IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 12, 2018, accepted March 6, 2018, date of publication March 12, 2018, date of current version March 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2814818

Convolutional Recurrent Deep Learning Model

for Sentence Classification

ABDALRAOUF HASSAN “, (Member, IEEE), AND AUSIF MAHMOOD, (Senior Member, IEEE)

Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA

Corresponding author: Abdalraouf Hassan (abdalrah@my.bridgeport.edu)

ABSTRACT As the amount of unstructured text data that humanity produces overall and on the Internet
grows, so does the need to intelligently to process it and extract different types of knowledge from it.
Convolutional neural networks (CNN5s) and recurrent neural networks (RNNs) have been applied to natural
language processing systems with comparative, remarkable results. The CNN is a noble approach to
extract higher level features that are invariant to local translation. However, it requires stacking multiple
convolutional layers in order to capture long-term dependencies, due to the locality of the convolutional
and pooling layers. In this paper, we describe a joint CNN and RNN framework to overcome this problem.
Briefly, we use an unsupervised neural language model to train initial word embeddings that are further tuned
by our deep learning network, then, the pre-trained parameters of the network are used to initialize the model.
At a final stage, the proposed framework combines former information with a set of feature maps learned
by a convolutional layer with long-term dependencies learned via long-short-term memory. Empirically,
we show that our approach, with slight hyperparameter tuning and static vectors, achieves outstanding
results on multiple sentiment analysis benchmarks. Our approach outperforms several existing approaches
in term of accuracy; our results are also competitive with the state-of-the-art results on the Stanford Large
Movie Review data set with 93.3% accuracy, and the Stanford Sentiment Treebank data set with 48.8% fine-
grained and 89.2% binary accuracy, respectively. Our approach has a significant role in reducing the number
of parameters and constructing the convolutional layer followed by the recurrent layer as a substitute for
the pooling layer. Our results show that we were able to reduce the loss of detailed, local information and
capture long-term dependencies with an efficient framework that has fewer parameters and a high level of
performance.

INDEX TERMS Convolutional neural network, recurrent neural network, natural language processing, deep

learning, sentiment analysis, long-term dependencies.

I. INTRODUCTION

Natural Language Processing (NLP) is a vast area of com-
puter science that is concerned with the interaction between
computers and human language. Language modeling is a
fundamental task in artificial intelligence and NLP. A lan-
guage model is formalized as a probability distribution over
a sequence of words. Recently, deep learning models have
achieved remarkable results in speech recognition [1] and
computer vision [2]. Text classification plays an important
role in many NLP applications, such as spam filtering, email
categorization, information retrieval, web search, and ranking
and document classification [3], [4], in which one needs to
assign predefined categories to a sequence of text. A popu-
lar and common method to represent texts is bag-of-words.
However, the bag-of-words method loses the words order

and ignores the semantics of words. N-gram models are
popular for statistical language modeling and usually perform
the best [5]. However, an n-gram model suffers from data
sparsity [6].

Neural Networks have become increasingly popular [7];
it has become possible to train more complex models on a
much larger dataset. They outperform n-gram models and
overcome the data sparsity problem [6]; semantically similar
words are close in vector space. The embedding of rare words
is poorly estimated, which leads to higher perplexities for rare
words. With the progress of machine learning in recent years,
it has become possible to train more complex models on much
larger data sets [1], [2], [7]-[9]. The distributed representation
of words is one of the most successful concepts, and it helps
learning algorithms achieve better performance [7].

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission. 13949

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1852-4449

IEEE Access

A. Hassan, A. Mahmood: Convolutional Recurrent Deep Learning Model for Sentence Classification

Convolutional Neural Networks (CNN) [10] recently
achieved very successful results in computer vision [2].
A CNN considers feature extraction and classification as one
joint task. This idea has been improved by stacking multiple
convolutional and pooling layers, which sequentially extract
a hierarchical representation of the input [10]-[12].

We investigate Recurrent Neural Networks (RNNs) as an
alternative for pooling layers in deep neural network language
models to perform a sentiment analysis of a short text. Most
of the deep learning architectures for NLP require stacking
many layers to capture long-term dependences due to the
locality of the convolutional and pooling layers [13]. Our
architecture was inspired by the recent success of RNNs
in NLP applications and the fact that RNNs can capture
long-term dependencies even with one single layer [14].
We were also inspired by the successful work proposed
in [9], where a single layer of CNN was applied for sentence
classification.

It turns out that providing the network with good initializa-
tion parameters can have a significant impact on the accuracy
of the trained model and capturing the long-term dependen-
cies more efficiently. In this paper, we present a joint CNN
and RNN architecture that takes the local features extracted
by a CNN as the input for an RNN for a sentiment analysis
of short texts. We propose a new framework that exploits and
combines convolutional and recurrent layers into one single
model on top of pre-trained word vectors. We utilize long
short-term memory (LSTM) as a substitute for pooling layers
in order to reduce the loss of detailed, local information and
capture long-term dependencies across the input sequence.
Our contributions are summarized below:

1. Word embeddings are initialized using a neural lan-
guage model [7], [8], which is trained on a large, unsu-
pervised collection of words.

2. We use a convolutional neural network to further
refine the embeddings on a distance-supervised dataset.
We take the word embedding as the input to our
model in which windows of different length and various
weight matrices are applied to generate a number of
feature maps.

3. The word embeddings and other parameters of the net-
work obtained at the previous stage are used to initialize
the same framework.

4. The deep learning framework takes advantage of
the encoded local features extracted from the CNN
model and the long-term dependencies captured by
the RNN model. Empirical results demonstrated that
our framework achieves competitive results with fewer
parameters.

The rest of the paper is organized as follows. Section II
presents related works. Section III introduces background.
Section IV highlights the research problem and moti-
vation. Section V describes in detail our model archi-
tecture. Section VI outlines the experimental setup, and
Section VII discusses the empirical results and analysis.
Finally, Section VIII presents the conclusion.

13950

Il. RELATED WORK
A. TRADITIONAL METHODS
Text classification is significant for NLP systems, where
there has been an enormous amount of research on sentence
classification tasks, specifically on sentiment analysis. NLP
systems classically treat words as discrete, atomic symbols
where the model leverages a small amount of information
regarding the relationship between the individual symbols.
A simple and efficient baseline method for a sentence
structure is to represent the sentence as a bag-of-words and
then train a linear classifier (e.g., a logistic regression). How-
ever, the bag-of-words approach omits all of the information
about the semantics and ordering of words [15], [16]. N-gram
models are another popular method to represent a sentence.
This method usually performs the best [5]. Words are pro-
jected to a high-dimensional space, and then the embedding
is combined to obtain a fixed-size representation of the input
sentence, which later is used as an input to the classifier.
Despite the fact that n-gram models take into account word
ordering in short sentences, they do still suffer from data
sparsity. Overall, all simple techniques have limitations for
certain tasks. Furthermore, linear classifiers do not share
parameters among features and classes that might limit their
generalization in the context of a large output, where some
classes have few examples. A popular solution for this prob-
lem is to use multilayer neural networks [13], [16], or to
factorize the linear classifier into low-rank matrices [8].

B. DEEP LEARNING METHODS
Deep Neural Networks (DNNs) have achieved significant
results in computer vision [2], [17] and speech recogni-
tion [1]. Recently, it has become more common to use
DNNs in NLP applications, where much of the work involves
learning word representations through neural language mod-
els [6]-[9] and then performing a composition over the
learned word vectors for classification. These approaches
have led to new methods for solving the data sparsity prob-
lem. Consequently, several neural network-based methods for
learning word representations followed these approaches.

DNNs jointly implement feature extraction and classifi-
cation for text classification. DNN-based approaches usu-
ally start with an input text, represented as a sequence of
words, where each sequence is represented as one-hot vector;
then, each word in the sequence is projected into a contin-
uous vector space. This happens by multiplying it with a
weight matrix, which leads to the creation of a sequence of
dense, actual, valued vectors. This sequence then feeds into
a DNN, which processes the sequence in multiple layers,
resulting in prediction probability. This pipeline is tuned
jointly to maximize the classification accuracy on the training
sets [7]-[9], [12], [13], [17], [18]. However, one-hot vector
makes no assumption about the similarity of words, and it is
also very high-dimensional [9], [18].

RNNs improve time complexity and analyze texts word-
by-word, then preserve the semantic of all of the previous

VOLUME 6, 2018

A. Hassan, A. Mahmood: Convolutional Recurrent Deep Learning Model for Sentence Classification

IEEE Access

text in a fixed-sized hidden layer [19]. The capability to
capture superior, appropriate statistics could be valuable to
capture the semantics of a long text in an RNN. However,
an RNN is a biased model; recent words are more significant
than earlier words. Therefore, they key components could
appear anywhere across the document, not only at the end.
This might reduce the efficiency when used to capture the
semantics of a whole document. Therefore, the long short-
term memory (LSTM) model was introduced to overcome the
difficulties of the RNN [20].

A standard RNN makes predictions based only on consid-
ering the past words for a specific task. This technique is
suitable for predicting the next word in context. However,
for some tasks, it would be efficient if we could use both
past and future words in tagging a task, as part-of-speech
tagging, where we need to assign a tag to each word in a
sentence [21]. In this case we already know the sequence of
the words, and for each word we want to take both words to
the left (past) and to the right (future) into consideration when
making a prediction. That is exactly what the Bidirectional
Neural Network (BNN) does; it consists of two LSTMs. One
runs forward from left to right, and the other runs backward
fromright to left. This technique is successful in tagging tasks
and for embedding a sequence into a fixed-length vector [18].

Convolutional Neural Networks (CNNs) were initially
designed for computer vision [2], [10]. CNNs exploit layers
with convolving filters that are applied to local features.
CNNs reached outstanding results in computer vision where
handcrafted features were used, e.g. scale-invariant features
transform (SIFT) followed by a classifier; the main idea is
to consider feature extractors and classifiers as one jointly
trained task [9], [17]. The use of neural networks inspired
many researchers after the successful approaches in [6], [16],
and [17]. This area has been investigated in recent years,
especially by using multi-convolutional and pooling layers in
CNNs and then sequentially extracting hierarchical represen-
tations of the input.

CNN models for NLP achieved excellent results in seman-
tic parsing [22], sentence modeling [11], search query
retrieval [23], and other NLP tasks [17]. Recently, the DNN-
based model has shown very good results for several tasks in
NLP [9], [12], [13], [18]. Despite the good performance of
these models, in practice they are relatively slow at training
and testing, which restrains them from using a large scale of
data, and it requires stacking many convolutional layers in
order to capture long-term dependencies.

The combination of both CNNs and RNNss is explored for
speech recognition [24], and a similar approach was applied
to image classification [2]. [18] Investigated the combination
of CNN-RNN to encode character input, and implemented a
high-level feature input sequence of character level to capture
sub-word information. However, this model performs best
when a large number of classes are available. Reference [25]
Outlined structured attention networks, which incorporate
graphical models to generalize simple attention, describe
the technical machinery and computational techniques for

VOLUME 6, 2018

backpropagation through models of this form. Referenec [26]
aimed to improve representation efficiency, and the model
employed Differential State Framework (DSF). DSF mod-
els maintain longer-term memory by learning to interpolate
between a fast-changing, data-driven representation and a
slowly changing, implicitly stable state. Reference [27] Inves-
tigated an approach to advance the accuracy of the deep learn-
ing method for sentiment analysis by incorporating domain
knowledge. This paper combined domain knowledge with
deep learning, using sentiment scores learnt by regression to
augment the training data. They also utilized weighting across
entropy with a penalty matrix as an enhanced loss function.
We observed that the use of a vanilla CNN for text classifi-
cation has one drawback. In [18] the network must have many
layers in order to capture long-term dependencies in an input
sentence. Perhaps that might be the motivation behind [12],
which utilized a very deep convolutional network with six
convolutional layers followed by two fully connected layers.

lll. BACKGROUND

A. CONVOLUTIONAL NEURAL NETWORKS

Recently CNNs were applied to NLP systems and accom-
plished very interesting results [9], [13], [18]; convolutional
layers are similar to a sliding window over a matrix. CNNs
are numerous layers of convolutions with nonlinear activa-
tion functions, such as ReLU or tanh, applied to the results.
In a classical, feed-forward neural network, each input of a
neuron is attached to each output in the next layer. This is
called a fully connected or affine layer. However, CNNs have
different approaches where they use convolutions over the
input layer to compute the output. Local connections compute
the output over the input layer, and then each layer applies
different kernels, usually hundreds or thousands of filters,
to then combine their results.

During pooling or subsampling layers and during the train-
ing stage, CNNs learn the values of their filter size based
on the tasks. For instance, in image classification [2] a CNN
might learn to detect edges from raw pixels in the first layer,
then use the edges to detect simple shapes in the second layer,
and then use these shapes to detect higher-level features, such
as facial shapes, in higher layers. The layer is then fed to a
classifier that uses these high-level features. However, how
does this apply to NLP?

As an alternative to image pixels, the input to most NLP
tasks consists of sentences and documents represented as
a matrix. Additionally, each row of the matrix matches up
to one token, usually a word or character. Each row is a
vector that represents a word. Typically, this vector is a word-
embedded, low-dimensional representation (e.g. word2vec,
one-hot vectors) that indexes the word into a vocabulary (e.g.
a ten word sentence using a 100-dimensional embedding,
10*100 matrix) as our input. In NLP, a filter slides over full
words of the matrix. Therefore, the width of the filters is same
as the width of the input matrix. Moreover, the region size
may vary, but it is usually a sliding window over two to five
words at a time.

13951

IEEE Access

A. Hassan, A. Mahmood: Convolutional Recurrent Deep Learning Model for Sentence Classification

2T 999
XXX

FIGURE 1. Recurrent Neural Network with Long-Term Dependences.

B. RECURRENT NEURAL NETWORKS

The intuition of RNNs is that humans do not start their
thinking from scratch every second. The objective of an
RNN is to make use of sequential information. The output
is based on the previous computation. In traditional Neural
Networks, all inputs are independent of each other. While this
approach is inefficient for many tasks in NLP (e.g. predicting
the next word in a sentence), in this case it is important to
know the previous word in order to predict the next word
in context. RNNs have shown great success in many NLP
tasks [1], [14], [20], [21], [28]. RNNs have a memory which
captures information in arbitrary, long sequences.

RNNSs are deep neural networks that are deep in tempo-
ral dimension and have been used widely in time sequence
modeling. The objective behind RNNs for sentence embed-
ding is to find a dense and low-dimensional semantic rep-
resentation by recurrently and sequentially processing each
word in a sentence and mapping it into a low-dimensional
vector. The global contextual feature of the whole text will
be in the semantic representation of the last word in the
sequence [1], [29], [30]. We also can think of RNNs as
multiple copies of the same network, where each one is
passing a message to the inheritor. What will happen if we
unroll the loop as shown in Figure 1?

We can compute the output as follows in a simple RNN:

0y = f(WOht) (1)
hy = o(Whhi—1 + Wixt) @

Where W,, W, and W, are the matrices for hidden layer
output &, past hidden layer activity &, and the input x;. The
time recurrence is presented in Eq. (2); the equation conveys
the presents hidden layer activity 4; with its past hidden layer
activity h;_p. This reliance is nonlinear due to the use of
logistic function o (-).

IV. RESEARCH PROBLEM AND MOTIVATION

The objective of using the convolutional layer is for it to
learn to extract higher-level features that are invariant to
local translation, and, by assembling multiple convolutional
layers, the model can extract higher-level translation invariant
features from the input sequence. Regardless of this advan-
tage, we observed that most of the existing deep models
require multiple layers of convolutional to capture long-term
dependencies, and that is because of the locality of the convo-
lutional and pooling layers. This issue becomes more crucial
as the length of the input sequence grows. Most of the com-
bination CNN-RNN models applied several types of pooling.
We argue that the pooling layer is the reason for lost details

13952

Embedding

| 0 O
ﬂT&Tiﬂ
REES oo

Convolutions RNN-LSTM

Feature

Fully-connected

FIGURE 2. The Proposed Convolutional Recurrent Framework.

in local information, because the pooling layer only captures
the most important feature in a sentence and ignore the others;
therefore, we attempt to utilize an RNN as an alternative for
the pooling layer to capture long-term dependencies more
efficiently and also to reduce the number of the parameters
in the architecture. Based on these observations, we focused
on proposing a simple and efficient combined model that
focuses on parameter reduction by excluding the pooling
layer from the architecture, while also capturing long-term
dependencies more efficiently in terms of accuracy by using
the LSTM layer as an alternative to the pooling layer. Only
one convolutional layer was applied to extract the most
important features in the document; no pooling layers were
involved. Further, we fed the feature maps to the recurrent
layer to capture long-term dependencies for more efficient
classification as shown in Figure 3.

V. MODEL ARCHITECTURE

In this section, we present the details of the framework
model, which consists of convolutional and recurrent neural
networks. Our model’s architecture uses word embeddings as
inputs and takes them to a convolutional neural network to
learn to extract high-level features, whose outputs are then
given to a long short-term memory recurrent neural network
language model, and are finally followed by a classifier layer.

A. THE EMBEDDED LAYER

The first layer of the network transforms words into real-
valued feature vectors that capture semantic and syntac-
tic information. Our model’s input is a sequence of words
[wi, ..., wg], with each word being derived from vocabu-
lary V. Words are denoted by distributed vectors W € R!*¢
and looked up in a word embedding matrix W e R™!"|. This
is formed by simply concatenating embeddings of all words
inV.

B. THE CONVOLUTIONAL LAYER
The model architecture in Figure 2 is a slight alternative of
the CNN architecture of [31].

x; = R¥ will be the kdimenstional word vector equivalent
to the ithe word in the sentence of length n, which is repre-
sented as:

Xip =X1Dx2D ... D xy, 3)

Where @ is a concatenation operator. Overall, let x;..;1; refer
to the concatenation of words x;, X1, ...xi+;. A convolutional

VOLUME 6, 2018

A. Hassan, A. Mahmood: Convolutional Recurrent Deep Learning Model for Sentence Classification

IEEE Access

operation includes a filter w € R, which is applied to
windows of & words to produce new features. For instance,
a feature is ¢; generated from a window of words x;.;4+5—1 by:

ci=f(W - Xiizh—1 + D). “4)

Here b € Risabias term and f is a non-linear function such as
the hyperbolic tangent. This filter is applied to each possible

window of words in the sentence {x1.,, X2:4+15 « - - » Xn—h+1:n}
to produce a feature map:
c=ler,c2, ..., Cnony1ls (5)

With ¢ € R* "1 Then, we fed the feature maps to a
recurrent layer LSTM to capture long-term dependencies.
This technique will reduce the number of parameters in the
model.

C. THE RECURRENT LAYER

RNN is a type of neural network architecture specially used
for sequence modeling. At each time step ¢, a recurrent layer
takes the input vector x; € R" and hidden state /, by applying
the recursive operation:

hy =f(Wxt +Uhi—q + b) (6)

Where W € R™" b € R™™ b € R™ parameters, and f
is an element-wise nonlinearity. Learning long-term depen-
dencies with a vanilla RNN is difficult because of the van-
ishing and exploding gradient [32]. Long short-term memory
LSTM [33] overcomes the deficiencies of an RNN by aug-
menting the RNN with a memory cell that takes as an input
X¢, hy—1, ¢i—1, and produces A, ¢; by the following:

it = o(Wix, + U'hy_y + b') @)
fi=oWx + U by + 1) ®)
0, = o(W°x; + U%hy_ + b°))
g = o(Wéx; + UShi—_1 + b%) (10)
¢ = fi®ci—1 +i:Og; (11)
h; = 0,0 tanh(c;) (12)

Where o, and tanh are the element-wise sigmoid and hyper-
bolic tangent function and i, f;, o; are referred to as input,
forget, and output gates. At ¢+ = 1, hg, ¢ are initialized to
zero vectors. ® is the element-wise multiplication operator.
Parameters of the LSTM are preservative with respect to time.
LSTM outperforms vanilla RNNs on many tasks, including
language modeling [14]. It is easy to extend LSTM to more
than one layer. Having multiple layers is critical for attaining
competitive performance on various tasks [29].

D. BACK PROPPAGATION THROUGH TIME

Back propagation through time (BPTT) is the key algorithm
that makes training deep models computationally control-
lable, and it is a way of computing gradients of expression
through the recursive application of the chain rule. The core
issue we are given is some function f (x) where x is the vector
of inputs, and we are interested in computing the gradient of f

VOLUME 6, 2018

Classification Layers

ENN: LETM-GRU

Classification L ayers

ENNLSTM

1 o _
i No-Pooling Layers |

Convolutional Layers 3
— R —
Convolutional Layers Convolutional Layers
T ' f
EERSSE LTS Embedding Layer

FIGURE 3. The proposed CNN-LSTM architecture compare to traditional
CNN-RNN with max-pooling architecture.

at x(i.eVf(x)). Error can be even backpropagated further [34].
BPTT is a simple extension of the backpropagation algo-
rithm for recurrent neural networks; with BPTT the error is
broadcasted via recurrent connection back in time for specific
time steps. Therefore, the network absorbs and remembers
information for numerous time steps in the hidden layer when
it is learned by BPTT. More details about the implementation
described can be found in [33].

E. THE CLASSIFICATION LAYER

The classification layer is, in principle, a logistic regression
classifier. It gives a fixed-dimensional input from the lower
layer; the classification layer affine transforms it, followed
by a softmax activation function to compute the predictive
probabilities for all of the categories [35]. This is done by:

expw! x + by)
Py = kIX) = :

Z (13)
> exp(w,{x + by)
k=1

Where wy and by are the weight and bias vectors. We assume
there are k categories.

VI. EXPERIMENTAL SETUP

A. SENTIMENT ANALYSIS DATASETS

The performance of the proposed model was evaluated on two
benchmark sentiment analysis datasets: the Stanford Large
Movie Review dataset (IMDB) and the Stanford Sentiment
Treebank dataset (SSTb) [31], derived from Rotten Tomatoes
movie reviews [36].

B. STANFORD LARGE MOVIE REVIEW DATASET (IMDB)

The IMDB dataset was first proposed by [32] as a benchmark
for sentiment analysis. It consists of 50,000 binary labeled
reviews; the reviews are divided into 50:50 training and test-
ing sets. The distribution of labels with each subset of data
is balanced. We used 15% of the labeled training documents

13953

IEEE Access

A. Hassan, A. Mahmood: Convolutional Recurrent Deep Learning Model for Sentence Classification

TABLE 1. Units for magnetic properties.

TABLE 2. Units for magnetic properties.

Dataset Set Sentence Binary
SSTh Train 8544 2,5
Dev 1101 2,5
Test 2210 2,5
IMDB Train 2210 2
Dev 4k 2
Test 25k 2

as a validation set. One key aspect of this dataset is that each
review has several sentences.

C. STANFORD SENTIMENT TREEBANK DATASET (SSTb)
The SSTb dataset was first proposed by [36] and extended
by [31] as a benchmark for sentiment analysis. It consists
of 11,855 reviews taken from the movie review site Rotten
Tomatoes, with one sentence for each review. The SSTb was
split into three sets: 8544 sentences for training, 2210 sen-
tences for testing, and 1101 sentences for validation (or
development). The SSTb also includes fine-grained sentiment
labels. In Table 1, we present additional details about the two
benchmark datasets.

D. HYPERPARAMETERS AND TRAINNIG

We used stochastic gradient descent (SGD) to train the net-
work and the back-propagation algorithm to compute the
gradient. We believe that by adding a recurrent layer to the
model as an alternative to the pooling layer, we can effec-
tively reduce the number of the convolutional layers needed
to capture long-term dependencies. Therefore, we consider
merging a convolutional and recurrent layer into one single
model. Our architecture goal is to reduce the need for stacking
multiple convolutional and pooling layers in the network in
order to reduce the loss of detailed, local information. Thus,
in the proposed model, we consider convolutional layers with
only one layer that has d = 256 filters and a receptive
field size of r(3,3,5). For an activation function we use
rectifier linear units in the convolutional layer (ReLU). The
recurrent layer is fixed to a single layer of LSTM. The hidden
state dimension is d = 128. For both datasets, the number
of training epochs varies between (5, 20). We compared
the proposed model with methods using word embedding
and convolutional architecture and different deep learning
and traditional methods. We also focused on the regular-
ization, the learning rate, and dropout parameters; we then
extracted sentence features with the convolutional layer.
The recurrent layer provides an indication of the robust-
ness of our approach in multiple domains. In Table 2,
we show the selected hyperparameter value for the proposed
architecture.

E. REGULARZATION

For regularization we employ dropout as an effective method
to regularize deep neural networks and neural networks.
Dropout prevents co-adaption of hidden units. We apply it

13954

Parameter CNN RNN-LSTTM
Word-Embedding- 300 300
Dimension
Word Context Units 5 5
Hidden Units - -

Learning rate 0.01 0.01
Dropout 0.5 0.5

with constraint on the L2-norms of the weight vectors [37];
we insert dropout modules in between CNN and LSTM layers
to regularize them.

F. UNSUPERVISED LEARNING OF WORD-LEVEL
EMBEDDINGS

Initializing word vectors with those obtained from an unsu-
pervised neural language model is a popular method to
improve performance in the absence of a large, supervised
training set [35], [38]. It has been recently shown that
improvements in model accuracy can be obtained by perform-
ing unsupervised, pre-trained word embeddings. In our exper-
iments, we utilized the publicly available word2vec vectors
that were trained on 100 billion words from Google news.
The vectors were trained using a continuous bag-of-words
algorithm [7]. While the word embeddings are obtained,
the model captures syntactic and semantic aspects of the
words they represent; however, they have no notion about
their sentiment behavior. Word embeddings play an important
role in our neural language model. They are able to capture
syntactic and semantic information, which are very signifi-
cant to sentiment analysis.

VII. EMPIRICAL RESULTS AND ANALYSIS

A. OPTIMIZATION

Training was done through stochastic gradient descent
over shuffled mini-batches. For training and validation, we
randomly split the full training examples. The size of the
validation set is the same as the corresponding test size and
is balanced in each class. We trained the model by minimiz-
ing the negative log-likelihood or cross entropy loss. Early
stopping was utilized to prevent overfitting. In our work,
we employed unsupervised learning of word-level embed-
ding using the word2vec, which implemented the continu-
ous bag-of-words and skip-gram architectures for computing
vector representations of a word. We validated the proposed
model on two datasets, considering the difference in the
number of parameters. However, the accuracy of the model
does not increase with the number of convolutional layers.
More pooling layers typically leads to the loss of long-term
dependencies. Therefore, in our model we removed the pool-
ing layer from the convolutional network and replaced it with
a recurrent layer to reduce the loss of local information. One
recurrent layer is enough to capture long-term dependencies
in the input sequence.

VOLUME 6, 2018

A. Hassan, A. Mahmood: Convolutional Recurrent Deep Learning Model for Sentence Classification

IEEE Access

TABLE 3. The performance of our approach compared to other
approaches on imdb dataset. the accuracy of binary predication.

Parameter BINARY
MNB-uni [39] 83.5%
MNB-bi [39] 86.6%
SVM-uni [39] 86.9%
SVM-bi [39] 89.2%
NBSVM-uni [39] 88.3%
NBSVM-bi [39] 91.2%
WEEBM +Bow [42] 87.8%
WRBB + Bow (bnc) [42] 89.2%
BoW (bnc) [32] 87.8%
Full +Bow [32] 88.3%
Full +Unlabeled +Bow [32] 88.9%
Paragraph Vector [43] 92.5%
Paragraph Vector (LogReg) [44] 94.4%
Paragraph Vector (2-Layer MLP) [44] 94.5%
Our approach 93.2%

B. ANALYSIS OF THE STANFORD SENTIMENT

TREEBANK DATASET

For the Stanford Sentiment Analysis dataset (SSTb), we per-
formed several experiments to offer a fair comparison with
competitive models. We followed the experimental protocols
as described in [31]. To make use of the available labeled data,
our model treats each sub-phrase as an independent sentence,
and we learn the representation for all of the sub-phrases
in the training set. We initialized the word vectors with
the unsupervised learning of word-level embedding using
the word2vec algorithm, which implements continuous bag-
of-words and skip-gram architectures for computing vector
representations of a word. The Positive/Negative presents
results for the binary classification of sentences, and the fine-
grained analysis predicts results for the case where five senti-
ment classes are used (positive, very positive, negative, very
negative, and neutral). We report the accuracy of different
methods in Table 3. The primary highlight of our result on
the SSTb benchmark dataset is that traditional methods (SVYV,
NB, BiNB) with bag-of-words perform poorly compared to
our proposed deep learning language model. We observed
4%-12% absolute improvement in terms of accuracy with
the baseline methods proposed in [39]. Initializing word-
embeddings using unsupervised, pre-trained vectors gives the
model an absolute accuracy that increased around 8% when
compared to randomly initializing the vector with a CNN-
only architecture [9]. Our model does not require pooling
layers, which leads to the more efficient capture of local infor-
mation compared to the networks proposed in [12] and [18].
The best previous result was reported by [31] and [40] for
SSTb. Our approach provides a 4% improvement in accuracy
over the RNTN method. We also reported an 8% performance
enhancement over the matrix-vector-RNN. In fine-grained
classification tasks, our method has an absolute improvement
of 7% in terms of accuracy. Figures 4 and 5 show that SSTb
(binary and fine-grained), bag-of-n-words model, and (NB,
SVM, BiNB) perform poorly on the dataset. A similar model
was proposed in [41] and achieved better performance in

VOLUME 6, 2018

@ Compared Models

@ Proposed Model

Accuracy

© Improvement

SSTb Binary(Positive/Negative)

FIGURE 4. Results on SSTb dataset for binary predictions.

70

60

4

© Compared Models

30
@ Proposed Model

Accuracy

@ Improvement
20 P

10
2 mlﬁ ¥
-10

SSTb Fine-grained

FIGURE 5. Results on SSTb dataset for fine-grained (5-classes).

terms of accuracy; however these models have more hyperpa-
rameters and require subsampling layers. On the other hand,
our proposed model performed very competitively and came
close to matching other state-of-the-art algorithms on both
the binary and fine-grained sentiment analyses on the SSTb
dataset with fewer parameters.

C. ANALYSIS OF THE IMDB DATASET
Beyond one sentence, each movie review consists of several
sentences in the IMDB dataset. The results of our method are
reported in Table 4 on the IMDB benchmark dataset com-
pared to other approaches. Reference [31] Applied several
methods on the IMDB dataset and found that their Recursive
Neural Tensor Network worked much better than a bag-of-
words model; however, this model required parsing and took
into account the compositionality. Our method performs bet-
ter than all of the baselines reported in [39]: MNB-uni, MNB-
bi, SVM-uni, SVM-bi, NBSVM-uni, and NBSVM-bi, with
an approximate improvement of 2-12% in terms of accuracy.
When we compared the proposed model with a combined
Restricted Boltzmann Machines model [42], bag-of-words,
and WRRMB + BoW (bnc), we achieved 4%-7% relative
improvement and 1%-6% compared with Bow (bnc), Full +
Unlabeled + BoW, and paragraph vector [43]. The paragraph
vectors proposed in [44] achieved a state-of-the-art result on
the IMDB dataset; however the model has a reputation for
being extremely difficult to tune and requires a downsam-
pling parameter to reduce the feature map dimensionality for
computational efficiency. We found that our proposed archi-
tecture, with no downsampling layer, achieved competitive

13955

IEEE Access

A. Hassan, A. Mahmood: Convolutional Recurrent Deep Learning Model for Sentence Classification

TABLE 4. The performance of our approach compared to other
approaches on sstb dataset. the accuracy of fine-grained and binary
predications are reported in the table.

Parameter CNN BINARY
RNTN [31] 45.7% 85.4%
MV-RNN [40] 44.4% 82.9%
RAEJ 35] 43.2% 82.4%
NB [31] 43.2% 82.4%
SVM [31] 41.0% 79.4%
CNN-Multi-channel [9] 47.1% 88.1%
CNN-rand [9] 45.0% 82.7%
CNN-static [9] 45.5% 86.8%
CNN-non-static [9] 48.0% 87.2%
DCNN [11] 48.5% 87.8%
Paragraph-Vec [43] 48.7% 87.8%
CNN-GRU-word2vec [41] 50.6% 89.9%
CNN-LSTM-word2vec [41] 51.5% 89.5%
Our approach 48.8% 89.2%

120

@ Other Models

Accuracy

@ Proposed Model

@ Improvement

IMDB Binary

FIGURE 6. Results on IMDB dataset for binary predictions.

results on the IMDB dataset as shown in Figure 6. The CNN-
RNN with max-pooling loses detailed, local features due to
the pooling layers in the architecture. Compared with the
existing methods and experiment results, we found that the
approach takes advantage of both CNN and RNN models on
the sentiment classification of short texts.

Our experimental results suggest that by using a LSTM
layer on top of a CNN architecture, one can effectively reduce
the number of convolutional layers needed in order to cap-
ture long-term dependencies. Furthermore, we observed that
many factors affect the performance of deep learning models,
such as: the dataset size, vanishing/exploding of the gradients,
and choosing the best feature extractors and classifiers, which
are all still open research areas. However, there is no specific
model for all types of datasets.

D. OVERVIEW

The challenge in NLP is to develop an architecture that
can learn the hierarchal representation of the whole sen-
tence jointly with the task. Convolutional neural networks
consider feature extraction and classification as one jointly
trained task. The idea of CNNs has been improved upon
recently [9], [13], [16]-[18] by using multiple layers of
convolutional and pooling to sequentially extract hierarchal
representation of input. Reducing the network size has been
the interest of several works. More compact layers are also

13956

used, likely by replacing the fully connected layers with
average pooling [15]. In [16] the weights are constrained by
binary, which considerably reduces the memory consump-
tion. To design a simpler network, [15] removed redundant
connections and allowed weight sharing. In our work we
conducted a series of experiments with both deep learning and
traditional methods to offer a fair comparison to competitive
models on sentiment analysis benchmark datasets. We did our
best to select the architectures that would deliver comparable
and competitive results. Despite the fact that the CNN-RNN
proposed in [41] has a slightly higher classification accuracy
compared to our proposed model, we argue that this result is
due to the use of max pooling on adjacent words. However,
our proposed architecture is simple and efficient in term of
layers. Moreover, our model has significantly fewer param-
eters, which means less memory consumption. We reported
very competitive results in terms of accuracy in comparison to
the model proposed in [41]. The reported result shows that,
compared to the currently most popular LSTM, CNN, and
CNN-LSTM methods, our proposed framework can achieve
similar or even better performance on sentiment analysis
tasks.

VIIl. CONCLUSION
Convolutional neural networks (CNN) learn to extract higher-

level features that are invariant to local translation. Despite
this advantage, it requires many layers of convolution to
capture long-term dependencies, due to the locality of the
convolutional and pooling. This becomes more severe as the
length of the input sequence grows. Ultimately, this leads to
the need for a very deep network with many convolutional
layers. In this article, we presented a new framework to over-
come this problem. In particular, we aimed to capture the sub-
word information and reduce the number of the parameters
in the architecture. Our framework jointly combines CNN
and recurrent neural networks (RNN) on top of unsupervised,
pre-trained word vectors; recurrent layers are expected to
preserve ordering information even with one single layer.
Thus, we exploited a recurrent layer as a substitute for the
pooling layer to hypothetically reduce the loss of details in
local information and capture long-term dependencies more
efficiently.

Our approach performed well on two benchmark datasets
and achieved a competitive classification accuracy while out-
performing several other methods. Our results demonstrated
that it is possible to use a much smaller architecture to achieve
the same level of classification performance. It will be inter-
esting to see future research on applying the proposed method
to other applications such as information retrieval or machine
translation.

REFERENCES

[1] A.Graves, A.-R. Mohamed, and G. Hinton, ““Speech recognition with deep
recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645-6649.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097-1105.

VOLUME 6, 2018

A. Hassan, A. Mahmood: Convolutional Recurrent Deep Learning Model for Sentence Classification

IEEE Access

[3]

[4]
[5]

[6]
[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, p. 391, 1990.

B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Found.
Trends Inf. Retr., vol. 2, nos. 1-2, pp. 1-135, 2008.

T. Joachims, “Text categorization with support vector machines: Learning
with many relevant features,” in Proc. Eur. Conf. Mach. Learn., 1998,
pp. 137-142.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, ““A neural probabilistic
language model,” J. Mach. Learn. Res., vol. 3, pp. 1137-1155, Feb. 2003.
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ““Distributed
representations of words and phrases and their compositionality,” in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111-3119.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. (Jan. 2013). “Efficient
estimation of word representations in vector space.” [Online]. Available:
https://arxiv.org/abs/1301.3781

Y. Kim. (Aug. 2014). “Convolutional neural networks for sentence classi-
fication.” [Online]. Available: https://arxiv.org/abs/1408.5882

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom. (Apr. 2014). “A con-
volutional neural network for modelling sentences.” [Online]. Available:
https://arxiv.org/abs/1404.2188

A. Conneau, H. Schwenk, L. Barrault, and Y. LeCun. (Jun. 2016). “Very
deep convolutional networks for text classification.” [Online]. Available:
https://arxiv.org/abs/1606.01781

X.Zhang, J. Zhao, and Y. LeCun, ‘“‘Character-level convolutional networks
for text classification,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 649-657.

M. Sundermeyer, H. Ney, and R. Schliiter, ‘“From feedforward to recurrent
LSTM neural networks for language modeling,” IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 23, no. 3, pp. 517-529, Mar. 2015.

A. McCallum and K. Nigam, “A comparison of event models for naive
Bayes text classification,” in Proc. AAAI Workshop Learn. Text Catego-
rization, 1998, pp. 41-48.

R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proc. 25th
Int. Conf. Mach. Learn., 2008, pp. 160-167.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12 pp. 2493-2537, Aug. 2011.

Y. Xiao and K. Cho. (Feb. 2016). “Efficient character-level document
classification by combining convolution and recurrent layers.” [Online].
Available: https://arxiv.org/abs/1602.00367

J. L. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2,
pp. 179-211, 1990.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

N. M. Mayer, “Echo state condition at the critical point,” Entropy, vol. 19,
no. 1, p. 3, 2016.

W.-T. Yih, X. He, and C. Meek, “Semantic parsing for single-relation
question answering,” in Proc. ACL, vol. 2. 2014, pp. 643-648.

Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “Learning semantic
representations using convolutional neural networks for Web search,” in
Proc. 23rd Int. Conf. World Wide Web, 2014, pp. 373-374.

T. N. Sainath et al., “Deep convolutional neural networks for large-scale
speech tasks,” Neural Netw., vol. 64, pp. 39-48, Apr. 2015.

Y. Kim, C. Denton, L. Hoang, and A. M. Rush. (Feb. 2017). “Structured
attention networks.” [Online]. Available: https://arxiv.org/abs/1702.00887
A. G. Ororbia, II, T. Mikolov, and D. Reitter, “Learning simpler language
models with the differential state framework,” Neural Comput., vol. 29,
no. 12, pp. 3327-3352, 2017.

K. Vo, D. Pham, M. Nguyen, T. Mai, and T. Quan, “Combination of
domain knowledge and deep learning for sentiment analysis,” in Proc. Int.
Workshop Multi-Disciplinary Trends Artif. Intell., 2017, pp. 162-173.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157-166, Mar. 1994.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. ICML, 2013, pp. 1310-1318.

A. Graves. (Aug. 2013). “Generating sequences with recurrent neural
networks.” [Online]. Available: https://arxiv.org/abs/1308.0850

VOLUME 6, 2018

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

[44]

R. Socher et al., “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proc. Conf. Empirical Methods Natural
Lang. Process. (EMNLP), 2013, pp. 1631-1642.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proc. 49th Annu.
Meeting Assoc. Comput. Linguistics, Hum. Lang. Technol., vol. 1. 2011,
pp. 142-150.

M. Bodén, “A guide to recurrent neural networks and backpropagation,”
Dallas Project, Dept. Comput. Sci., Univ. Skévde, Skovde, Sweden, Tech.
Rep., 2002.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Cognit. Model., vol. 5, no. 3, p. 1, 1988.
R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning,
“Semi-supervised recursive autoencoders for predicting sentiment distri-
butions,” in Proc. Conf. Empirical Methods Natural Lang. Process, 2011,
pp. 151-161.

B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales,” in Proc. 43rd Annu.
Meeting Assoc. Comput. Linguistics, 2005, pp. 115-124.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. (Jul. 2012). “Improving neural networks by
preventing co-adaptation of feature detectors.” [Online]. Available: https://
arxiv.org/abs/1207.0580

R. Collobert, “Deep learning for efficient discriminative parsing,” in Proc.
AISTATS, 2011, pp. 224-232.

S. Wang and C. D. Manning, “Baselines and bigrams: Simple, good
sentiment and topic classification,” in Proc. 50th Annu. Meeting Assoc.
Comput. Linguistics, vol. 2. 2012, pp. 90-94.

R. Socher, B. Huval, C. D. Manning, and A. Y. Ng, “Semantic compo-
sitionality through recursive matrix-vector spaces,” in Proc. Joint Conf.
Empirical Methods Natural Lang. Process. Comput. Natural Lang. Learn.,
2012, pp. 1201-1211.

X. Wang, W. Jiang, and Z. Luo, “Combination of convolutional and
recurrent neural network for sentiment analysis of short texts,” in Proc.
COLING, 2016, pp. 2428-2437.

G. E. Dahl, R. P. Adams, and H. Larochelle. (Feb. 2012). “Training
restricted boltzmann machines on word observations.” [Online]. Available:
https://arxiv.org/abs/1202.5695

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. ICML, 2014, pp. 1188-1196.

J. Hong and M. Fang, ““Sentiment analysis with deeply learned distributed
representations of variable length texts,” Stanford Univ., Stanford, CA,
USA, Tech. Rep., 2015.

ABDALRAOUF HASSAN (M’14) received the
B.S. degree in electrical engineering from the
Libyan Aviation Academy, Tripoli, Libya, in 2003,
and the M.S. degree in electrical engineering
from the University of Bridgeport, CT, USA,
in 2012, where he is currently pursuing the Ph.D.
degree with the Computer Science and Engineer-
ing Department. He was trained as an Electrical
Engineer with Schlumberger Oil Service Corpo-
ration, Tripoli, from 2004 to 2008. After obtain-

ing his M.S. degree, he joined the Duracell Research and Development
Department, Duracell Inc., Bethel, CT, USA, from 2012 to 2013, as a Lab
Researcher. He is also an Applications Systems Analyst with the Behavioral
Research Lab, Yale School of Management, New Haven, CT, USA. His
main areas of research interests include artificial intelligent, deep learning,
machine learning, and natural language

AUSIF MAHMOOD received the M.S. and Ph.D.
degrees in electrical and computer engineering
from Washington State University, USA. He is
currently a Professor with the Department of Com-
puter Science and Engineering and the Department
of Electrical Engineering, University of Bridge-
port, Bridgeport, CT, USA. His research inter-
ests include parallel and distributed computing,
computer vision, deep learning, and computer
architecture.

13957

	INTRODUCTION
	RELATED WORK
	TRADITIONAL METHODS
	DEEP LEARNING METHODS

	BACKGROUND
	CONVOLUTIONAL NEURAL NETWORKS
	RECURRENT NEURAL NETWORKS

	RESEARCH PROBLEM AND MOTIVATION
	MODEL ARCHITECTURE
	THE EMBEDDED LAYER
	THE CONVOLUTIONAL LAYER
	THE RECURRENT LAYER
	BACK PROPPAGATION THROUGH TIME
	THE CLASSIFICATION LAYER

	EXPERIMENTAL SETUP
	SENTIMENT ANALYSIS DATASETS
	STANFORD LARGE MOVIE REVIEW DATASET (IMDB)
	STANFORD SENTIMENT TREEBANK DATASET (SSTb)
	HYPERPARAMETERS AND TRAINNIG
	REGULARZATION
	UNSUPERVISED LEARNING OF WORD-LEVEL EMBEDDINGS

	EMPIRICAL RESULTS AND ANALYSIS
	OPTIMIZATION
	ANALYSIS OF THE STANFORD SENTIMENT TREEBANK DATASET
	ANALYSIS OF THE IMDB DATASET
	OVERVIEW

	CONCLUSION
	REFERENCES
	Biographies
	ABDALRAOUF HASSAN
	AUSIF MAHMOOD

