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ABSTRACT In recent years, robotic systems combined with cloud computing capability have become
an emerging topic of discussion in academic fields. The concept of cloud robotics allows the system to
offload computing-intensive tasks from the robots to the cloud. An appropriate resource allocation scheme is
necessary for the cloud computing service platform to efficiently allocate its computing resources, when the
robots send requests asking for computing service. This paper proposes a resource allocation scheme based
on reinforcement learning (RL), which can make the cloud to decide whether a request should be accepted
and how many resources are supposed to be allocated. The scheme realizes an autonomous management of
computing resources through online learning, reduces human participation in scheme planning, and improves
the overall utility of the system in the long run. Numerical results demonstrate that the proposed RL-based
computing resource allocation scheme has better performances than the greedy allocation scheme.

INDEX TERMS Cloud robotics, reinforcement learning, resource allocation.

I. INTRODUCTION

Robotics is an academic field involving the design, control,
application and maintenance of robotic systems. Robotic sys-
tems are currently widely used in scientific research, manu-
facturing technology, civil engineering, and space research,
etc. [1]. In the past decades, researchers have been studying
on how to develop robots that can helpfully support daily
activities of humans and how robots can work in naturally and
socially acceptable ways so that people can accept them as
new members of our society [2]. In a robotic system, multiple
robots may work together to perform activities. Challenges
for researchers in this field are improving the operating effi-
ciency and enhancing the cooperation of the robots. In [3], itis
described that a networked robotic system includes a group of
robots which are connected through a wired and/or wireless
communication network and complete a task cooperatively.
It is also pointed that cloud computing can provide a solution
to extend the capabilities of networked robotics.

Cloud computing is a computing model used for allocating
resources on demand, evolving from cluster computing. With
cloud computing service, computing tasks do not run locally
but are uploaded to the cloud server. Recently, researchers
have been studying the robotic systems with cloud-computing
infrastructure, since cloud computing has the advantages

of powerful computing capability and an access to a large
amount of data. Moreover, in a robotic system, a highly
complex computation needed for processing a task can con-
siderably drain the battery energy of a mobile robot. How-
ever, if these computing-intensive tasks can be processed in
a computer with a stable power source, the energy of the
robots can be saved and also computing efficiency can be
improved [4].

By combining the computational power of the cloud com-
puting and the availability of internet-connected devices
in robotics, the term “Cloud Robotics” was proposed
in 2010 [5]. As a newly emerging type of robotic sys-
tems, the cloud robotics introduces the architecture of
“back-end cloud” together with *“front-end robots”. Robots
simply connect to the cloud and deliver information to the
cloud as needed, without having to store a large amount of
information or having superb computing capabilities. Com-
pared with conventional robotic systems, cloud robotics can
significantly improve the storage capability and learning
capability of the robots. The resource sharing among the
robots is also enhanced. More importantly, in cloud robotics,
the computing-intensive tasks can be offloaded from the
robots to the cloud, and hence the robots can have less
pressure on energy consuming and enjoy a better computing
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performance. At the cloud side, a computing service platform
helps the robots to handle these computing tasks. Moreover,
the information transmissions from the robots to the cloud do
not occur periodically as in a time-triggered manner. Instead,
an information transmission is only performed when a robot
has a task to be handled and sends a service request to the
cloud, and this is considered as an event-triggered model.

As in a large scale system, there are numerous robots and
hence a considerable number of service requests may be
delivered to the cloud at a time. Therefore, how to efficiently
schedule tasks is one of the key issues to be solved urgently in
cloud robotics, which directly affects the availability of cloud
resources and the execution efficiency of tasks. Good cloud
resource allocation schemes which can bring high benefit for
the system should be studied.

The contributions of this paper are described as follows.

1) Inthis paper, the computing resource allocation process
in cloud robotics is formulated as a Semi-Markov Deci-
sion Process (SMDP) to achieve the optimal resource
allocation scheme. Considering the system utility,
the objective of the allocation scheme is to schedule
the cloud computing resources to efficiently serve the
robots in the system, and gain a high income for the
system in the long term.

2) A Reinforcement Learning (RL) based resource allo-
cation scheme is proposed. The proposed scheme
comprehensively considers the characters of differ-
ent types of information processing tasks and realizes
an autonomous management of computing resources
through online learning.

3) The effectiveness of the proposed scheme is verified by
numerical analysis. The results show that the proposed
scheme not only reduces the costs of human participa-
tion in scheme planning, but also improves the overall
utility of the system.

The rest of this paper is organized as follows. Section II
reviews the related work. In Section III, we describe the sys-
tem model. Then, we define the states, actions, and rewards
of the system respectively in Section I'V. In Section V, we pro-
pose a cloud computing resource allocation scheme based on
Reinforcement Learning. In Section VI, we give the numer-
ical results and compare the performance of the proposed
allocation scheme based on RL with that of the scheme based
on GA. Conclusions and prospects are given in VII.

Il. RELATED WORK

Since the concept of cloud robotics was proposed, it has
aroused the interest of many IT companies and research
institutes in relevant fields. In recent years, European scien-
tists launched the RoboEarth program, which uses the Inter-
net to create a huge, open-source web database that allows
robots around the world to access and update information [6],
and a RoboEarth semantic mapping system was described
in [7]. Du et al. [8] proposed the concept of Robot as a
Service (RaaS) and the framework of robot cloud center.
Quintas et al. [9] proposed a service system of robots
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based on Service Oriented Architecture (SOA), in which a
group of robots shares knowledge with the intelligent space.
Furrer et al. [10] designed and implemented a platform
called ubiquitous network robot platform (UNR-RF), which
is open source and standardized, and can provide a ref-
erence for other researchers in this field. In [11], it was
shown that running a vision based navigation assistance of
a service mobile robot completely on an external cloud is
feasible. Mohanarajah er al. [12] presented an architecture
for cloud-based collaborative 3D mapping with low-cost
robots.

As the scale of the system expands and the number of users
increases, resource constrains and waste caused by inappro-
priate allocating and scheduling schemes become the main
factors that constrain the capability of the cloud robotics.
To solve the problems, researches on efficient task scheduling
strategies in the cloud have been carried out widely and have
achieved a lot at present.

In [13], a dynamic collaboration between local net-
worked robots and remote public clouds was presented.
In [14], a hierarchical auction-based mechanism called LQM
auction for autonomous negotiation in cloud robotics was
proposed. Tawfeek et al. [15] proposed an ant colony
algorithm, which has a good performance for resource
allocation in task processing and solves the scheduling
problem of limited resources in the mining supply chain.
Xu et al. [16] firstly introduced the Berg distribution model in
the task scheduling algorithm, where the tasks are classified
according to QoS, and then the appropriate scheduling algo-
rithm was selected to achieve a fair distribution of resources.
In [17], a fuzzy clustering chaotic-based differential evolution
algorithm proposed by Cheng er al. solves the resource-
constrained scheduling problems.

Ill. SYSTEM MODEL

The architecture of the cloud robotics is shown in Fig.1,
which is composed of robots and a cloud computing ser-
vice platform. In the system, the robots perform functions
like sensing the environment, processing information and
actuating some work. When the information processing of
the robots involves some complex and computing-intensive
tasks, they may seek help from the computing powerful cloud.
It is preferred that the computing tasks from the robots to
be handled at the cloud side as “Cloud Execution”, rather
than being processed on the local robots as ‘“‘Standalone
Execution™ [18].

When a robot needs to process the data it collects by
sensing the environment, for example, it first sends a service
request to the computing service platform at the cloud side.
If the platform accepts the request, the robot uploads the data
to the cloud for computation demand, otherwise, the process-
ing work has to be performed locally.

When the cloud computing service platform receives an
information processing service request sent from the robot,
the system needs to analyze the current load of computing
resources at the cloud and then decide whether to accept the
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FIGURE 1. Architecture of cloud robotics.

request or not, and if the request is accepted, the number of
resources to be allocated to the service request should also be
determined at the same time.

The concept of Virtual Machine (VM) is introduced in
order to better describe the allocation scheme of cloud
computing resources. A VM is the smallest unit in the
resource allocation, which consists of the minimum amount
of the hardware resource (e.g., CPU, hard disk and mem-
ory, etc.) required to handle a computing task. More-
over, a VM can only perform at most one computing task
at a time, which means that the newly arrived task can
be handled only when the performing of current task is
completed.

Assume that the total number of VMs at the cloud comput-
ing service platform is M. In order to meet the demands of
different types of information processing requests, we divide
the requests from the robots into V types, each of which is
denoted by v. We divide the number of resources allocated to
a robot by the cloud into K levels, each is denoted by k, and
the number of VMs of level k is ny.

It should be noted that the focus of this paper is on the com-
puting resource allocation in cloud robotics. As the processes
of robots making requests and the cloud returning results
of the allocation involve a small amount of data stream,
the wireless communication between the robots and the cloud
is not described in detail. Moreover, energy consumed con-
straints are critical to robots for they usually carry batteries
with limited capacity. The extensive on-going energy efficient
solutions of wireless communication technologies are catego-
rized in [21]-[23].

IV. PROBLEM FORMATION

The process of the allocation of the cloud computing
resources can be regarded as an SMDP. In the system,
the more VMs are allocated to a computing task, the speed
of the processing is faster and hence a higher utility can be
gained. In the following of this section, the set of system
states, the set of actions and the function of the reward signal
are defined respectively.
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A. SYSTEM STATES

The system states are defined as a set of two parts. One
part denoted as L, is the number of different tasks currently
running, where the tasks are distinguished by the type that it
belongs to (i.e., v) as well as the level of the number of the
resources it occupies (i.e., k). The other part denoted as e,
is the event happening at the cloud service platform. Thus,
the system state can be written in the following form:

S={sls=(L,e)}, ()
where
11 Ik
L=| : - 1 )
lvi - vk
€ {Ri,....Ry,...Ry,D11,....Dyi,....Dyx}, (3

and /,  represents the number of running tasks which belongs
to type v and occupies k-level of resources, R, indicates that a
service request of type v arrives, D, ; indicates that a service
task of type v and level k is completed and the resources it
occupies are released.

B. ACTION SPACE

As mentioned, when the cloud computing service platform
receives a request (i.e., e = R,), it decides whether to accept
the request, and if so, the number of resources to be allocated
is also determined. Hence, the set of actions in the system can
be defined as

{0,1,...,K} ee{Ry,...,Ry}
-1 e e {D1’1,...DV,K}.

When a request is received, the possible set of actions can
be selectedis a € {0, 1, ..., K}, where 0 in the set indicates
that the request is refused, k € {1,..., K} indicates that
the request is accepted and k-level of computing resources
is allocated. When a service task is completed, the action is
a = —1, representing that the system only needs to release
the resources occupied and change the system state, without
doing any extra action.

A(s) = “

C. REWARD FUNCTION

In the cloud robotics, different types of tasks have different
demands on the information processing capabilities, and the
returns they bring to the system are also different. Some
service requests may require a small number of computing
resources to bring a considerable income to the system, while
some may require more computing resources to bring a big
income. In general, for a task, the more computing resources
allocated, the better the information processing effect it has
and hence the greater income it brings to the system. But
the relationship between the number of resources allocated
and the value of income is not simply in a linear manner.
In order to reasonably characterize the relationship among
the request type, the number of allocated resources and the
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FIGURE 2. System utility function.

system income, here a function in a Sigmoid form is applied
to describe the relationship [19]:

nH
U@mp) =1—exp _nk—T—J/ , ®)

where U (ny) is the system utility or system income, ny is
the number of VMs allocated, 6 and y are parameters for
adjusting the form of U (ny) and they are usually determined
by the type of the task. As shown in Fig.2 , since the selection
of the parameters has a significant impact on the effect of the
cloud computing service, it is important to design reasonable
parameters for different types of service requests.

However, the processing of service tasks not only brings
income to the system, but also brings some cost due to
the occupancy of computing resources. Therefore, when the
computing service platform at the cloud side processes a
service task, the return to the system is composed of the
system income as well as the cost. In addition, when the cloud
computing platform rejects a service request, the information
processing task has to be run locally, which cannot obtain a
good processing effect and can heavily consume the resources
of the robot (e.g., consuming a lot of battery charge, accelerat-
ing the aging of the robot device, etc.). From a cost reduction
perspective, it is expected that the information processing
tasks be done at the cloud side as much as possible. Thus,
when defining the function of the reward signal, the reward
for a = 0 is set to be a negative value, which means that if
the system rejects a service request at a certain step, it gets
a negative reward as a “‘punishment” and the cumulative
rewards is reduced at this step.

Thus, for a given action, the immediate reward for state s
can be written in this form:

r(s,s’,a)=w(s,a)—r(s,s’,a)c(s,a), 6)

where w (s, a) is the total system income when the system
state is s and the action selected is a, and can be represented
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by applying the utility function U (n):

Ww(s. ) = U,(ng)) e=R,, a=k )
’ —& ec{Ry,...,R)}, a=0,

and 7 (s, 5, a) is the time elapsed during the system state
transition from s to s/, with action a selected. c (s, a) is the
cost rate and can be described using the total number of VMs
occupied.

vV K
c(s,a) =« Z Z Ly khg. ®)

v=1 k=1

V. RL-BASED DYNAMIC COMPUTING RESOURCE
ALLOCATION SCHEME
Based on the system model described in the previous section,
a dynamic resource allocation scheme based on RL is
designed in this section, in order to obtain a higher average
return for the system in the long run. Different from the
Dynamic Programming (DP) methodology, in this scheme,
we do not need to know the state transition probabilities. The
system adjusts itself automatically repsonding to the changes
of the environment.

The Bellman optimal function is used to represent the
relationship between the value function of the current state
and that of the next state, when the optimal policy is selected.

V* — , _ ok , , V*
() = max | r(x,a) = g"r(x a)+y§p(ylx a)V*(y)

©))

Change (9) into the form of state-action value function, i.e.,

R*(x,a) =r(x,a) — gt (x,a)

, R* (v, b). 10
+y§p(ylx a) max R* (v.b).  (10)

Then, the optimal policy of action selection can be deter-
mined in the following form:

7* (x) = argmax R* (x, a) . (11)

It is obvious that the optimal policy can be obtained as
long as R* (-, -) is available. Thus the key point in designing
the resource allocation scheme is to find R* (-, -). Conven-
tionally, value iteration and policy iteration are the common
methods used to derive R* (-, -). In these two method, the one
step state-transition probabilities are needed, but these prob-
abilities are difficult to acquire in large systems in reality.
Therefore, an allocation scheme based on RL without the
need for transition probabilities is proposed in this section.
In this scheme, firstly Temporal-Difference (TD) method is
applied to estimate R* (-, -), and then the allocation policy is
determined due to the value of R* (-, -).

The detailed process is described in Algorithm 1.
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Algorithm 1 RL-Based Dynamic Computing Resource Allo-
cation Scheme
Initialization:
1: Decision making epoch: m = 0;
2: Action value function: Ry;q (x,a) = Ryew (x,a) = 0,
VxeS§S,aeAk),
Cumulative reward: Q = 0;
Time elapsed: r = 0;
Average return rate of the system: g = 0;
The number of times of updates of the value function for
state x: N (x) = 0;
7. DCM parameters [20]: po, ¢.
Step 1:
8: The cloud service platform detects that the system state
at the current decision epoch is x.
Step 2:
9: Update DCM parglmeters according to DCM method:

AN

_po o m .
Pm =13, 4= @+m>

10: Select the action: Select @ = arg max Ry, (x, a) with
a big probability of 1 — p,, set flag = 1; Or randomly
select an action in the action set A (x) with a small
probability of py,, set flag = 0.

Step 3:

11: The system state is changed and if the next decision
epoch has been reached, i.e., a new service request has
been sent, it is detected that now the system state is y;

12: The time elapsed during the transition from state x to state
yis: T (x,y,a);

13: The reward obtained during the transition from state x to
state y is: r (x, y, a);

14: Update the learning rate: @ = HTl(x);

15: Update the value function for state x:

Ryew (x, @) = (1 — a) Roig (x, a)
+a {r (x,y,a) — gt (x,y,a) + max Roi (y, b)};
beA(y)

16: IF flag = 1, proceed to Step 4, ELSE move to step
5 directly.

Step 4:

17: N(x) =N (x) + 1;

18: Q=0+ r(x,y, a);

190t =t+71(x,y,0),;

20: g = g

Step 5:

21: Set Ryjg (x, @) < Rpey (x,0); x < y;

222 m=m+1;

23: Return to Step 2.

VI. NUMERICAL RESULTS AND ANALYSIS

In this section, numerical results is provided to evaluate the
performance of the proposed allocation scheme and com-
pare it with the Greedy Allocation (GA) scheme. In the GA
scheme, the cloud computing platform only considers the
optimization of the data processing effects of the current
request. The system always allocates the highest level of
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computing resources to the current task, so that the system
can obtain a maximum reward at the current decision epoch.

The GA scheme is a local optimal algorithm as it becomes
the global optimal solution under the condition of sufficient
cloud computing resources. The global optimal solution can
be obtained by DP such as value iteration and policy iteration.
However, these approaches need the information of robots
demand distribution, and have the polynomial complexity
of O(N?), where N is the number of the states in the Sys-
tem [24]. In contrast, the proposed RL scheme in this paper
has significantly reduced per-epoch computational complex-
ity of O(K) and does not need to know the information
of robots demand distribution in previous. The RL scheme
can achieve the optimal policy after several decision epochs.
It requires obtaining the robots demand distribution through
online learning, and hence the decision made during the pre-
trial phase may not be optimal, causing the calculated average
system return rate becoming slightly lower than the actual
optimal value.

Comparing the overhead between the proposed scheme and
the GA scheme, our scheme has only two more steps than
the GA scheme, i.e., finding the maximum value function
(Step 2 in Algorithm 1), and updating the value function of the
currently selected action (Step 3 in Algorithm 1). Moreover,
from the point of view of space complexity, the proposed
RL scheme needs to occupy more memory than the GA
scheme, due to the need of storing the lookup table of the
value function. The size of the lookup table is proportional
to the size of the state space. When the state space is too
large, artificial neural networks can be applied to memorize
and express value functions, which reduces the demand on
storage, and hence reduces overhead.

TABLE 1. Key parameters.

Parameter Value
Allocated resource level (K) 3
Request type (V') 2
Total resource number (M) 2-12
Request arrival rate (\) 2-23
Request leaving rate (1) 5
Reward for rejections (—¢) -1
0in U (ny,) for type v = 1 (01) 1
0in U (ny,) for type v = 2 (02) 3
vin U (ng) fortype v = 1 (1) 2
v in U (ny) for type v = 2 (y2) 6
DCM parameter (po) 0.01
DCM parameter (¢) 1012

The key parameters used in our analysis are provided
in Table 1. We define K = 3 levels of numbers of cloud
computing resources, corresponding to 3 levels of numbers of
VMs allocated to a task, i.e.,ny = 1,np =2 and n3 = 3. Itis
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assumed that there are V = 2 types of service requests from
the robots, denoted as vi = 1 and v, = 2. The parameters
of the utility function U (ny) function of these 2 types of
tasks are 61, y1, 62, and y». The arrival of these 2 types of
requests are subject to Poisson distribution, with mean values
= 0.6 and Ay = 0.4, respectively. The running time
for a task at the cloud is subject to an exponential distribution
with a mean value of 1/u. We set the arrival rate of requests in
arange from 2 to 23, and the number of VMs in a range from
2 to 12, respectively. When the cloud rejects a task request,
the system gets a negative reward —e as a ““punishiment”.
In the numerical results, we define case, x representing that
the system selects action k for a service request of type v,
where k = 0 indicates that the system rejects the service
request and k = 1, 2, or 3 represents that the system accepts
the request and allocates ny, ny, or n3 VMs to the particular
service task.
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FIGURE 3. Probabilities of taking each action for service requests of
v = 1 under different numbers of total computing resources.
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FIGURE 4. Probabilities of taking each action for service requests of
v = 2 under different numbers of total computing resources

Fig.3 and Fig.4 show that when the average arrival rate
of information processing requests is A = 15 in the
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RL-based resource allocation scheme, the probabilities of the
system taking different actions for different types of tasks
under different numbers of total computing resources. For
tasks of type v = 1, as the total number of VMs increases,
the probability of case; 3 increases gradually, while the prob-
abilities of case] o and case;,; show a downward trend, and
the probability of case| > increases at first and then decreases.
For tasks of type v = 2, the reward of allocating n, VMSs is
far greater than that of allocating n;y VMs, while allocating
n3 VMs does not obviously increase the reward comparing
to allocating n, VMs. Thus, when the total resources in the
system are limited, the probability of case;» goes up as
the number of allocated VMs increases. However, when the
resources are sufficient, the cloud computing platform tends
to allocate n3 VMs and hence the probability of case 7 begins
to decrease.

Average system return rate
|
(2]

—— RL scheme A=15
—>— GA scheme A=15
—O— RL scheme A=20

<}— GA scheme A=20 -

1 1 1 1
2 4 6 8 10 12
Total number of VMs

FIGURE 5. Average system return rate under different numbers of total
computing resources.

Fig.5 illustrates the relationship between the total number
of resources at the cloud side and the average system return
rate. It can be seen that the average return of the system
adopting the RL scheme is higher than that of the system
adopting the GA scheme. This is because when an infor-
mation processing request arrives at the cloud computing
service platform, the GA scheme always allocates the highest
level of cloud computing resources to the request. When the
cloud has insufficient computing resources, the GA scheme
has to reject the newly arrived requests. However, in the RL
scheme, when a new request arrives at the cloud, the choice
of the action is related to the type of the request. The sys-
tem considers the reward that accepting the current request
brings, as well as the expected return in the long-term. The
RL-based scheme is more conservative and more reasonable
in allocating computing resources than the GA-based scheme.

Fig.6 and Fig.7 show that when the total number of com-
puting resources is M = 10, the probabilities of the cloud
taking different actions for different types of tasks under
different arrival rates. When the arrival rate of the requests
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FIGURE 6. Probabilities of taking each action for service requests of
v = 1 under different arrival rates of requests.
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FIGURE 7. Probabilities of taking each action for service requests of
v = 2 under different arrival rates of requests.

is relatively small, the information processing center at the
cloud side has enough computing resources. In this case,
the cloud computing platform tends to allocate as many VMs
as possible to obtain a higher system reward for the current
request. Therefore, the probabilities of case 3 and cases 3 are
the highest, and those of casey 2, cases 2, case1,1 and casez |
are the second highest, and those of case o and case; o are
the lowest. However, with the increase of the arrival rate of
service requests, the allocation strategy is changed to become
more conservative, and hence the probabilities of case; 3
and case; 3 begin to decline, and the probability of case; 1
begins to increase. The probability of casez 1 does not change
obviously since when the cloud has only one VM, the reward
for allocating it to a task of v = 1 is significantly greater than
allocating it to a task of v = 2.

Fig.8 shows the relationship between the arrival rate of
service requests and the average system return rate. As the
arrival rate of requests increases, the average return rate of the
system increases gradually. However, when the arrival rate
becomes quite high, the average return rate of the system
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Average system return rate
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FIGURE 8. Average system return rate under different arrival rates of
requests.

begins to decline. This is because the cloud computing
resources are in short supply at this time, and the probability
of the cloud refusing to offer service increases. At the same
time, it is obvious that the performance of the RL-based
allocation scheme proposed in this paper is superior to that
of the GA-based scheme. The difference of the performance
between the two schemes is not obvious when the arrival rate
of the requests is low, since the information processing center
at the cloud side has enough computing resources and tends
to allocate as many resources as possible at this time, for both
allocation schemes. However, when the arrival rate of service
requests becomes higher, the average return rate of system
in the RL-based allocation scheme is greater than that of the
GA-based scheme.

VIi. CONCLUSION

In this paper, Semi-Markov Decision Process is used to
model the cloud computing resource management for cloud
robotics. Considering both efficiency of information process-
ing and energy saving of the system, this model gives a
method to balance the return and cost. On this basis, we pro-
pose an RL-based dynamic resource allocation scheme. This
scheme realizes an autonomous management of comput-
ing resources through online learning, reduces the cost of
manpower participation in planning and maintenance, and
improves the overall utility of the system. Compared with
the GA scheme, the RL scheme performs better under the
condition of limited cloud computing resources and provides
a larger average return for the system.

In future work, the research can furtherly focus on making
the algorithm converge more quickly by adjusting the learn-
ing rate and other parameters in the algorithm, and optimizing
the allocation result of the computing resources. It is also
possible to design a more reasonable system utility function
so that the research can be more suitably applied in practice.
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