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ABSTRACT Distributed parameter systems (DPS) widely exist in the large-scale industrial production
industry. Techniques developed for DPS can further demonstrate the complexity of the industrial process,
such as the hot-rolled strip laminar cooling (HSLC) process. Due to the infinite dimensional of states
variables andmanipulated variables, it is a challenging work tomodel andmonitor for DPS in practice. In this
paper, a data-driven approach for process modeling and quality monitoring of DPS is obtained. A second-
order partial differential equation (PDE) is transformed into finite-dimensional model of ordinary differential
equation (ODE) with finite element method (FEM) and Galerkin method. Then, this model is described by
state space with time-space separation. To realize the proposed scheme by the data-driven approach, we use
the industrial process data to estimate the parameters in the model and basic functions by recursive least
squares method. Based on this model, a kernel representation of DPS for residual generation is obtained in
the statistical framework. T 2 statistic is employed to evaluate the residual and the threshold is determined
by the use of noncentral χ2-distribution. Finally, the effectiveness of the proposed scheme is demonstrated
by conducting a simulation on the production process of HSLC.

INDEX TERMS Quality monitoring, fault diagnosis, data-driven, distributed parameter system, laminar
cooling process.

I. INTRODUCTION
With the increasing demands on production efficiency,
economic requirement and process safety, modern industrial
processes are more complicated in both structure and automa-
tion degrees [1], which raises more possibility and harmful-
ness of the failure. Therefore, process monitoring and fault
detection become two of the most critical aspects in industrial
process. On the one hand, the intensive competition in the
industrial market leads to higher requirements for the accu-
racy of the results [2], [3]. On the other hand, due to the high
dimensional data, the strong correlation of variables and the
effects of abnormal conditions, it is difficult to excavate and
analyze available information from the historical data [4].

In order to ensure the accuracy of process data and the
correctness of the results, modeling is difficult but essen-
tial to simulation, control and optimization. Techniques of

modeling in lumped parameter systems (LPS) have been
widely studied [5], [6]. However it ignores the spatial dis-
tribution characteristics of the controlled object. As a result,
it can’t reflect a real system [7], [8]. Distributed parameter
systems (DPS) have the degrees of freedom with infinite
dimensions. That means the DPS can further demonstrate
the complexity of the physical phenomena. It is more suit-
able for real-time modeling and controlling. Many industrial
processes such as biotechnology, material engineering and
chemical engineering belong to DPS [9]. For example, the
hot-rolled strip laminar cooling (HSLC) process, where the
input, output and even parameters can vary both temporally
and spatially, is usually described in partial differential equa-
tions (PDE). The dynamic characteristics of HSLC process
will be restricted if it has been described by LPS. Actually,
it is only an approximate description of DPS.
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Based on the nature of time-space coupled, modeling of
DPS can be classified into two types: modeling of grey box
and modeling of black box [5]. For grey box modeling,
the PDE description of DPS is known. It can be easily
transformed into a finite-order of ordinary differential equa-
tions (ODE) or difference equations (DE). As reported in
[10] and [11], problems of modeling in DPS can be synthe-
sized into a time-space separation framework with bound-
ary conditions. Such infinite-dimensional systems need to
be approximated into finite-dimensional systems with the
model reduction methods [12]. If the structure of DPS is not
available, namely the black box modeling, it requires system
identification and parameter estimation of DPS [13], [14].
Data-driven based methods are widely applied in the mod-
eling of black box in DPS. The mapping relations between
the output variables and the measurable variables in the other
processes are established with the sample data which are
generated in the production process [15], [16]. The model
identification of DPS is an important area in the field of
system identification [17], [18].

Compared with it in LPS, the problems of monitoring and
fault detection become more challenging and attract much
research interest in DPS. However, these models described
by PDE are usually approximated into a finite-dimensional
system to solve these problems [19]–[23], just like modeling
of DPS. When fault occurs, the characteristic parameters in
the system will change and the LPS description is inaccurate.
It may lead to errors and unreliability [24]. In addition, DPS
also belongs to a two-dimensional (2-D) system because of
its time-space coupled nature. In [25] and [26], somemethods
have been proposed to solve the problems of fault diagnosis
and process monitoring in 2-D system. These methods are
only applied in the batch process, but it provides the basis for
solving the problem of process monitoring in DPS.

In this paper, a data-driven approach for process modeling
and quality monitoring of DPS is proposed. The main contri-
butions of this paper are summarized as follows:

(1) The second-order PDE is transformed into finite-
dimensional model of ODE with finite element method
(FEM) and Galerkin method, which is described by the state
space model with time-space synthesis.

(2) Based on the state space model, a kernel representation
of DPS for residual generation is obtained in the statistical
framework. T 2 statistic is employed to evaluate the resid-
ual and the threshold is determined using noncentral χ2-
distribution.

The rest of this article is organized as follows. In section II,
the methods of modeling in DPS are reviewed, while the DPS
model of laminar cooling process is transformed into a finite-
dimensional system of ODE. In section III, a residual gener-
ator is constructed in detail, and the residual evaluation and
threshold setting are proposed. In section IV, the application
results on industrial benchmark of laminar cooling process
are provided. This article ends with concluding remarks in
the last section.

II. PROCESS DESCRIPTION
A. MODELING OF DISTRIBUTED PARAMETER
SYSTEMS DESCRIPTION
The DPS includes PDE, functional differential equa-
tion (FDE), integral equation (IE) and the abstract differential
equation in Banach or Hilbert space. We consider the DPS
described by the following equations [20],

A(x)
∂2z(x, t)
∂t2

+ B(x)
∂2z(x, t)
∂t∂x

+ C(x)
∂2z(x, t)
∂x2

+D(x)
∂z(x, t)
∂t

+ E(x)
∂z(x, t)
∂x

+ F(x)z(x, t)

+G(x)y(x, t)+ η(x, t) = 0, α ≤ x ≤ β, t ≥ 0 (1)

The conventional form is

H (x, t, zx , zt , zxx , zxt , ztt ) = 0 (2)

which are subject to either the Dirichlet boundary conditions

z (α, t) = zα(t), z (β, t) = zβ (t) (3)

or the Neumann boundary conditions

∂ jz(x, t)
∂x j

∣∣∣∣
x=aj

= zαj (t)

∂ jz(x, t)
∂x j

∣∣∣∣
x=βj

= zβj (t), j = 1, 2. (4)

and the initial condition

z(x, t) = z0(x) (5)

where z(x, t) = [z1(x, t) · · · zn(x, t)]T denotes a vector of the
state variables in the Hilbert space. A(x), B(x), C(x), D(x),
E(x), F(x) and G(x) are matrices of functions with approx-
imate dimensions, x ∈ [α, β] denotes the spatial coordinate
and t denotes the time.

Model reduction is essential to obtain a finite-order model
for practical application based on the time-space coupled
nature. The basic idea is generated from the Fourier trans-
form. It is well known that a continuous function can be
approximated using the Fourier series [6], [28]. The frame-
work of time-space separation is illustrated in Fig.1. Based
on that, the spatio-temporal variable T (x, t) of DPS can be
expanded by a set of spatial basic functions (BFs) {φi(x)}∞i=1
and time-domain function αi(t) as follows,

T (x, t) =
∞∑
i=1

αi(t)φi(x) (6)

FIGURE 1. Framework of time-space separation in DPS.
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Theweighted residual method (WRM) is a frequently-used
method for model reduction [29]. In recent years, a number
of approaches have been developed for WRM based on the
selection of weighted functions. The selection of spatial basic
functions also has a great effect on the modeling perfor-
mance [21]. The classification of spatial basis functions is
shown in Table 1.

TABLE 1. Classification of spatial basis functions.

As shown in Table 1, the spatial BFs can be classified
into local and global types. Fig.2 shows the geometric inter-
pretation of time-space separation when n = 3. After the
selection of BFs, the spatio-temporal will be approximated
to the finite-dimensional model through the time-space syn-
thesis. The most popular approaches appear to be Galerkin
method [30] and Collocation method [31], which belong to
WRM. Galerkin methods are a class of methods for convert-
ing a continous operator problem to a discrete problem [32].
The residual in the model is made orthogonal to each BFs.
It does not need to find other weighting functions.

FIGURE 2. Geometric interpretation of WRM when n = 3.

Similar to Fourier series, the spatial BFs are often ordered
from slow to fast in the spatial frequency domain. Because
the fast modes contribute little to the whole system, only the
first n slow modes in the expansion will be retained in prac-
tice [6]. This approach is referred to Galerkin method because
the residual modes are completely ignored. As a result,
Galerkin method will be used for model reduction in this
paper.

B. FINITE DIMENSIONAL APPROXIMATION FOR
DISTRIBUTED PARAMETER SYSTEMS IN LAMINAR
COOLING PROCESS
It is important to assess the production quality of HSLC pro-
cess. The mechanical properties of hot coil depend on the fin-
ish rolling temperature (FRT), the coiling temperature (CT)
and the cooling rate (CR). When the coiling temperature
exceeds the required range, the microstructure and properties
of the strip will be worse [33], [34]. Therefore, the way to
monitor the strip’s transient temperature and measure the
strip temperature inside the cooling section accurately will
be extremely important.

The schematic diagram of laminar cooling process is
illustrated in Fig.3. There are 120 top headers and 120 bottom
headers in laminar cooling equipment. These cooling head-
ers are divided into 14 groups. The first nine groups are
considered as the main cooling zone and the last five
groups are the fine cooling zone. Strips enter cooling section
after the finishing process at finishing rolling temperature
of 820–920◦C . After the water cooling section, the strips are
cooled at coiling temperature of 500–650◦C [34].

In recent years, the research of thermal conduction problem
has made a great progress in the application of tempera-
ture field mathematic model. It is widely applied in laminar
cooling equipment of plate mill and some hot-rolled strip
mill. However, the factors considered are not complete and
the data are lack of screening. The laminar cooling process
also belongs to DPS as mentioned in section I. Different
from modeling in LPS, the distributed characteristics of tem-
perature in the HSLC process are considered. A two-order
differential equation of heat conduction is calculated as

∂

∂x

(
λ
∂T
∂x

)
+
∂

∂y

(
λ
∂T
∂y

)
+
∂

∂z

(
λ
∂T
∂Z

)
+ Q̇ = ρc

∂T
∂t

(7)

with the boundary conditions

λ

(
∂T
∂x
+
∂T
∂y

)
= Fσ (Tf 4 − Tα4)

λ

(
∂T
∂x
+
∂T
∂y

)
= α(Ts − Tw) (8)

and the initial condition

Tt=0 = f (x, y, z) (9)

where T denotes the temperature, ◦C ; t denotes the time,
s; x, y, z denote the coordinate value of length, width and
depth, m; ρ denotes the strip density, kg/m3; λ denotes the
thermal conductivity,W/ (m · k); Q̇ denotes the thermal con-
ductivity of heat sources; c denotes the specific heat capacity
of strip, J/ (kg · k); F denotes the stripąŕs surface, m2; Tf
denotes the surface temperature, ◦C ; Tα denotes the ambi-
ent temperature, ◦C ; Tw denotes the water temperature, ◦C ;
σ = 5.67 × 10−8W/(m2 � k4) denotes the Boltzmann’s
constant.
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FIGURE 3. The schematic diagram of laminar cooling process in hot-rolled strip.

The model of HSLC process can be reduced into a finite
dimensional model by FEM. It can be employed to handle
complex geometries and boundaries with relative ease. The
model is divided into the mesh with octahedral module.
Referring to the related parameters in hot strip mill process,
the basic model of the strip steel will be obtained with the
mesh.

In order to reduce the complexity of modeling, a pair of
water spray headers which are symmetric can be defined as
a cooling action. Different heat transfer modes are adopted
under different conditions with the change of switch in the
cooling zone. The air or water cooling section can be deter-
mined by the switch state of the spray header groups.

By ignoring the temperature gradient in the width direction
and considering the influence of latent heat of phase change,
the equation can be simplified as follows

∂

∂x

(
λ
∂T
∂x

)
+

�
Q = ρc

∂T
∂t

(10)

Firstly, the steel plate are divided into n sections and nor-
malized in its length direction,

0 < x1 < x2 < . . . . . . xn−1 < xn < 1. (11)

Then orthogonal polynomials are selected as the basic func-
tions

ϕi(x) =


x − xi−1
xi − xi−1

x ∈ [xi−1, xi]

x − xi+1
xi − xi+1

x ∈ [xi, xi+1]
, 1 ≤ i ≤ n (12)

which is indicated in the coordinate axis in Fig.4.

FIGURE 4. Orthogonal polynomial basic function.

Next, solve the weak solution of Eq.10. Given a full
column-rank matrix V of BFs and V = span {81(x),82(x),

83(x), . . . . . . 8n(x)}. Then the spatio-temporal varible
T (x, t) can be expanded with time-space separation as
follows

Tn(x, t) =
∑n

i=2
αi(t)8i(x) (13)

Let us denote g(x) ∈ V . Multiply g(x) and integrate on both
sides of Eq.10∫ 1

0

∂T
∂t
g(x)dx =

∫ 1

0
k
∂2T
∂x2

g(x)dx + p
∫ 1

0
g(x)dx (14)

where k = λ
ρc , p =

Q̇
ρc , and denote f (x, t) = ∂T

∂x ,∫ 1

0
k
∂2T
∂x2

g(x)dx

=−

∫ 1

0
f (x, t)

dg(x)
dx

dx+kg(1)
(∑n

i=1
αi(t)

d8i(x)
dx

∣∣∣∣
x=1

)
− kg(0)

(∑n

i=1
αi(t)

d8i(x)
dx

∣∣∣∣
x=0

)
(15)

∑n

i=1

dαi(t)
dt

∫ 1

0
8i(x)g(x)dx

= −

∑n

i=1
αi(t)

∫ 1

0

d8i(x)
dx

dg(x)
dx

dx + p
∫ 1

0
g(x)dx

+

∑n

i=1
αi(t)

{
kg(1)

d8i(x)
dx
|x=1 − kg(0)

d8i(x)
dx
|x=0

}
(16)

by substituting 8j(x) into g(x), we have

∑n

i=1

dαi(t)
dt

∫ 1

0
8i(x)8j(x)dx

= −

∑n

i=1
αi(t)

∫ 1

0

d8i(x)
dx

·
d8j(x)
dx

dx + p
∫ 1

0
8j(x)dx

+

∑n

i=1
αi(t)

{
k8j(1)

d8i(x)
dx
|x=1−k8j(0)

d8i(x)
dx
|x=0

}
(17)
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Finally, a linear state space model of HSLC can be
expressed as
m1,1 m1,2 . . . m1,n
m2,1 m2,2 . . . m2,n
...

... mi,j
...

mn,1 mn,2 . . . mn,n




�
α1 (t)
�
α2 (t)
...

�
αn (t)



=


k1,1 + N1,1 k1,2 + N1,2 . . . k1,n + N1,n
k2,1 + N2,1 k2,2 + N2,2 . . . k2,n + N2,n

...
... ki,j + Ni,j

...

kn,1 + Nn,1 kn,2 + Nn,2 . . . kn,n + Nn,n



�


α1(t)
α2(t)
...

αn(t)

+

g1(x)
g2(x)
...

gn(x)

 (18)

where

mi,j=
∫ 1

0
8i(x)8j(x)dx, ki,j=−

∫ 1

0

d8i(x)
dx

d8j(x)
dx

dx,

gi(x) = p
∫ 1

0
8j(x)dx,

Ni,j(x) = k8j(1)
d8i(x)
dx
|x=1 − k8j(0)

d8i(x)
dx
|x=0,

1 ≤ i, j ≤ n.

The state space model can be represented as

U [
�
α (t)] = K [α(t)]+ G (19)

where

U =


m1,1 m1,2 . . . m1,n
m2,1 m2,2 . . . m2,n
...

... mi,j
...

mn,1 mn,2 . . . mn,n

,

K =


k1,1 + N1,1 k1,2 + N1,2 . . . k1,n + N1,n
k2,1 + N2,1 k2,2 + N2,2 . . . k2,n + N2,n

...
... ki,j + Ni,j

...

kn,1 + Nn,1 kn,2 + Nn,2 . . . kn,n + Nn,n

,

G =


g1(x)
g2(x)
...

gn(x)


Remark: Matrix U is used to denote the part of unsteady

heat conduction. K denotes the part of steady heat conduc-
tion. G denotes the hot-splitting of node matrix. Eq.18 is a
finite-dimensional model which is approximated by the PDE.

The state space description of DPS has been obtained by
model reduction. To realize the proposed scheme by the data-
driven approach, we can use the traditional method to esti-
mate the parameters in state space model and basic functions
such as partial least squares (PLS) method [35] and subspace
method [36].

III. MODEL-BASED DESIGN OF RESIDUAL
GENERATOR FOR DPS
A. MODEL-BASED DESIGN OF RESIDUAL
GENERATOR FOR DPS
Model reduction by FEM often generates a model with high-
order description. It may bring large computation. In order
to design an implementable monitoring system, the order of
state variables must be reduced to a lower one. The realization
of the dimensional reduction for state space is based on the
idea of projection. To simplify notations, let us define the
following operations,

(m(x), n(x)) =
∫ β

α

m(x)n(x)dx (20)

And then the model can be rewritten into discrete-time form
as

α̂(k + 1) = Ad α̂(k)+ Bd (v̂(x),T (x, k))

+Ed (v̂(x), η(x, k)) (21)

θ (x, k) = Cd (x)α(k)+ ξ (x, k) (22)

where Ad = U−1K , Bd = G, Cd = (L(x), θ(x, k) −
∧

θ (x, k)) represents the measurement matrix, v̂(x) =[
v1(x) · · · vn(x)

]T
∈ V (x), η and ξ are uncorrelated white

noise sequences which are uncorrelated with α̂0 (α̂0 is the ini-
tial condition of the system), θ (x, k) denote the manipulated
low-level outputs variables.

Based on the lumped description with low-dimensional
representation, a data-driven design of the model-based pro-
cess monitoring system is established in this section. Design
the following observer,

α̃(k + 1) = Ad α̃(k)+ Bd (ṽ(x),T (x, k))

+ (L(x), θ(x, k)− θ̃ (x, k)) (23)

r(x, k) = θ (x, k)− θ̂ (x, k) (24)

where

L(x) =

 l1.1(x) . . . l1,l(x)
...

. . .
...

l2nγ,1(x) . . . l2nγ,l(x)

 (25)

is an appropriately chosen observer gain matrix in H -space.
The error r(x, k) will serve as the residual signal used for
monitoring. The major-objective is also to construct the
I/O data model. Based on the residual generator Eq.24, an I/O
data model can be constructed as

2k,k+s = 0sα̂k + Hy,sYk,k+s + Hr,sRk,k+s (26)

where2k,k+s is built from θ (k), k = 1, · · · , k + s+ n− 1 as

2k,k+s =

 θ (k) · · · θ (k+N−1)
...

. . .
...

θ (k+s) · · · θ (k+s+N−1)

∈R(s+1)l×N,
(27)
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Yk,k+s and Rk,k+s are built in the same way as 2k,k+s. 0s is
represented as C and A as

0s =


C
CA
...

CAs

 ∈ R(s+1)l×n, (28)

Hr,s ∈ R(s+1)l×(s+1)l is represented by (A,L,C, I ) as

Hr,s =



I 0 · · · · · · 0
CL I 0 · · · 0

CAL CL I
. . .

...
...

. . .
. . .

. . . 0
CAs−1L · · · CAL CL I

. (29)

Different from the scheme developed for LPS, the I/O data
are manipulated by integration over space instead of multi-
plication. Assume L(x) can be designed based on v̂(x).

Denote li,j(x) =
n∑

k=1
αi,j,kvk (x), i = 1, 2, · · · , 2n,

j = 1, · · · , n, then we can derive

(L(x),Cd (x)) = LLCL (30)

where

LL =
[
LL,1 · · · LL,l

]
∈ R2nγ×lγ ,

CL =

CL,1...
CL,l

 ∈ Rlγ×2nγ ,
LL,j =

 α1,j,1 α1,j,n

α2n,j,1 α2n,j,n

,
CL,j =


(
v1(x), cd,j,1(x)

)
· · ·

(
v(x)1, cd,j,2nγ (x)

)
...

. . .
...(

vγ (x), cd,j,1(x)
)
· · ·

(
vγ (x), cd,j,2nγ (x)

)
,

with

Cd (x) =

cd,j,1(x) · · · cd,j,2n(x)
...

. . .
...

cd,j,1(x) · · · cd,j,2n(x)

, j = 1, · · · , l.

Assume that (Ad ,CL) is observable, the matrix LL can be
designed. Note that LL contains the weighting coefficients
for Eq.25. Based on it, the observer matrix L(x) can be
established as

L(x) =
[
LL,1v̂(x) · · · LL,l v̂(x)

]
(31)

The residual generator is written as

r = θ (x, k)− θ̂ (x, k)

=
[
−N̂ (p, x) M̂ (p, x)

] [y(x)
θ (x)

]
=

(
−N̂ (p, x), y(x)

)
+

(
M̂ (p, x), θ(x)

)
(32)

where

N̂ (p, x) = Cd (x)(pI − Ad )−1Bd v̂(x)

M̂ (p) = I − Cd (x)(pI − Ad )−1L(x) (33)

and p denotes the z-transformation operator, y(x) ∈ Rn

represents the low-level process vector.

B. RESIDUAL EVALUATION AND THRESHOLD SETTING
The residual generated by Eq.32 provides a measure of dis-
crepancy between the evolution of the actual DPS and the
approximated finite dimensional description. For residual
evaluation, the test statistics T 2 is established as

T 2
= r2/σ 2

r (34)

where

σ 2
r =

1
N − 1

N∑
k=1

(
r(k)− 1

N

N∑
k=1

r(k)

)2

(35)

and
∑

represents the covariance matrix of the steady-state
residual vector and N is the length of evaluation window.
The threshold is determined using noncentral χ2-distribution
as Jth = χ2

1−α

(
1,E(r)2/σ 2

r
)
and the decision logic is as

follows:
If T 2 > Jth, then faulty; otherwise, fault-free.
To sum up, the flow chart of the approach is shown in Fig.5.

IV. BENCHMARKY
In section II, we have obtained a state space representation
for DPS of HSLC. Next, a simulation study is carried out
to verify reliability and effectiveness of the model. Not only
the unknown parameters can be estimated according to the
process data, but also the state space model will be applied in
the filed condition.

A. DATA-DRIVEN REALIZATION OF SYSTEM
IDENTIFICATION FOR STATE SPACE
REPRESENTATION
The data sets collected from s10132 CTC Engineering and
the thermal properties of the low-alloy steel Q235B are listed
in Table 2. Data in Table 2 are obtained by interpolation
method due to the changes of temperature in laminar cooling
process.

HSLC process studied here is illustrated in Fig.6.
‘1’ denotes the open state of the header bank and ‘0’ denotes
closed state of it. The temperature filed simulation in HSLC
is established in COMSOL and the prediction of coiling
temperature is obtained in filed simulation. When the model
structure is known, least-squares method can be used to esti-
mate parameters. After system identification, the state space
model is loaded into MATLAB and calculated according to
the process data. In order to prevent the fitting results with a
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FIGURE 5. Flowchart of modeling and process monitoring for DPS in HSLC.

FIGURE 6. The state of spray header banks in HSLC.

TABLE 2. Q235b strip steel thermophysical parameters.

large error, we will further improve the basic functions,

ωi(x)=


ϕi(x)−3α1

(x − xi−1) (x − xi)

(xi − xi−1)2
, x ∈ [xi−1, xi]

ϕi(x)+3α1
(x − xi) (x − xi+1)

(xi+1 − xi)2
, x ∈ [xi+1, xi] ,

1 ≤ i ≤ n (36)

Fig.7 shows the temperature variation curve of the mea-
surement and prediction at the upper surface of the steel. The
trend of the temperature change is the same. It can be seen
that the maximum error between the prediction and the mea-
surement is nearly 25◦C . It is because that the measurement
of the temperature is obtained by the recursive of temperature
filed simulation and the error of the temperature is enlarged
due to the process data errors.

In order to further verify the effectiveness of the model,
different batches of data for same materials are used in the
state space model. Fig.8 shows the predictive CT by model
Eq.18 and the measurement of CT. The maximum error is
nearly 10◦C and the error decreases as the number of samples
increases. The effectiveness of the state space model can be
verified.

B. DATA-DRIVEN REALIZATION OF THE OBTAINED
KERNEL REPRESENTATION IN HSLC
Based on the constructed residual generators, the abnor-
mal conditions, including the descriptions of two faults
description at different locations of spray header, as shown
in Table 3, are used to verify the effectiveness of the proposed
approach. If fault occurs, the coiling temperature measured is
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TABLE 3. Variables of hot strip rolling process.

FIGURE 7. Temperature variations of the measurement and prediction at
the upper surface of the steel.

FIGURE 8. The measurement and prediction of coiling temperature.

FIGURE 9. Process monitoring results of No.1 fault in main cooling zone.

different from that of setting. The open state of spray headers
have a great impact on the coiling temperature and the cooling
rate. The threshold settings are 0.02236 in main cooling zone
and 0.02775 in fine cooling zone.

The monitoring results are shown in Fig.9 and Fig.10.
It can be observed that the faults can be successfully detected
without any delay. It builds the foundation for the research of
fault location and fault causes in the future.

FIGURE 10. Process monitoring results of No.2 fault in fine cooling zone.

V. CONCLUSION
In this article, a data-driven based quality monitoring method
is applied in DPS. Firstly, a method of modeling for DPS
is proposed to describe the laminar cooling process. The
problems of the DPSmodeling are solved by model reduction
and system identification. Themain advantages of the scheme
is that the description of state space model can excellently
reconstruct the spatial distribution with initial and boundary
conditions. The precision of modeling for HSLC is improved
compared with traditional methods. Next, a data-driven pro-
cess monitoring method is developed for the fault detection
based on the state space model. Our approach is finally tested
on an industrial benchmark of laminar cooling process and
the satisfactory process monitoring performance is obtained.
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