ELM) algorithm.

The SRLMP-ELM finds sparse representatives for the out-
put weights by recursively learning to minimize the cost
function and automatically tunes some parameters of the
output weights to zeros during learning phase for the effect
of the sparsity penalty term. The proposed algorithm gains
sparsity by pruning the corresponding hidden neurons which
parameters of the output weight are tuned to zeros. Hence,
the SRLMP-ELM is proposed to improve the robustness
and accuracy of ELM algorithm that produces a poor and
unreliable solution for on-line identification problems when
the output data are stained with various noise disturbances.
Simultaneously, the novel algorithm improves the generation
ability of the classic ELM and reduces the model complexity
and storage space of the system. Compared with our pre-
vious work, the RLMP-ELM algorithm, our new method
can achieve more compact models and shorter testing time
without sacrificing the accuracy of the systems for the same
processes. Simulation results show that this proposed method
with different p and ρ values has more accurate solution and
more compact network structure compared with the exist-
ing ELM and OS-ELM algorithms, while similar accuracy
and more compact network compared with the RLMP-ELM
algorithm.

The remainder of this paper is as follows. We provide a
brief review of the ELM and sparse LMP error criterion in
Section2. In Section3, the proposed SRLMP-ELM algorithm
is described. The performance of this proposed algorithm
is subsequently verified on different artificial dataset and
real-world datasets in Section4. Section5 summarizes the
conclusions from this study.

II. PRELIMINARY
A. EXTREME LEARNING MACHINE
In the ELM, hidden lay is generated randomly and need not
be adjusted, and only the output weight vector is tuned based
on application dependent training data. The training speed is
much faster than that of the traditional SLFNs because much
fewer parameters need to be adjusted here [11]. Consider N
arbitrary distinct samples (xk , tk ), where xk ∈ Rn is the kth
input vector and tk ∈ R is the associated desired value. ELM
could have single or multiple output nodes. For simplicity,

we consider the case with single output node and the output
of an ELM with Ñ hidden nodes equals as,

f (xk ) =
Ñ∑
i=1

βig(xk ; ai, bi)

= βT gk , k = 1, · · · ,N . (1)

where g(·) is the activation function and could be additive
nodes and RBF nodes. ai and bi are the learning parameters
of hidden nodes, β ∈ RÑ and gk ∈ RÑ are the output weight
vector and the hidden nodes’ output vector with respect to
the input xk . Just mentioned above, the parameters of hidden
nodes ai and bi in ELM are randomly set and are not subject
to any optimization.

The output weight vector β is trained using the least mean
square (LMS) algorithm based on the minimization of the
following mean square error (MSE) cost function,

JMSE =
1
N

N∑
k=1

e2k =
1
N
‖Hβ − T‖

= E(e2k ) (2)

where E denotes the expectation operator, ek = tk − βT gk
is the estimation error. H denotes the hidden layer output
matrix, where gki ∈ H(k = 1, ...,N ; i = 1, ..., Ñ ) is the
activation value of the ith hidden neuron for the kth input
vector gki = g(xk ; ai, bi). T = [t1, · · · , tk , · · · , tN ]T is the
desired output vector. A pseudoinverse operation yields the
unique l2 solution of (2), that is β = (HTH)−1HTT .
Now, an alternative optimality criterion, the sparse least

mean p-power (SLMP), has been applied in our study to
improve the robust performance in realistic scenarios with
more compact model than those of the ELM.

B. SPARSE LEAST MEAN p-POWER
Let ek = tk − f (xk ) be the estimation error. Then the sparse
least mean p-power (SLMP) cost is defined as (p ∈ R+),

JSLMP =
1
N

N∑
k=1

λN−k |ek |p + ρSN (3)

The first term, 1
N

∑N
k=1 λ

N−k
|ek |p, is the least mean

p-power (LMP) error criterion and the MSE criterion (2) is
a special case with p = 2. The LMP criterion is computa-
tionally simple, and has been proven successful in various
applications [22], [25], [29], [50]–[53]. It has been pointed
out that the LMP has some useful properties such that it
may produce a better solution if the performance function has
different optimum solutions for various p, instead of theMSE.
While the datum is non-Gaussian light-tailed distribution,
steepest descent algorithm based on LMP error criterion with
p > 2 (especially when p = 4) may have better conver-
gence performance (i.e., achieve either faster convergence
speed or lower misadjustment). The learning algorithm based
on LMP error criterion with p < 2 (e.g. when p = 1) is
robust to non-Gaussian heavy-tailed distribution noises. λ is
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commonly referred to as forgetting factor to deemphasize
data from the remote past. It is a non-negative constant and
usually set in the range (0, 1).
SN denotes a sparsity penalty constraint term of the output

weights, which can improve the robustness and generalization
of the algorithm, besides the compactness of the model. ρ is
a regularization parameter that balance the tradeoff between
LMP and sparsity penalty. The different value for ρ will lead
to different performance of the algorithm and the details are
shown in the simulation. Several sparsity penalty terms are
introduced to the algorithms (e.g. l0-norm or l1-norm). The
l0-norm is an optimal SPC. However, the optimization of
the l0-norm is an NP-hard problem. For this reason, various
approximations of l0-norm are usually utilized as the SPC in
the literatures. The l1-norm is a popular one of such approxi-
mations. In our study, l1-norm is selected as the regularization
term.

III. SPARSE RECURSIVE LEAST MEAN p-POWER
EXTREME LEARNING MACHINE
An empirical sparse least mean p-power related online
extreme learning machine (SRLMP-ELM) is developed in
this section. The SRLMP-ELM is based on the primitive
ELM algorithm which is randomly setting the parameters of
a SLFN. However, a sequential updating procedure based
on the sparse recursive least mean p-power error criterion
replaces the ELM learning operation. In this section, we will
derive the algorithm to update the weight vector of the
ELM under the SLMP error criterion (3). In the following
parts, we will present the detail process of the SRLMP-ELM
algorithm.

A. SPARSE RECURSIVE LEAST MEAN p-POWER (SRLMP)
According to the description of ELM in preliminary, the out-
put of an ELM can be seen as a general linear system
βT g = t , where β ∈ RÑ , g ∈ RÑ and t ∈ R. For this
general linear system, the SRLMP algorithm is the extension
of the recursive least square (RLS) algorithm with cost func-
tion (2) [54]–[56]. The cost function of SRLMP algorithm
is defined as regularizing LMP error criterion by a sparsity
penalty term,

JSLMP =
1
N

N∑
k=1

λN−k |ek |p + ρSN (4)

where ek is the error in kth sample time and ek = tk − βTNgk .
SN denotes a sparsity penalty constraint (SPC) and l1-norm is
selected as the SPC here,

SN = ‖βN‖1 (5)

Substituting (5) into (4) yields,

JSLMP =
1
N

N∑
k=1

λN−k |ek |p + ρ‖βN‖1 (6)

In theory, it has been proved by some results of convex
function in literature [57] that the every minimum of LMP

error criterion 1
N

∑N
k=1 |ek |

p is a global minimum while
p ≥ 1. Thus the performance function JSLMP has a global
minimum while SN is a convex function. Since l1-norm is a
convex function, JSLMP has a global minimum. The optimal
solution βN for minimizing JSLMP can be obtained by differ-
entiating (6) with respect to βN and setting the derivatives to
zero. The derivatives are,

∂JSLMP
∂βN

=
1
N

N∑
k=1

λN−k
∂|ek |p

∂βN
+ ρ

∂‖βN‖1

∂βN

=
1
N

N∑
k=1

λN−k
∂|ek |p

∂ek
·
∂ek
∂βN
+ ρ

∂‖βN‖1

∂βN
(7)

Also because

|ek |p =

{
epk p : even
sgn(ek )e

p
k p : odd

(8)

the following expression is obtained,

∂|ek |p

∂ek
=

{
pep−1k p : even

psgn(ek )e
p−1
k p : odd

= p|ek |p−2ek (9)

where sgn(ek ) = ek/|ek |. Thus (7) can be written as,

∂JSLMP
∂βN

=
1
N

N∑
k=1

λN−kp|ek |p−2ek
∂ek
∂βN
+ ρ

∂‖βN‖1

∂βN
(10)

Substituting ek = tk − βTNgk into (10) yields,

∂JSLMP
∂βN

=
1
N

N∑
k=1

λN−kp|ek |p−2(tk − βTNgk )gk + ρ
∂‖βN‖1

∂βN

(11)

Setting
∂JSLMP
∂βN

= 0 and (11) can be further written as,

N∑
k=1

λN−k |ek |p−2gkgTk βN =

N∑
k=1

λN−k |ek |p−2tkgk

+ ρ
∂‖βN‖1

∂βN
(12)

Letting

9N =

N∑
k=1

λN−k |ek |p−2gkgTk (13)

and

8N =

N∑
k=1

λN−k |ek |p−2tkgk (14)

Here, we set GN = [g1, . . . , gN ], then 9N and 8N can be
rewritten as,

9N = GN

 λ
N−1
|e1|p−2 . . . 0

...

0 . . . |eN |p−2

GTN (15)
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and

8N = GN

 λ
N−1
|e1|p−2 . . . 0

...

0 . . . |eN |p−2

T (16)

Here, 9N and 8N can be called as the sparse p-Power corre-
lation matrix of GN and the sparse p-Power cross-correlation
vector of GN and T , respectively. They serve similar purpose
as the conventional correlation matrix of GN and the cross-
correlation vector of GN and T . Furthermore, we set

ϒN = 8N + ρ
∂‖βN‖1

∂βN
(17)

Considering Eqs(12)-(17), the following relation can be
obtained,

9NβN = ϒN (18)

The optimal solution βN is,

βN = 9
−1
N ϒN (19)

Equation (13), (14) and (17) can be further written as,

9N = λ

N−1∑
k=1

λN−1−k |ek |p−2gkgTk + |eN |
p−2gNgTN

= λ9N−1 + |eN |p−2gNgTN (20)

8N = λ

N−1∑
k=1

λN−1−k |ek |p−2tkgk + |eN |p−2tNgN

= λ8N−1 + |eN |p−2tNgN (21)

ϒN = λ8N−1 + |eN |p−2tNgN + ρ
∂‖βN‖1

∂βN

= λ8N−1 + λρ
‖βN−1‖1

∂βN
+ |eN |p−2tNgN + ρ

∂‖βN‖1

∂βN

− λρ
‖βN−1‖1

∂βN

= λϒN−1 + |eN |p−2tNgN + ρ
∂‖βN‖1

∂βN
− λρ

‖βN−1‖1

∂βN
(22)

To this end, we assume that ∂‖βN‖1/∂βN do not
change significantly in a single time step, i.e., ∂‖βN‖1/∂βN
approach to ∂‖βN−1‖1/∂βN . Hence, we approximate (22) by

ϒN = λϒN−1 + |eN |p−2tNgN + ρ(1− λ)
∂‖βN−1‖1

∂βN
(23)

Substituting (23) into (19), we can get,

βN = 9
−1
N [λϒN−1 + |eN |p−2tNgN + ρ(1−λ)

∂‖βN−1‖1

∂βN
]

(24)

Considering (20) and applying the matrix inversion
lemma [58],

(A+ µxyT )−1 = A−1(I −
µxyTA−1

1+ µyTA−1x
) (25)

Letting 9N−1 = A, x = y = gN , µ = |eN |p−2, and we
can get,

9−1N = λ
−19−1N−1(I −

|eN |p−2gNgTN9
−1
N−1

λ+ |eN |p−2gTN9
−1
N−1gN

) (26)

For a simple description of (26), we introduce �N and KN as

�N = 9
−1
N

KN =
|eN |p−2�N−1gN

λ+ |eN |p−2gTN�N−1gN
(27)

Then we obtain

�N = λ
−1(I − KNgTN )�N−1 (28)

where �N and KN are the extended kalman gain vectors
similar to those in RLS. Thus (24) can be rewritten as

βN = λ
−1(I − KNgTN )�N−1[λϒN−1 + |eN |p−2tNgN

+ ρ(1− λ)
∂‖βN−1‖1

∂βN
]

= (I − KNgTN )[�N−1ϒN−1 + λ
−1�N−1|eN |p−2tNgN

+ ρλ−1(1− λ)�N−1
∂‖βN−1‖1

∂βN
]

= �N−1ϒN−1 − KN�N−1ϒN−1

+ λ−1|eN |p−2(I − KNgTN )�N−1tNgN

+ ρλ−1(1− λ)(I − KNgTN )�N−1
∂‖βN−1‖1

∂βN

= βN−1 + KN (tN − g
T
NβN−1)

+ ρλ−1(1− λ)(I − KNgTN )�N−1
∂‖βN−1‖1

∂βN
(29)

The equation for updating βN can be gotten,

βN = βN−1 + eNKN

+ ρλ−1(1− λ)(I − KNgTN )�N−1
∂‖βN−1‖1

∂βN
(30)

Furthermore, the derivative ∂‖βN‖1/∂βN is sign(βN ). sign(·)
is the sign function. The function for updating βN can be
obtained,

βN = βN−1 + eNKN
+ ρλ−1(1− λ)(I − KNgTN )�N−1sign(βN−1) (31)

B. SPARSE RECURSIVE LEAST MEAN p-POWER - ELM
ALGORITHM (SRLMP-ELM)
Considering again the description of ELM in preliminary,
there is a standard SLFN and N arbitrary distinct samples
(xk , tk ) in the algorithm. The SLFNwith Ñ hidden nodes with
activation function g(x) and the hidden layer output matrix
is gk = [g(xk ; a1, b1), g(xk ; a2, b2), . . . , g(xk ; aÑ , bÑ )]

T .
Now, the SRLMP-ELM algorithm can be summarized as
follows.
SRLMP-ELM Algorithm:

1) Assign random input weights ai and bias bi (for additive
hidden nodes) or center ai and impact factor bi (for RBF
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hidden nodes), i = 1, · · · , Ñ . Initialize β0 = 0, �0 =

IÑ×Ñ , λ,ρ and p. Set the training step k = 1.
2) Obtain the current training data (xk , tk )
3) Calculate the hidden layer output matrix

gk = [g(xk ; c1, a1) g(xk ; c2, a2), . . . , g(xk ; cÑ , aÑ )]
T

4) Calculate the error term
ek = tk − βTk−1gk

5) Calculate the gain vector Kk =
|ek |p−2�k−1gk

λ+ |ek |p−2gTk �k−1gk
6) Calculate the output weight βk

βk = βk−1 + ekKk + ρλ−1(1 − λ)(I −
KkgTk )�k−1sign(βk−1)

7) Update �k
�k = λ

−1(I − KkgTk )�k−1
8) If there is any new training data, set k = k + 1 and go

to 2. Otherwise, the algorithm is terminated.

Remark: We can further discuss the computation com-
plexity of the proposed SRLMP-ELM algorithms. For the Ñ
hidden units andN -length training sequence, the total training
complexity of the SRLMP-ELM is of O(NÑ 2). The same
computation complexity can thus be observed comparing that
ofO(NÑ 2) in the primitive ELMmatrix inversion [11] and of
O(NÑ 2) in the OS-ELM [14], [59]. But since the data is pro-
cessed sequentially in the SRLMP-ELM and OS-ELM, they
cost more time than the ELM algorithm. However, the more
compact model can obtained by SRLMP-ELM through the
sparse penalty constraint. Thus, the running time can be
rapidly deduced in the testing phase that is illustrated by the
following simulation results.

IV. PERFORMANCE EVALUATION
In this section, the performance of the proposed
SRLMP-ELM learning algorithm is compared with ELM,
OS-ELM and RLMP-ELM on a few regression problems.
To confirm the validity of the proposed SRLMP-ELM with
different p and ρ value, we utilize training samples with the
noises of several different distributions for illustrating that the
better performance could be achieved through choosing p and
ρ value according to the features of the noises distribution.
The symmetric alpha-stable (SαS) distribution is a clas-

sic non-Gaussian distribution, which can model impul-
sive type of noises with heavy-tailed distributions [31].
In many literatures, the impulsive characteristics of physical
noise sources have been modeled by the SαS [26],
[28]–[30], [33], [34]. Generally, a SαS random distribu-
tion can be described conveniently by its characteristic
function [31], [60]

φ(t) = exp(jµt − γ |t|α) (32)

where α ∈ (0, 2] is the characteristic exponent and com-
pletely determines the shape of the distribution, i.e., the thick-
ness of the tail in the distribution. This family of distributions
comprises the particular case of Gaussian with α = 2. The
second-order and higher-order statistics of the symmetric
alpha-stable distribution (α 6= 2) are infinity.µ is the location

parameter (and assumed to be zero here). γ is the dispersion
of the distribution and similar to the variance of Gaussian
random variable. In practice, the signal of semi-conducting
electrical devices in communication and radar systems is
subject to internal thermal Gaussian noises. Hence a sum of
independent SαS and Gaussian random process appears in
a variety of practical situations mentioned above, namely,
a SαSG distribution [55], [61]–[63]. The process is easily
presented in the characteristic function

φ(t) = exp(−γSαS |t|α − γG|t|α) (33)

where γSαS > 0 and γG = σ 2
G/2 > 0 are the dispersions

of SαS and Gaussian random variables. σ 2
G is related to the

variance of the Gaussian component.
In order to effectively illustrate the good performance

of SRLMP-ELM algorithm, Gaussian and non-Gaussian
datasets are considered in the study. For Gaussian dataset,
Gaussian noises are added to the noise free training set or real
data to generate training samples, called as Gaussian training
set. Some non-Gaussian dataset, such as symmetry alpha-
stable (SαS) noise, sum of independent SαS and Gaussian
random noise (SαSG), and Uniform noises are used to create
training samples. They are called as SαS training set, SαSG
training set and Uniform training set, respectively. Further-
more, all the simulations are carried out in MATLABR2013a
environment running in an Intel(R) CORE(TM) i5 CPU,
1.80GHz, 8GB RAM. The details of validation process are
shown in the following sections.

A. SinC
In this section, a popular example in literatures, SinC func-
tion, is presented to confirm the theoretical analysis of the
proposed SRLMP-ELM algorithm. Here SinC is given as,

y(x) =

{
sin(x)/x x 6= 0
0 x = 0

(34)

We randomly create 5000 data for the training and validation
sets, respectively, where the input x is the uniform distribution
on the interval [−10, 10].
For illustrating the compact size of the proposed network

model, we make model selection procedure firstly for each
type of dataset to determine the optimal architecture, that
is the number of the hidden nodes. Then we illustrate the
performance of SRLMP-ELM algorithm by comparing with
ELM, OS-ELM and RLMP-ELM algorithms.

1) MODEL SELECTION
The estimation of optimal architecture of the classic ELM
network is called as model selection in the literature. It is
problem specific and has to be predetermined. For ELM,
OS-ELM and RLMP-ELM algorithms, the optimal number
of hidden units needs to be determined. And what’s more,
the initial network size of SRLMP-ELM should be deter-
mined by the model selection. In order to illustrate the good
performance of SPLMP-ELM algorithm, the number of hid-
den units of OS-ELM, RLMP-ELM and the initial number of

VOLUME 6, 2018 16027



J. Yang et al.: SRLMP-ELM for Regression

FIGURE 1. ELM model selection for SinC based on four types of training sets.

hidden nodes in this paper are selected as same as the one
of ELM algorithm. Thus the model selection procedure is
focus on the performance of ELM algorithm with different
hidden nodes while the training datasets are Gaussian or non-
Gaussian separately.

For ELM algorithm with every training dataset, such as
Gaussian set, SαS set, SαSG set and Uniform set, the training
process is performed with different number of hidden nodes
which is chosen from the range [2, 50] with the interval 2,
while the Gaussian activation function is selected here for the
hidden nodes. Here Monte Carlo method is used and over
200 trials are conducted for each number of hidden nodes.
The result of the model selection is shown in Figure 1.

For ELMalgorithmwithGaussian training dataset, random
zero mean Gaussian noises with variance 0.16 are created
and added to all training samples to generate the Gaussian
training set in each trial. After each trial, the testing set
without any noises are used to validate the performance of
the algorithm. The average performance is calculated after
over 200 trials and shown with green curve in Figure 1. The
Root Mean Square Error (RMSE) of the testing set is used
as the criterion of the ELM’s performance. For other three
training datasets, the model selection procedures are the same
as that of Gaussian training set. But different type of noises
are added on the training samples to create corresponding
training set as mentioned above. For SαS training set, Sym-
metry alpha-stable random noise (α = 1.2 and the dispersion
γSαS = 0.04) are used. For SαSG training set, the sum of

independent SαS (α = 1.2, γSαS = 0.04) and Gaussian
(zero mean, the variance is 0.16) random noises are used.
For Uniform training set, the large uniform noise distributed
in [−0.5, 0.5] has been added to all the training samples.
The performances of ELM with these three different train-
ing datasets are illustrated in blue, red and yellow curves
in Figure 1, separately.

As observed from the figure, the lowest validation errors
are achieved when the number of hidden nodes of ELM is
above 24 for the Gaussian and Uniform training sets. It can
also be seen that RMSE curves for these two training datasets
are smooth. It implies that ELM algorithm is not sensitive
to the network size while the outputs of training data are
stained by Gaussian and Uniform noises. For SαS and SαSG
training sets, the curves are not smooth and ELM algorithm
is a little sensitive to the network size for the outputs with
SαS and SαSG noises. But the lowest validation errors are
achieved when the number of hidden nodes of ELM is in the
range [20, 34]. According to the result of the model selection,
30 hidden units are chosen for ELM, OS-ELM, RLMP-ELM
and the initial hidden units of SRLMP-ELM algorithm.

2) PERFORMANCE EVALUATION OF
SRLMP-ELM ALGORITHM
In this part, the performance of SRLMP-ELM algorithms
with different values of p and ρ is discussed. According to
the analysis above, 30 is selected as the optimal number
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TABLE 1. Performance comparison of SRLMP-ELM, RLMP-ELM, ELM and OS-ELM algorithms for SinC case based on four types of training sets.

of hidden nodes for ELM, OS-ELM and RLMP-ELM algo-
rithms, in addition to the initial number of hidden units for
SRLMP-ELM. The forgetting factor λ is set as 0.995.
The details of the comparison about SRLMP-ELM algo-

rithm with different values p and ρ, ELM, OS-ELM and
RLMP-ELM algorithms are summarized in the follow-up
table. The averaged results over 200 independent trials on
each algorithm in terms of the running time, the RMSE and
the variance of the RMSE of the training and testing process
are presented in Table 1. The number of hidden nodes is
included in the table.

The RLMP-ELM algorithm proposed in our previous
work is the specific case of the SRLMP-ELM algorithm
with ρ = 0. As observed from Table 1, the accuracies of
SRLMP-ELM with different ρ and p, ELM and OS-ELM
based on Gaussian training dataset are similar to each other.
All algorithms are robust to the Gaussian distribution data.
There is an obvious difference that the training time cost
by ELM is much less than those cost by other algorithms.
Just as the above analysis, the computation complexity of
ELM, OS-ELM, RLMP-ELM and SRLMP-ELM algorithms
are same, but the last three algorithms cost more running
time than ELM due to conducting data one by one. Another
obvious difference is that the number of hidden nodes of

SRLMP-ELM with some values of ρ is smaller than 30.
The SRLMP-ELM with p = 1.6 and ρ = 1.2 has only
20 hidden units while its accuracy is almost equal to that
of the ELM. Similarly, there is only 21 hidden units in the
SRLMP-ELMwith p = 2 and ρ = 1.2. Thus, the correspond-
ing algorithm has more compact model than that of the ELM,
OS-ELM and RLMP-ELM algorithm while the accuracies of
all the algorithms are almost same. Furthermore, the testing
time of the SRLMP-ELM with these two compact models
is less than that of the other algorithms just as thought in
advance.

The performances of all algorithms for the SαS training
dataset are also shown in Table 1. The validation RMSE of
SRLMP-ELM algorithm with p = 1.6 and ρ in the range
of [0, 1.2] are much better than that of other algorithms. Just
as mentioned in our previous work, the algorithms with least
mean square criterion are sensitive to the data with impulsive
characteristic, while RLMP-ELM with p = 1.6 are more
robust to impulsive training data used here. The SRLMP-
ELM algorithm with p = 1.6 and ρ = 0, i.e., RLMP-ELM
with p = 1.6, obtains the lowest testing root-mean-square
error (RMSE) 0.0151 while the criteria of ELM and OS-ELM
are both above 0.05. The validation RMSE of SRLMP-ELM
algorithm with p = 1.6, ρ = 0.3 and p = 1.6, ρ = 1.2
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are 0.0182 and 0.0203, separately. This is a little larger than
that of RLMP-ELM with p = 1.6. However, the number of
hidden units for these two algorithms are 19 and 17. Thus
these two algorithms have more compact models than that of
RLMP-ELM with p = 1.6 which has 30 hidden nodes and
is the same as that of ELM and OS-ELM. On the other hand,
the testing time of the SRLMP-ELM with these two compact
models is less than those of the other algorithms. The accura-
cies of SRLMP-ELM algorithmwith p = 2 and ρ in the range
of [0, 1.2] are almost same with the performance of ELM and
OS-ELM. However the number of hidden units for SRLMP-
ELM algorithm with p = 2, ρ = 0.3 and p = 2, ρ = 1.2 are
smaller than 30. Also these two algorithms require less testing
time. In conclusion, for the data with impulsive characteristic,
the SRLMP-ELM algorithm with p = 1.6 and ρ value in
the range of [0.3, 1.2] can obtain better accuracy and more
compact model than other algorithms in comparison, that is,
ELM, OS-ELM and RLMP-ELM algorithms.

Table 1 also illustrates the performances of all algorithms
based on SαSG training dataset. The validation RMSEs of
ELM, OS-ELM, RLMP-ELM algorithms with p = 2 and
SRLMP-ELM algorithm with p = 2 and ρ value in the range
of [0.3, 1.2] are almost the same. SRLMP-ELM algorithm
with p = 1.6, ρ = 0, that is RLMP-ELM algorithm with p =
1.6, still obtains the lowest testing RMSE 0.0274. However,
the SRLMP-ELM algorithm with p = 1.6 and ρ value in
the range of [0.3, 1.2] can obtain the accuracy in the range
of [0.0297, 0.0319] while the model size is in the range of
[22, 24] and the testing time is less than 0.0117 second. From
algorithm accuracy and model complexity, the performance
of SRLMP-ELM algorithm with p = 1.6 and ρ value in the
range of [0.3, 1.2] are better than other algorithms for the data
with SαSG distribution, the sum of impulsive and Gaussian
data.

Finally, the performances of all algorithms based on Uni-
form training dataset are shown in the bottom of Table 1.
The SRLMP-ELM algorithm with p = 4, ρ = 0, i.e.,
RLMP-ELM algorithm with p = 4 obtain the lowest testing
RMSE 0.261 because the Uniform data are bounded. The best
accuracy is only slightly better than those of other algorithms.
It is not obvious. However, the SRLMP-ELM algorithm with
p = 4 and ρ value in the range of [0.3, 1.2] obtains more
compact model and less testing running time than those of
other algorithms.

From the simulation results of SinC case, we have observed
that SRLMP-ELM algorithm with appropriate p and ρ

value can obtain better accuracy, more compact model and
less testing time on non-Gaussian dataset than ELM and
OS-ELM algorithms. The proposed algorithm with ρ in
the range of [0.3, 1.2] can have fewer hidden nodes and
less testing time than RLMP-ELM with the same p value,
while their learning accuracies are similar. In order to fur-
ther illustrate the good performance of proposed algorithm,
we have conducted the detailed simulation on the two real
datasets. One is the non-stationary time-series prediction
problem, predicting time series value of the internet traffic.

The other is predicting the Altitude value of some location
in 3D road networks. The details are given in the following
sections.

B. TIME SERIES OF INTERNET TRAFFIC
A real internet traffic dataset is considered in this example
and we get it from a researcher Paulo Cortez’s home page,
http://www3.dsi.uminho.pt/pcortez/series/A5M.txt. The goal
is to predict the value of the current sample using the previ-
ous ten consecutive samples. All the datasets are normalized
into [0, 1].

In this experiment, the number of training observation
samples is 4000 and the number of testing observation sam-
ples is 2000. The same Gaussian and non-Gaussian noises
as described above are added to the 4000 training data in
each trial. According to the model selection presented above,
18 is selected as the optimum number of hidden units for
ELM, OS-ELM, RLMP-ELM and the initial hidden nodes of
SRLMP-ELM. For each type of training data set, the average
results over 200 trails are shown in Table 2.

The detailed performances of each algorithm for Gaussian
training dataset are illustrated in Table 2. As can be observed
from the table, almost all algorithms obtain similar accuracy,
except SRLMP-ELM algorithms with p = 1.6, ρ = 1.2
and p = 2, ρ = 1.2. The validation RMSE of these two
SRLMP-ELM algorithms are both above 0.06 that is larger
than that of ELM 0.0394 since there is only 10 hidden nodes
for these two algorithms. SRLMP-ELM algorithms with p =
1.6, ρ = 0.3 and p = 2, ρ = 0.3 can obtain the similar accu-
racy as ELMwhile these two algorithms only have 15 hidden
nodes and less testing time.

As can be observed from Table 2, in case of SαS training
dataset, the testing RMSEs of SRLMP-ELM with p = 1.6
and ρ in the range of [0, 1.2] are less than those of other algo-
rithms, ELM, OS-ELM and SRLMP-ELM algorithm with
p = 2. The lowest testing RMSE is obtained by SRLMP-
ELM with p = 1.6, ρ = 0, that is RLMP-ELM algorithm
with p = 1.6. The testing accuracy of SRLMP-ELM algo-
rithm with p = 1.6, ρ = 0.3 is 0.0303. This is almost
half of that of ELM while the number of hidden unites is
only 11 and the testing time is 0.0048 second. SRLMP-ELM
algorithms with p = 1.6, ρ = 1.2 can obtain the testing accu-
racy 0.0377 with 8 hidden nodes and 0.0035 second testing
time.

Table 2 shows the performances of all algorithms for the
SαSG training dataset. The testing RMSEs of SRLMP-ELM
with p = 1.6 and ρ in the range of [0, 1.2] are a little less than
those of other algorithms for the case of Gaussian random
noises. The lowest testing RMSE is obtained by SRLMP-
ELM with p = 1.6, ρ = 0, i.e., RLMP-ELM algorithm
with p = 1.6. The good accuracy and more compact model
are obtained by SRLMP-ELM with p = 1.6, ρ = 0.3
and p = 1.6, ρ = 1.2. This is similar to SαS training
dataset.

For Uniform training dataset, the testing accuracy of
SRLMP-ELM with p = 4 and ρ in the range of [0, 1.2]
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TABLE 2. Performance comparison of SRLMP-ELM, RLMP-ELM, ELM and OS-ELM algorithms for Time series of Internet traffic case based on four types
of training sets.

are slightly better than those of other algorithms. The lowest
testing RMSE is obtained by SRLMP-ELM algorithm with
p = 4, ρ = 0, that is RLMP-ELM with p = 4. The similar
accuracy and more compact model are obtained by SRLMP-
ELM with p = 4, ρ = 0.3 and p = 4, ρ = 1.2, as in the case
of SinC. The details are illustrated in Table 2.

C. 3D ROAD NETWORK
This dataset is constructed by a 3D road network in North
Jutland, Denmark. Each sample includes longitude, latitude
and altitude. This 3D road network dataset can be used by
any applications that require to know very accurate elevation
information of a road network to perform more accurate
routing for eco-routing, cyclist routes etc. For the data mining
and machine learning community, this dataset also can be
used as ground-truth validation in spatial mining techniques
and satellite image processing. This dataset can be achieved
on http://archive.ics.uci.edu/ml/datasets.html. In our exper-
iment, the inputs are longitude and latitude. The output is
altitude.

Here, 5000 and 1000 samples of 3D road network dataset
are randomly chosen for training and testing at each trial. The
procedure of creating training dataset is totally same as that

in the SinC case. According to the model selection procedure,
60 is selected as the optimal number of hidden units for ELM,
OS-ELM, RLMP-ELM and the initial number of hidden units
for SRLMP-ELM. For each type of training dataset, the aver-
age results over 200 trails are shown in Table 3.

For this problem, the performances of all algorithms based
on different types of training dataset are similar with those in
the above two cases. For Gaussian training dataset, the per-
formances of all algorithms are substantially similar, but
SRLMP-ELM with p = 1.6, ρ = 0.3 and p = 1.6, ρ = 1.2
have more compact model and less testing time, as observed
from Table 3. From the table, it can be seen that SRLMP-
ELM with p = 1.6 and ρ value in the range of [0.3, 1.2]
have less RMSE than ELM and OS-ELM in case of SαS and
SαSG training dataset. The lowest testing RMSE is obtained
by SRLMP-ELM with p = 1.6 and ρ = 0, that is RLMP-
ELM with p = 1.6 in both of these two training data set.
The good accuracy and more compact model are obtained by
SRLMP-ELM with p = 1.6, ρ = 0.3 and p = 1.6, ρ = 1.2.
The performance details of all the algorithms for Uniform
training set are illustrated in the bottom of Table 3. From
the table, it can be seen that SRLMP-ELM algorithm with
p = 4 and ρ = 0.3 has slightly less RMSE than those of
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TABLE 3. Performance comparison of SRLMP-ELM, RLMP-ELM, ELM and OS-ELM algorithms for 3D Road Network case based on four types of
training sets.

ELM and OS-ELM. Furthermore, the more compact model
and less testing time are achieved by the SRLMP-ELM with
p = 4, ρ = 0.3 and p = 4, ρ = 1.2.

V. CONCLUSION
An efficient and accurate online sequential learning algorithm
with more compact structure, for single-hidden layer feed-
forward neural networks (SLFNs) is proposed in this paper.
It is called sparse recursive least mean p-power extreme
learning machine (SRLMP-ELM). Same as ELM and
OS-ELM, the activation functions for hidden units here can
be any bounded nonconstant piecewise continuous functions
for additive nodes and any integrable piecewise continuous
functions for RBF nodes. The SRLMP-ELM algorithmmain-
tains the computationally simple ELM structure but the sum
criterion of a least mean p-power (LMP) error and an sparse
penalty constraint, aiming to improve the generalization and
compact the model while minimize the p powers of the
error, provides a mechanism to update the output weights
sequentially. Under the same architecture, SRLMP-ELM has
the same computational complexity as those of ELM and
OS-ELM. The real world benchmark regression and non-
stationary time-series prediction problems are presented to

show that the proposed SRLMP-ELM algorithm can obtain
better performance in non-Gaussian situations than ELM and
OS-ELM algorithms. The details are as follows,

1) For non-Gaussian and Gaussian distributed data,
the SRLMP-ELM algorithm with some p values and
ρ (0.3 ≤ ρ < 1.2) can achieve more compact model
and less testing time.

2) For non-Gaussian heavy-tailed distributed data, such
as alpha-stable noises and the sum of alpha-stable and
Gaussian noises, the SRLMP-ELM algorithm with p =
1.6 and ρ (0.3 ≤ ρ < 1.2) can obtain better generaliza-
tion performance, more accurate results, more compact
models and less testing time.

3) As for non-Gaussian light-tailed distributed data, such
as uniform noise, the SRLMP-ELM algorithm with
p = 4 and ρ (0.3 ≤ ρ < 1.2) can get slightly
better generalization performance with more compact
structure and less testing time.

4) For Gaussian distributed data, the SRLMP-ELM algo-
rithm with p = 2.0 and ρ (0.3 ≤ ρ < 1.2) can
obtain the almost same generalization performance as
ELM and OS-ELM, but the network structure is more
compact.
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