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ABSTRACT Automatic spike detection and classification have been used for a neuroelectronic interface to
reduce data amount or even to interact with neurons in a closed loop. While conventional neuroelectronic
interfaces employ voltage-mode circuits to amplify neural signals and convert the signals into binary data,
the dynamic range and signal-to-noise ratio of these circuits are directly limited by the supply voltage.
To release this constraint, this paper proposes an analog-to-time converter (ATC), which uses positive
feedback to convert analog neural signals into a sequence of pulse trains. Custom-designed digital circuits,
including two types of time-to-digital converters (TDCs) and a 2-D multiply-accumulator (2-D-MAC),
are further proposed for processing such time-mode signals. The ATC is implemented with the standard
0.35-µm CMOS technology and proved able to convert analog voltages into pulse-width-modulated signals
with a resolution of 6 bits. The TDCs and 2-D-MAC are realized in FPGA and compared to the standard
digital IPs. The comparison indicates that the TDC based on dual counters minimizes area consumption and
the other based on delayed clocks minimizes power consumption. The 2-D-MAC further facilitates parallel
computation of partial products and allows data to be classified without summing up all partial products.
Finally, the application of the proposed time-mode system is demonstrated as classifying neuronal spikes.

INDEX TERMS Analog-to-time converter (ATC), multiply-accumulate (MAC) operation, time-mode signal
processing.

I. INTRODUCTION
The microelectronics technology has been exploited to inter-
face with neurons at a high spatiotemporal resolution [1].
This is helpful not only for advancing neuroscience research
but also for developing novel neural prostheses. At a neuro-
electronic interface, the ability to detect and classify spikes
automatically is essential for interacting with neurons in a
closed-loop manner. For neural prostheses, automatic spike
detection and sorting further help to reduce the power and
bandwidth of wireless data transmission, as well as to facil-
itate delivering bio-feedbacks in real time. Therefore, many
embedded systems able to detect and sort spikes automati-
cally have been proposed [2], [3]. While spike detection is
achievable by either analog or digital circuits, spike sorting
mainly relies on digital signal processing and thus neces-
sitates converting neural signals into digital data. Conven-
tional neuroelectronic interfaces usually employ a low-noise
amplifier to amplify miniature neural signals (ranging from

several microvolts to several millivolts [4]). The amplified
signals are then converted by a rail-to-rail, analog-to-digital
converter (ADC). This architecture faces the following draw-
backs. First, a large amplification gain is required to exploit
the full resolution of the ADC, but large gain unavoidably
consumes extra power or extra chip area (for the input capac-
itance of a capacitive amplifier). Secondly, as the supply
voltage reduces with the technology to decrease power con-
sumption, the achievable signal-to-noise ratio (resolution,
dynamic range) of a voltage-mode ADC is reduced
simultaneously.

Under the above concerns, this paper investigates the feasi-
bility of using time-mode computation with custom-designed
digital representation to release the constraints. Fig. 1 shows
the proposed architecture, mainly consisting of an analog-
to-time converter, a time-to-digital converter (TDC), and a
two-dimensional multiply-accumulate (2D-MAC) operator.
Neural signals are amplified to only several tens of millivolts
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FIGURE 1. The architecture of the proposed time-mode system for neural
recording and spike sorting.

by the preamplifier. Subsequently, the amplified signal is
converted into a ‘‘time-mode signal’’ by the analog-to-time
converter (ATC).

The ATC utilizes positive feedback to convert each analog
sample into a digital pulse efficiently, and the pulse width
is proportional to the analog level. The TDC then converts
each pulse into two binary data, representing one coarse and
one fine estimates of the pulse width, by either the dual-
scale counter (DSC) or the delay-line counter (DLC). Finally,
as many data classification methods (e.g. PCA, LDA) are
based on computing the inner product between data and
feature vectors, the 2D-MAC is designed to compute the inner
product of the TDC output and feature vectors to achieve
spike sorting.

Compared to conventional architectures, the ATC avoids
the need for a high amplification gain and uses positive feed-
back to translate analog values into pulse widths efficiently.
The pulse-width representation further allows the dynamic
range to be independent of the supply voltage. This feature is
particularly useful as the technology development continues
to shrink transistor sizes. While the supply voltage has to
reduce the transistor size, the cutoff frequency of transistors
increases and favors time-mode data conversion [5], [6].
Nevertheless, the pulse-width-coded data need to be con-
verted into binary data to facilitate signal processing
(e.g., spike sorting). Although the most straightforward
method is using a counter to measure the pulse duration,
the counter will need a high-frequency clock and consume
remarkable power to achieve high resolution. Also, the pulse-
width and the counting clock have to be synchronized before
the counter starts to count.

To mitigate these drawbacks, two methods are proposed
and compared in this paper. The first is using a dual-scale
counter (DSC) with two different clock frequencies [7].
A low-frequency clock is first used to obtain a coarse count
(measurement) of the pulse duration. Only the remaining
part of the pulse width is measured by a high-frequency
clock. The second method is based on the Vernier delay line
proposed in [8] and [9]. The high-frequency clock is replaced
by a set of low-frequency clocks generated from interpolating
delay lines. The delayed clock edges are used as the edges
of a high-frequency clock. However, a wide dynamic range
would require a large number of delay lines, which consume

not only extra power and area but also exhibit significant
variations [10]. The proposed delay-line counter releases this
constraint by digitalizing most of the pulse duration by a
low-frequency clock and using delay lines to measure only
the remaining duration. This helps to achieve both a high
resolution and a wide dynamic range without numerous delay
lines. The conversion efficiency of two proposed TDCs is
compared and discussed in this paper. Finally, as multiply-
accumulate (MAC) operators consume most power in digital
signal processing, the proposed two-dimensional (2D)-MAC
operator employs two-dimensional, parallel processing to
reduce both power consumption and time complexity. The
performance of the 2D-MAC will be compared to the
conventional MAC.

To facilitate the comparison between the proposed digital
circuits and those in the standard digital library, a mixed-
signal system consisted of a custom-designed chip and a
field-programmable-gate-array (FPGA) is set up in this study.
As indicated by Fig. 1, the ATC is realized by the 0.35µm
2P4M CMOS technology provided by the Taiwan Semi-
conductor Manufacturing Company (TSMC), while the pro-
posed digital circuits including the DSC, the DLC, and the
2D-MAC operator, are implemented in the FPGA (Altera
MAX V-5M2210ZF256C4). The FPGA provides the flexi-
bility of realizing and comparing different types of TDCs,
as well as comparing the proposed 2D-MAC with conven-
tional MAC regarding power and area consumption.

Following the introduction, Sec. II Sec.IV introduce the
design of the ATC, TDCs, and 2D-MAC, respectively. The
measurement of these circuits is then presented and discussed
in Sec. V. The full system’s ability to classify neural spikes is
further demonstrated in Sec. VI. Finally, Sec. VII concludes
the findings and future works.

II. THE ANALOG-TO-TIME CONVERTER
Fig. 2 shows the architecture of the proposed ATC, whose
circuit design has been detailed in [11]. Vin represents the
pre-amplified neural signal. The transistor Msub operating

FIGURE 2. The circuit architecture and the timing diagram of the
analog-to-time converter.
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in the subthreshold region converts Vin into a current Isub
exponentially proportional to Vin. Subsequently, the opera-
tional amplifier (OPA) together with Rfb transform Isub into
an output voltage equaling to (Vx + Isub × Rfb), where
Vx is the voltage at the positive input of the OPA as the
switches SW2 are on. The output of the OPA is then sampled
by the regenerative circuit, consisting of two transconduc-
tances (Gm) amplifiers and two capacitors (CL) connected
in a positive-feedback loop. In our design, each transcon-
ductance amplifier is simply realized by an inverter, so that
the regenerative circuit functions as the sense amplifier in
the conventional DRAM. The switches SW1 and SW2 are
controlled by two non-overlapping clocks during the analog-
to-time conversion. As the switches SW1 are turned on, both
Vx and Vy are reset to Vset . Afterward, the switches SW1 are
turned off and the switches SW2 are turned on.
Vy becomes (Vx + Isub × Rfb). Let Vxy = Vx − Vy. As

both SW1 and SW2 are turned off, the initial voltage Vxy(0)
is given as (1), and the dynamics of Vxy(t) is governed by (2).

Vxy(0) = Isub · Rfb

= Rfb · I0 · eκVin/UT (1)

Vxy(t) =
CL
Gm
·
dVxy(t)
dt

(2)

I0 is a process-dependent parameter and is also proportional
to the transistor size W/L. κ is the coupling coefficient for
subthreshold operation, and UT = kT/q is the thermal
voltage. The rising edge of an output pulse is triggered as soon
as both SW1 are turned on. The comparators then compares
Vy with Vdes. As soon as Vy = Vdes, the falling edge of the
pulse is triggered. Let τs = CL/Gm. The time ts required for
Vy = Vdes can be derived by solving (2) as∫ ts

0

1
τs
· dt =

∫ ts

0

1
Vxy(t)

· dVxy(t)

ts
τs
= ln |Vxy(ts)| − ln |Vxy(0)|

ts = τ s · ln〈
Vxy(ts)
Vxy(0)

〉 (3)

Substituting the initial condition in (1) for Vxy(0) then gives

ts = τs · ln
Vxy(ts)
I0 · Rfb

− τs ·
κVin
VT

(4)

As the first term is a constant, ts is linearly proportional toVin.

III. THE TIME-TO-DIGITAL CONVERTERS
Two methods are proposed to convert the pulse signal into
binary data for digital signal processing. The first is based on
the dual-scale counter (DSC), and the second is based on the
delay-line counter (DLC). The DSC requires less chip area,
while the DLC consumes lower power for achieving a high
resolution and a wide dynamic range. The following subsec-
tions detail their design concepts and FPGA implementations.

FIGURE 3. The timing diagram of the signals during the time-to-digital
conversion based on the dual-scale counter.

A. THE DUAL-SCALE COUNTER
Fig. 3 illustrates the operation of the proposed DSC. G is
the pulse signal to be digitalized. G is first re-sampled by
the coarse-count clock (Cclk ) to generate the Cen signal, and
the duration of Cen is measured by the coarse-count clock as
Gct counts. Taking the exclusive-OR betweenG and Cen then
gives the Fen signal, which indicates the remaining duration
ofG at the beginning,1fs, and the over-estimated duration at
the end,1fe. Therefore, Fen triggers the fine-count clock Fclk
to measure the duration of1fs and1fe asGfs andGfe counts,
respectively. Let the frequency of Fclk be k times higher than
that of Cclk . The total duration of G is written as

G = (Gfs − Gfe)+ Gct × k. (5)

B. THE DELAY-LINE COUNTER
Fig. 4 illustrates the operation of the proposed DLC, which
replaces the fine-count clock in DSC by the interpolated
signals, D1 ∼ D8. The interpolated signals are generated

FIGURE 4. The timing diagram of the signals during the time-to-digital
conversion based on the delay-line counter.
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by simply passing the pulse signal G through a set of delay
lines, moreover, the delay between consecutive signals is
designed to be one-kth cycle of the coarse-count clock. As
the pulse signal G arrives, its rising edge still triggers the
coarse counter to count its duration, and Cen is generated
by re-sampling G. At the same time, the rising edge of G
also triggers the counting of the number of rising edges of
the interpolated signals till the onset of Cen. This counting
result, Gfs, indicates the duration of 1fs. On the other hand,
the falling edge of G triggers the counting of the number of
falling edges of interpolated signal till the falling edge ofCen.
This counting result, Gfe, indicates the duration of 1fe.
Therefore, the total duration of G is still given as (5). To sim-
plify hardware implementation, the negative term can be
removed by rewriting (5) as

G = [Gfs + (k − Gfe)]+ (Gct − 1)× k

= [Gfs + Gff ]+ (Gct − 1)× k

= Gf + Gc × k (6)

The minimum delay achievable in our study is the delay
for a datum passing through a D-FlipFlop and the rout-
ing path to the next stage. To estimate the minimum
delay, the delays of 100 routing paths (randomly gener-
ated) involving D-FlipFlops in our FPGA device (Altera
MAXV-5M2210ZF256C4) are measured. The statistics indi-
cate that, although the routing paths vary significantly,
approximately 45% of the delays equal 2.5 ns and more than
75% of the delays are smaller than 3 ns. The minimum delay
achievable is thus estimated to be 3 ns, much smaller than the
duration of the pulse signal ( > 4µs in Fig. 12). Therefore,
the errors 1qs and 1qe in Fig. 4 are ignored in this study.

C. THE FPGA IMPLEMENTAION
This section presents the DSC and DLC hardware architec-
tures, which was implemented in an FPGA device.

Fig. 5 shows the circuit architecture of the DSC in FPGA.
The counter #3 is the coarse counter, and its output is shifted
upwards by four bits because of k = 8 in this implementation
example. The other two counters measure the duration of
1fs and 1fe in Fig. 3. The enabling signal of up counter #1
is obtained by Fen ∧ Cen, so that the output of counter #1
corresponds to Gfs in (5). Similarly, the enabling signal of

FIGURE 5. The circuit architecture of the proposed DSC in FPGA.

down counter #2 is obtained by Fen ∧ Cen, which down
counts from k and outputs the result which corresponds to
Gff in (5). Both fine counts are added to the shifted coarse
count as the final result. Nevertheless, to simplify the circuit
and to reduce the power consumption, the fine-count and
coarse-count results are processed directly by the 2D-MAC
described in next section.

Fig. 6 shows the circuit architecture of the DLC in FPGA.
The delay chain contains two series of D-FlipFlops. The top
series delay the rising edge ofG, while the bottom series delay
the falling edge of G. The delayed signals are transmitted
to the D-flipflops in the edge-sensing circuit. Subsequently,
the top row of D-flipflops latches the states of the delayed
signals at the rising edge of Cen, whereas the bottom row
latches the states at the falling edge of Cen. The latched states
are then sent to the decoder to generate the Gfs and Gff in (6).
Although the total duration of G can be derived from Gfs,
Gff and Gct , the DLC simply outputs Gf = Gfs + Gff and
Gc = Gct − 1 for the 2D-MAC operator to classify data
directly.

FIGURE 6. The circuit architecture of the proposed DLC in FPGA.

IV. THE TWO-DIMENSIONAL MULTIPLY-ACCUMULATOR
A. DESIGN CONCEPT
Let G and H represent the binary-coded multiplicand and
multiplier, respectively. Conventional multiplication process
needs to compute the partial products and accumulate them
to obtain the final product value, as illustrated by the top-left
panel in Fig. 7.

Instead of calculating the final product directly, we pro-
pose keeping the partial products in a two-dimensional (2D)
register array, as shown by the bottom-left panel in Fig. 7.
In this example, bothG andH have four bits plus one sign bit.
The 2D register array R thus contains 4 × 5 bits. Each row i
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FIGURE 7. The operational concept of the proposed 2D-MAC. (Left-top) the conventional MAC computation; (Left-bottom) the proposed 2D-MAC
computation. (Right) The accumulation process for computing the inner product with the 2D-MAC. The n sets of the partial-product registers store
the multiplication between Gl and Hl for l = 1 ∼ n. H1[3+ 1 : 0] = 0_0101, H2[3+ 1 : 0] = 0_0011, . . . .,Hn[3+ 1 : 0] = 0_1011; G1[7+ 1 : 0] =
{G1c = 0_1011,G1f = 0011} , G2[7+ 1 : 0] = {G2c = 0_1010,G2f = 1110} and Gn[7+ 1 : 0] = {Gnc = 0_1101,Gnf = 0100}. Both Hl and Gl have
additional one bit as a sign bit at the MSB. The accumulated result is stored in the summing register SUM[m+ 1 : 0][7 : 0] with the (m+ 1)-th column
storing the sign bits Ssig.

stores the partial product ofG andH [i], and the MSB of each
row stores the sign bit as Rsig = Gsig ⊕ Hsig. Computing the
partial product is extremely easy and hardware inexpensive.
G is copied to the i-th row of R if H [i] = 1, while i-th row of
R is set to zero if H [i] = 0.
The right panels of Fig. 7 further illustrates how to use

the data in the 2D register to compute the inner product
between two n-dimensional vectors, G = [G1,G2, . . . ,Gn]
and H = [H1,H2, . . . ,Hn]. In our experiment, G represents
the recorded neural spikes, and H represents the feature
vector for spike sorting. Let the proposed TDC convert each
Gl, l = 1 ∼ n into one fine-count value Glf and one coarse-
count value Glc. Glf and Glc are multiplied with Hl , and the
partial products are stored in the registers Rlf and Rlc, respec-
tively. In the example in Fig. 7, bothGlf andGlc contains four
bits, and the additional MSB of Glc is Gsig. Hl is an four-bit
data plus its sign bit. Let Glf [p : 0] denote that Glf contains
p + 1 bits and Glc[q : 0] denote that Glc contains q + 1 bits,
the additional MSB atGlc is the sign bit (p = q = 3 in Fig. 7).
The computation of partial products can be formulated as

Rlf [i] = Glf [p : 0] ∧ Hl[i]

Rlc[i] = Glc[q : 0] ∧ Hl[i] (7)

To accumulate the partial products, two summing register
arrays, Sf and Sc, are employed to sum up the register values
in Rlf and Rlc, respectively. The summing register also has a
2D structure. The i-th row of Sf stores the summation of the
values in the i-th row ofRlf , l = 1 ∼ n. The same relationship
applies to Sc and Rlc, l = 1 ∼ n. As G1f contains p+ 1 bits,
the maximum summation value for each row is (2(p+1)−1)·n.
Therefore, each row of Sf should contain m bits with

m = log2
(
(2(p+1) − 1) · n

)

The proposed 2D-MAC has the following advantages over
conventional MAC:
1) The accumulator of the 2D-MAC requires much fewer

bits than that of the conventional MAC because the
2D-MAC only accumulates row data in the partial-
product register while conventional MAC needs to
accumulate all partial products.

2) In applications that entail computing inner products of
vectors, the 2D-MAC can compute the multiplication
of multiple elements simultaneously, as illustrated by
Fig. 8. The simultaneous processing saves considerable
time as the vector size is large.

3) For classification tasks, data can be classified by simply
looking at specific elements in the summing registers
of the 2D-MAC rather than deriving the final product
value. This allows the power, area, and time to be saved
from converting 2D data into 1D data. This feature will
be detailed in Sec.VI-C.

FIGURE 8. The computational flow of a typical MAC and a 2D-MAC when
calculating (11). a indicates the processing time required by the
accumulator.

B. THE FPGA IMPLEMENTATION
Fig. 9 shows the circuit architecture for implementing the
proposed 2D-MAC in FPGA. Although the inner product
G ·H involves the multiplication and accumulation of n ele-
ments. The architecture only requires two partial-product
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FIGURE 9. The circuit architecture of the proposed 2D-MAC in FPGA.

registers, Rf and Rc, for storing the l-th partial product
under computation. As the pulse train of G arrives, each
pulse is converted by the DSC or the DLC into a coarse-
count value Gc and a fine-count value Gf , which are stored
in the coarse-number register (CNR) and the fine-number
register (FNR), respectively. To compute the partial product
between Gl and Hl , the outputs of CNR and FNR are con-
nected to the row-selection multiplexers. As Hl[i] = 1, the
Gf and Gc values are stored into the i− th row of the partial-
product registers Rf and Rc, respectively. Conversely, zeros
are filled into the i− th row of the partial-product registers as
Hl[i] = 0. The multiplexer behind the partial product register
then selects one row at a time. The selected i-th row of
Rf or Rc is added to the corresponding row of the summing
register SUM .

V. MEASUREMENT RESULTS
A. THE ANALOG-TO-TIME CONVERTER
A prototype ATC was implemented with the 0.35µm 2P4M
CMOS technology provided by the TSMC. The chip micro-
photograph is shown in Fig. 10. The digital circuit generates
the control signals depicted in Fig. 2 automatically. As Vin =
480 mV , the measured pulse output and corresponding con-
trol signals are shown in Fig. 11. The pulse width is 7.2µs,
and the magnified view of the falling edge indicates that the
jitter is around 100 ns in maximum. By varying Vin from
340 mV to 540 mV with a step size of 10mV, the correspond-
ing pulse widths are measured and plotted in Fig. 12. The
pulse width decreases from 10.7 to 4.3µs linearly with Vin
for 400 mV ≤ Vin ≤ 530 mV . As Vin > 530 mV , the initial
voltage Vxy(0) across the sense amplifier is large, so that the
transconductance of the two inverters differ significantly and
cause the nonlinearity. As Vin < 390 mV , the nonlinearity
mainly comes from the dependence of κ in (1) on the gate-
source voltage of Msub, i.e. Vin. In subthreshold operation,
κ approximates [12]

Cox
Cox + Cdep

(8)

FIGURE 10. The photo of the proposed ATC implemented in the standard
CMOS 0.35µm technology.

FIGURE 11. The measured ATC output and its control signals. As the
trigger of the oscilloscope is set to the rising edge of the pulse-width
signal(green). The top-right inset reveals the jitter at the falling edge.

FIGURE 12. The measured output pulse width (triangular symbols) versus
the input voltage Vin for the ATC. The regression curve (blue) and the
ideal linear line (red) are also depicted.

where Cox is gate-oxide capacitance, and Cdep the depletion
capacitance of the body, which is nonlinearly-dependent on
the gate-source voltage. As Vin increases from 340 mV to
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FIGURE 13. The effective differential non-linearity and integral
non-linearity of the ATC with Vin = α · 2mV + 400mV .

390 mV , Cdep decreases and causes κ to increase. Therefore,
according to (10), the decrement of the pulse width increases
with Vin in this region. After Vin is greater than 400 mV ,
inversion charges grow more significantly so that the depth
of depletion region and Cdep becomes nearly independent
of Vin. Furthermore, the time ts required for Vy = Vdes
can be described from (9) to (10). The curve in Fig. 12
induced the logarithmic term ln(Vdes) in (10) which affects
the nonlinearity. To solve the logarithmic issue while apply
to wide dynamic range applications, we recommend that the
pulse width time ts defines as when Vxy = Vdes.

Vx(t) = τs(Vset + Isub · Rfb) · (1− e(1/τs)
2t )+ Vset

Vy(t) = (Vset + Isub · Rfb) · e(1/τs)
2t (9)

The time which Vy = Vdes in (10) is

ts = τ 2s (ln(Vdes)− ln(Vset + I0 · eκVin/UT · Rfb)) (10)

As the measured jitter is 100 ns in maximum, the effective
resolution achieved by the proposed ATC (within its linear
range) is computed as log2((10.7 − 4.3)/0.1) = 6 bits. One
least significant bit corresponding to 100 ns for the pulse-
width-modulated signal. To further quantify the non-linearity
of the ATC, Vin is swept from 400mV to 530mV with a step
size of 2mV, and the corresponding pulse width increment
is normalized with respect to 100ns to derive the effective
differential and integral nonlinearity shown in Fig. 13.

B. TIME-TO-DIGITAL CONVERTERS AND THE
2D-MAC OPERATOR
As the function of the DSC in FPGA has been verified and
presented in [7], this section mainly presents and discuss the
functions of the proposed DLC and 2D-MAC in FPGA. The
measurement result is displayed in Fig. 14.

The two pulses of theG signal are represented two different
values to be multiplied by the two unsigned multipliers,
H1 = 0011b and H2 = 0111b, respectively. As Cen first
goes high, the DLC detects seven rising edges of interpolated
signals and thus sets fs = 7. At the same time, the coarse
counter (Pcounter in Fig. 14.) is triggered to measure the
duration of G with Cclk . The falling edge of G triggers the
DLC to measure the duration of 1fe. As Cen goes low,
the DLC sets ff = 2, indicating that fourteen falling edges
of interpolated signals are detected during 1fe (k = 16
in this experiment). At the same time, the coarse counter
counts to 17 and stores the value in CNR. The fine-count
value equaling to (fs+ ff ) is stored in FNR. In the next clock
cycle, the FNR value is copied into the registers SUM0 and
SUM1 because H1[0] = H1[1] = 1, and the CNR value is
copied into registers SUM4 and SUM5 because each coarse
count value needs to be multiplied by 16. All other SUM
registers remain zero because the corresponding H1[i] = 0.
Similarly, the DLC measures the second pulse and gives
FNR = 5 and CNR = 10. Afterward, the FNR value is added

FIGURE 14. The measured operational signals of the 2D-MAC with DLC during the computation of (H1 × G1)+ (H2 × G2).

19720 VOLUME 6, 2018



Y.-C. Chen et al.: 2-D-MAC for Classification of Neural Signals

to the registers SUM0, SUM1, and SUM2, while the CNR
value is added to the registers SUM4, SUM5, and SUM6.

C. POWER AND AREA TRADEOFF FOR THE DLC METHOD
Let k represent the number of interpolated signals in the
DLC method (k = 8 in Fig. 4). The conversion resolution
of the DLC method can be increased by either increasing k
or increasing the frequency of the coarse-count clock. Table 1
compares the power and area consumptions for different com-
binations of k and coarse-count clock frequency. The value in
each bracket indicates the resolution achieved by the corre-
sponding combination. Obviously, increasing k requiresmore
delay lines and thus a larger chip area, while increasing the
clock frequency consumes more power. Increasing the clock
frequency also helps to reduce the chip area because the unit
delay time reduces with the clock period, so does the required
number of cascaded delay units. This comparison reveals the
great flexibility of the proposed DLCmethod. A designer can
choose to minimize the power consumption, or to minimize
the area, or to identify an intermediate tradeoff optimal for a
specific application.

TABLE 1. The power and area consumption required for different
computation resolutions, which are achieved by different combinations
of k values and coarse-count frequencies.

D. COMPARISON WITH THE STANDARD FPGA
INTELLECTUAL PROPERTY
The power and area consumptions of the proposed TDCs
and 2D-MAC are further compared to the MegeCore intel-
lectual property (IP) library provided by Altera Corporation
To coincide with the ATC proposed in this paper, the pulse
width of the time-mode signal ranges from 4.3 to 10.7µs.
The toggle rate of each method is then averaged to derive its
average power consumption. Fig. 15 and Table 2 reveal the
comparison for converting time-mode signals and computing
their inner products at different resolutions. Fig. 15 shows that
the power consumption of the standard IP and the 2D-MAC
without a DSC or a DLC grows rapidly with the required res-
olution. On the contrary, the 2D-MACwith DLC remains at a
very low power consumption of 0.08 mW for all resolutions.
This intriguing property of the DLC method comes from the
fact that its resolution can be increased by simply increasing
the number (k) of delay signals, as discussed in Sec.V-C.

FIGURE 15. The power and area required by different methods for
achieving different computation resolutions.

TABLE 2. The comparison among different methods in different
resolutions.

Table 2 further obviates the significant improvement achieved
by the proposed methods. Taking the 12-bit resolution as an
example, the standard IP consumes 25.94mW . The proposed
DSC reduces the power consumption to only 6.54 mW . The
DLC method further helps to reduce the power by more than
320 times, while consuming only two times larger chip area
than the standard IP library. For the 2D-MAC, although the
2D-MAC with the standard counter IPs consumes a little
more power (0.4%) than the fully-standard IPs, the 2D-MAC
helps to reduce the chip area by 7.3% (from 322 to 300 LEs).
On the other hand, Fig. 15 reveals that the 2D-MAC with the
DLC requires a larger area for all resolutions. Nevertheless,
the required area is at most five times greater than those
required by all other methods. Therefore, the 2D-MAC with
the DSC is suitable for minimizing area consumption, and
the 2D-MAC with the DLC is suitable for minimizing power
consumption.

Table 3 further compares the proposed TDC with recently-
published TDC methods which exhibit small chip area and
low power consumption. It is notable that increasing the
dynamic range, especially for a large pulse width, results
in a considerably larger chip area and higher power con-
sumption. The comparison in Table 3 indicates the proposed
TDC (based on DLC) still offers competitive performance
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TABLE 3. The comparison of the DLC-based TDC with the
recently-published TDCs.

regarding high dynamic range and low power consumption,
even though the proposed DLC is only implemented in an
FPGA fabricated with the 0.18µm technology.

VI. EXPERIMENTS WITH REAL BIOMEDICAL DATA
The capability of the proposed circuit in processing real
biomedical data is further tested with neuronal spikes
recorded by a micro-electrode in the primary motor cortex
of a rat [15]. Assume all detected spikes are aligned with
their maximum peaks as Fig. 16. The raw data contain
three types of spikes. There are 160 samples for each type
of spikes, and each spike consists of 64 samples across
time. To simplify the hardware implementation, all spike
data are down-sampled to be 9-dimensional data. After the
spike data are converted into pulse-width modulated signals,
the proposed TDCs generate the coarse-count and fine-count
values for each pulse (sample) signal. The 2D-MAC then
sorts spikes based on the feature vectors learned by the
generative model called Continuous Restricted Boltzmann
Machine (CRBM) [16], [17].

FIGURE 16. Three types of neuronal spikes recorded by a single electrode
in rat cortex.

A. THE CRBM ALGORITHM
Fig. 18 illustrates the architectures of the CRBM, consisting
of one visible and one hidden layer of neurons. The number of
visible neurons equals the dimension of the data to be classi-
fied, while the number of hidden neurons are chosen in accor-
dance with data complexity. In this experiment, the CRBM
with nine visible and two hidden neurons is employed to
learn the feature vectors of the neuronal spikes. V0 and H0
in Fig. 18 represent biasing neurons whose values always

equal one. Let wij represent the weight connection between
neurons vi and hj. TheCRBM learns to capture feature vectors
as the weight vectors connecting between each hidden neuron
and all visible neurons (e.g., wi1 connected to h1). The three
types of spikes in Fig. 16 are divided into a training dataset
of 99 spikes and a testing dataset of 381 spikes. After training
the CRBM by the minimizing-contrastive-divergence (MCD)
algorithm [17] for 60,000 epochs, the parameters wij and aj
converge to their optimal values, allowing the CRBM to
regenerate the three types of spikes. aj is the scaling factor
for neuron j. To classify the spikes with the trained CRBM,
the hidden neurons’ outputs are computed according to

hj = ϕj(aj ·
n∑
i=0

wij · vi) (11)

where n = 9 in this experiment, ϕi is the sigmoid function,
and the summation term actually denote the inner product
of the weight vector w1= wi1 and the spike datum v= vi.
Fig. 17(a) plots the calculated hidden-neuron outputs
(H1,H2) for the testing dataset. The trained CRBM is proved
able to project the three types of spikes into three distinct
clusters in the hidden-neuron space.

To fit the hardware implementation of the 2D-MAC,
the effective weight values 8ij = wij × aj is substituted
into (11), and the nonlinear sigmoid function is omitted.
Therefore, the 2D-MAC computes

hj =
n∑
i=0

(8ij · vi) (12)

In addition, both8ij and vi are simplified to fixed-point num-
bers. Fig. 17(b) plots the hidden-neuron outputs calculated
according to the above simplification. The three types of
spikes are still projected into three distinct clusters. Com-
pared to Fig. 17(a), the separation among the clusters become

FIGURE 17. The hidden-neuron outputs of the trained CRBM in response
to different types of spikes. The outputs are computed according
to (a) (11) (b)(12) and normalized into [−1,1].
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smaller mainly because of the lack of the sigmoid function for
enlarging the difference between different clusters.

B. IMPLEMENTING THE SPIKE-SORTING CORE
To implement the CRBM-based spike-sorting core in the
proposed circuit in the FPGA, the dynamic ranges of visible
states(vi), hidden states (hj), and weight values (wij) are re-
scaled according to Table 4. Each visible state is a 6-bit
unsigned datum that meets the resolution of the proposed
ATC. For the TDCs, both fine-count and coarse-count values
are set to be three bits, i.e. k = 8 in (6). The effective weight
values 8ij of the trained CRBM are represented by signed,
5-bit binary data and stored in the FPGA memory for the
2D-MAC.

TABLE 4. The Mapping of Parameters Between MATLAB Simulation and
FPGA Implementation.

Fig. 18 illustrates the partial-product registers and sum-
ming registers used by the 2D-MAC during the computation
of (12). The fine-count and coarse-count values are filled
into the i − th row of Rf and Rc, respectively, according to
the i − th bit of 8ij. The sign column Rsig is derived from
Gsig ⊕ Hsig where Gsig = 0 in this case. As Rf and Rc store
the partial products of8ij and vi, the hidden-neuron outputH1
is derived by accumulating the row data of the Rf and Rc. The
accumulated result is then stored in the 2D summing registers
SUM which combines Sf and Sc registers in Fig. 19.

C. EXPERIMENTAL RESULT
Fig. 20 shows the total sum of the 2D-MAC in response
to different types of spikes. Obviously, the three types of
spikes can be distinguished by simply setting a threshold
value between 140 and 180 for H1 and a threshold value
between 290 and 440 for H2. Nevertheless, the spikes can
be classified even without computing the total sum from the
2D SUM registers.

As Fig. 19 illustrates, each element in the SUM corre-
sponds to specific powers-of-two values. Elements are having
the same powers-of-two value located on a specific diagonal
line in the array. Depending on the sign bit in S[7] of each
row, the element values in the corresponding row are either
positive or negative. Let a, b, c, . . . ,m denote the number
of positive elements corresponding to 20, 21, 22, . . . , 212,
respectively. Let a′, b′, c′, . . . ,m′ denote the number of neg-
ative elements corresponding to −20,−21,−22, . . . ,−212,
respectively. The total sum is calculated as

SUM=212[m−m′]+211[l−l ′]+ 210[k − k ′]

+. . .+23[d−d ′]+22[c−c′]+ 21[b−b′]+20[a−a′]

(13)

FIGURE 18. (Top-Left) The architecture of the CRBM with nine visible and
two hidden neurons. The inner product of the weight vector 8i1 and
spike waveform v is computed by the proposed 2D-MAC. (Top-right)
Each vi is a 6-bit binary value, and the proposed TDCs convert each vi
as vi [5+ 1 : 0] = vif [2 : 0]+ vic [2+ 1 : 0]. The product of v1 and
811[3+ 1 : 0] = 0_1011 is illustrated. (bottom) Accumulating the
partial products to obtain the h1 value in the summing register.

FIGURE 19. The powers-of-two exponents for the elements in a
2D summing register array.

According to Fig. 20, a threshold value, H1∗, between
140 and 180 allows us to distinguish between spike A and
spike B. As 27 < H1∗ < 28, we can compute only the
coefficients of 212 28 in (13), i.e. the elements in orange
color in Fig. 19, for classifying between spike A and spike B.
As long as the coefficients indicate that the summation from
212 to 28 is positive, the spike belongs to type A. Therefore,
the spikes can be classified without computing the total sum
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FIGURE 20. The histogram of hidden-neuron outputs in response to
different types of spikes. The output values are computed according
to (13). Three types of spikes can be classified by setting two threshold
values, H1∗ and H2∗, in the gray region for H1 and H2, respectively.

in (13). Compared to conventional MAC, this feature avoids
the need for a large register for storing the total summation of
partial products.

VII. CONCLUSION
This paper presents an analog-to-time converter (ATC)
together with time-mode, signal-processing circuits for clas-
sifying neuronal spikes at neuro-electronic interfaces. The
ATC is verified with chip implementation, and the time-
mode processing circuits are realized in FPGA and com-
pared to standard digital IPs. The measurement result of
the ATC demonstrates that the ATC is able to use positive
feedback to convert analog voltages (within a dynamic range
of 130mV) into pulse-width-modulated (PWM) signals with
a resolution of six bits. This feature helps the neuro-electronic
interface to avoids the need for a high-gain amplifier, so as
to prevent the amplifier’s output from being saturated by
stimulation or motion artifacts. On the other hand, the ATC
resolution could be further improved by designing a constant-
transconductance regenerative circuit instead of simply using
inverters. The PWM output of the ATC is further converted
into digital data by the time-to-digital converters (TDC)
based on either a dual-scale counter (DSC) or a delay-line
counter (DLC). Comparing the proposed TDCs with standard
IPs reveals that the DSC method minimizes area consump-
tion, while the DLC method minimizes power consump-
tion or provides an alternative tradeoff between power and
area consumption. These features allow designers to optimize
time-to-digital conversion for different applications.
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