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ABSTRACT A mobile agent (MA) was recently proposed to provide an alternative solution for traditional
data gathering in wireless sensor networks. An MA is a software component that can migrate among
network nodes by following an assigned itinerary (or path). Instead of transporting data from the nodes
to the processing unit (e.g., sink) for data gathering, the MA visits each node, and thus, it performs data
gathering locally. The MA has two types of itinerary planning: single-agent itinerary planning (SIP) and
multi-agent itinerary planning (MIP). The MIP was introduced to address the drawbacks of the SIP in
terms of task duration, energy consumption, and reliability. Despite the advantages of the MIP, determining
the optimal itinerary for each MA in the MIP poses a considerable challenge. Most proposed itineraries
adopt a static itinerary in which the nodes to be visited by the MA are predetermined at the sink node.
The distance among nodes is the only parameter that has been used to determine the itinerary of the MA.
Other parameters, such as the remaining energy and a number of neighbors, have not been considered. This
omission can negatively impact MA migration and result in an unsuccessful MA round-trip, particularly
when the remaining energy of the node is insufficient to transfer an MA to the next hop. In this paper,
a fuzzy-based MA migration approach (FuMAM) is proposed to determine appropriate itinerary for an
MA by considering three parameters: distance, remaining energy, and a number of neighbors. Simulation
experiments show that the FuMAM approach improves the rate of the successful MA round-trip and network
lifetime.Moreover, the proposed FuMAMapproach outperforms the compared algorithms in terms of energy
distribution usage among nodes.

INDEX TERMS Data gathering, mobile agent, itinerary, static itinerary, dynamic itinerary, MIP.

I. INTRODUCTION
Wireless sensor networks (WSNs) have been recently
acknowledged as a promising technology for many applica-
tions, such as military, environmental, and health. A WSN
involves the deployment of hundreds or thousands of tiny
sensor nodes that communicate wirelessly with one another
to sense specific actions in a field of interest. The process
of collecting sensory data from sensor nodes and sending it
back to the processing unit (e.g., sink node) is called data
gathering. In data gathering, each node sends its sensed data
individually to the sink node using several hops. This process
leads to data congestion, increased latency, and high energy

consumption, particularly for nodes located near the sink, due
to the huge amount of data flow. To mitigate these issues,
a mobile agent (MA), which is a software component, was
proposed in the literature [1] to provide an alternative solution
for traditional data gathering in WSNs.

In MA-based data gathering, the itinerary of an MA can be
planned using two approaches: single itinerary planning (SIP)
and multi itinerary planning (MIP). In SIP, a single MA is
dispatched from the sink and migrates to the source nodes
to perform data gathering [2]–[5]. By contrast, several MAs
are distributed to the network and work concurrently in
MIP [6]–[8]. However, SIP approaches only perform well
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in small-or medium-scale sensor networks. In large-scale
networks, SIP exhibits the following drawbacks [9]:

1) Long delays because ofmigration to hundreds of source
nodes

2) An increase in MA’s packet size due to the aggregation
of data from a huge number of visited source nodes

3) Low reliability when MA accumulates a considerable
amount of data

4) The probability of losing the MA’s packet increases
when a single MA visits numerous source nodes

Despite the advantages of MIP, determining an optimal
itinerary for each MA in MIP remains a challenging issue.
Finding an optimal itinerary for an MA has been proven
as an NP-hard problem [5]. An inappropriate MA itinerary
may lead to a highly inefficient overall network performance.
The determination of an MA’s itinerary refers to selecting
a sequence of source nodes that will be visited by the MA.
In MA-based data gathering, the determination of MA’s
itinerary can be classified as a static, dynamic or hybrid
itinerary [10], [11]. In a static itinerary, the sequence of
source nodes to be visited by an MA is calculated at the sink
before the MA starts its migration. In a dynamic itinerary,
the sequence of source nodes to be visited by the MA is
identified on the fly at each source node. Finally, in a hybrid
itinerary, the source nodes to be visited are selected at the
sink, but the visiting sequence is computed on the fly by
the MA. However, dynamic and hybrid itineraries consume
valuable node energy resources and adapt to the large size of
an MA. Such conditions are caused by the MA carrying the
next hop computation code at each node during the migration
process. By contrast, a static itinerary consumes less energy
than its dynamic and hybrid counterparts because each MA
carries a predetermined itinerary that has been calculated at
the sink.

The application of an MA determines which itinerary
strategy should be adopted. A dynamic itinerary is more
applicable for target tracking applications given that the real-
time adaptation of MA itineraries is required to provide pro-
gressive accuracy [4], [12]. By contrast, a static itinerary is
more suitable for data monitoring applications wherein the
measurements of physical quantities (such as humidity and
temperature) are periodically gathered at the sink. We focus
on static itinerary in this research.

Several static itinerary approaches have been proposed.
Most of these approaches consider the distance among nodes
and MA’s hop energy cost as the main parameters for com-
puting an MA itinerary, whereas other parameters, such as
the node’s remaining energy and number of neighbors, are
neglected. MA migration is affected when only distance and
MA’s hop energy cost are considered. This situation will
result in an unsuccessful MA’s round-trip, particularly when
the remaining energy of the node is insufficient to transfer
the MA to the next hop. Moreover, a particular node can be
selected repeatedly during data gathering rounds due to its
nearest distance. This circumstance will generate an imbal-
anced node energy usage by the MA, which will reduce

network lifetime. Accordingly, this research proposes a
fuzzy-based MA migration approach (FuMAM) to mitigate
the aforementioned issues. The FuMAM approach deter-
mines an appropriate itinerary for an MA by considering
three parameters: distance, remaining energy, and number
of neighbors. The proposed FuMAM approach increases the
rate of successfulMA’s round-trip. Furthermore, the FuMAM
algorithm improves network lifetime by selecting the node
with a high residual energy as the next hop for MAmigration.

The remainder of the paper is organized as follows.
Section II explains related works. Section III presents the
proposed FuMAM approach. Section IV describes the per-
formance evaluation and experimental results. Section V pro-
vides the conclusion of the study and suggests a future work
direction.

II. RELATED WORKS
Notably, MIP consists of two or more SIPs working con-
currently to visit groups of source nodes. Each single MA’s
itinerary has a sequence of source nodes to be visited. The
visiting order of such nodes significantly impacts overall
network performance. This section reviews several static
itinerary algorithms proposed for determining the appropri-
ate itinerary for MA in WSNs. Qi and Wang [2] suggested
two static itinerary approaches: local closest first (LCF) and
global closest first (GCF) to determine an itinerary for MA
migration. In LCF, the MA looks for the next hop node
with the shortest distance from the current location. In GCF,
the MA looks for the next hop node with the shortest distance
to the sink. Figure 1 illustrates the difference between the
LCF and GCF approaches.

FIGURE 1. (a) LCF approach; (b) GCF approach.

An MA-based directed diffusion (MADD) was proposed
in [3]. MADD is similar to LCF but differs in the sense that an
MA selects the farthest node from the sink as the first source
node. Although the LCF, GCF, and MADDmethods are easy
to implement, they are not scalable because the itinerary of
an MA is determined according to the distance among source
nodes. In [13], two algorithms, namely, itinerary energy min-
imum for first source selection (IEMF) and the itinerary
energy minimum algorithm (IEMA), were introduced to
achieve energy-efficient itineraries. IEMF adopts the round
robin method, in which every node is tentatively selected as
the first source node. Then, the LCF algorithm is applied to
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the remaining source nodes. Such process generates different
candidate itineraries, whereby each itinerary corresponds to
an energy cost. Subsequently, an itinerary with the lowest
energy cost is selected by IEMF. By contrast, IEMA is the
iterative version of IEMF, such that IEMA determines the
visiting order of the remaining source nodes along the first
source node. Despite the advantages of the IEMF and IEMA
algorithms in terms of energy efficiency, these algorithms are
evidently still based on the LCF algorithm compared with
LCF andGCF. LCF looks for the nextMA’s hop depending on
the current location of the MA instead of looking for global
network information. Furthermore, the LCF, GCF, IEMF,
and IEMA techniques were developed with a single MA
itinerary (SIP), which exhibits low performance in a large-
scale network.

In a large-scale network where the MIP approach occurs,
determining the optimal MA itinerary is motivated by con-
sidering the global formation of the network. In [14], a near-
optimal itinerary design (NOID) algorithm was introduced to
calculate the number of MAs and their itineraries. The main
parameter used for calculating the cost weight is the distance
between source nodes. This distance was determined using
the minimum spanning tree (MST)-based NOID algorithm.
The NOID algorithm uses a trade-off function for balancing,
such that a source nodewith insufficient energywill be visited
first by the MA (at the time when the accumulated data of the
MA are small). Chen et al. [15] proposed an algorithm called
BST-MIP. Network topology is modeled as a totally con-
nected graph (TCG), such that the vertices represent the nodes
in the network and the estimated hop count between each two
source nodes provides the weight of an edge. The BST-MIP
algorithm adopts the same method (MST) presented in the
NOID algorithm. Nevertheless, the BST-MIP algorithm dif-
fers fromNOID because it uses a balancing factor a during the
calculation of weight in TCG. The balancing factor a is used
to achieve flexible control of the trade-off between energy
cost and task duration.

In [7], a genetic algorithm (GA)-basedMIP was developed
to determine the number of MAs and their itineraries in
MIP. The concept of GA-MIP is to determine the number
of MAs and their assigned source nodes using a two-level
coding GA-based method. The coding represents a gene
that contains a source ordering code (sequence array) and
a source grouping code (group array). The sequence array
contains segments, such that each segment corresponds to
a number of source nodes that must be visited by an MA.
The group array includes numbers. Each number in the array
represents the number of source nodes of each segment in the
sequence array. The two basic operations of GA (crossover
andmutation) are used in each iteration, and a fitness function
is applied to select better genes. Although GA-MIP exhibits
good performance in terms of delay and energy consumption,
it has high computation complexity because it maintains
global information about the network in each iteration.

In the aforementioned MIP algorithms, the geographic
information of the sensor nodes and MA migration cost are

the main parameters used to determine the optimal number
of MAs and their itineraries. In [16], the greatest informa-
tion in the greater memory-based MIP (GIGM-MIP) algo-
rithm was proposed. The GIGM-MIP algorithm considers
geographic information to formulate the optimal number of
MAs and their itineraries and the data size in each partition.
In GIGM-MIP, the k-means algorithm is used to partition the
network into K clusters (partitions). After partitioning the
network, the GIGM-MIP algorithm calculates the data size
of the source nodes in each partition. This data size will then
determine the number of MAs that will be assigned to that
partition, such that each partition may have more than one
MA. Then, the source node that has the maximum data size
among the other source nodes is assigned to the MA with
the greatest free payload data. This process is repeated until
all MA payload data have nearly the same size. Although
this solution balances the carried data among the distributed
MAs and reduces energy consumption, the itinerary of each
MA still relies on the LCF algorithm, which considers
the distance between the current location of an MA and
the next hop node as a parameter for calculating the next
MA’s hop.

A new immune-inspired algorithm, named the clonal selec-
tion algorithm for MIP (CSA- MIP) [17], was proposed to
calculate the number of MAs and their itineraries. CSA-MIP
uses the same two-level coding method presented in GA-
MIP. The difference is that CSA-MIP applies a two-stage
evolutionary search procedure to achieve both global and
local search capabilities, with each stage having a different
mutation operator. When these search procedures are applied
to the obtained solutions in CSA-MIP, a variation in the
number of MAs can be obtained. Moreover, imbalance in the
number of sensor nodes assigned to eachMA is reduced. This
condition will potentially increase the possibility of achieving
improved solutions.

In most of the aforementioned approaches, the only param-
eters used to determine MA itinerary are the distance among
nodes and the link cost between each pair of nodes. Other
parameters, such as the node’s remaining energy and the
number of neighbors of the next hop candidate, are disre-
garded. MA migration will be adversely affected if only the
parameters of distance and energy cost are considered. This
circumstance will result in an unsuccessful MA round-trip
given that the nearest node may have insufficient energy to
transfer an MA to the next hop. In addition, uneven energy
dissipation can decrease network lifetime because a particular
node can be selected repeatedly during data gathering rounds
due to its nearest distance. To mitigate these issues, a fuzzy-
based MA migration approach (FuMAM) is proposed in this
research. The FuMAM approach determines an appropri-
ate itinerary for an MA by considering three parameters:
distance, remaining energy, and number of neighbors for
each candidate node by using a fuzzy logic system (FLS).
The main objective of the proposed FuMAM approach is to
increase the rate of successful MA round-trip and improve
network lifetime.
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III. FuMAM APPROACH
This section presents the proposed FuMAM approach. The
FuMAM method is based on FLS, a computational intel-
ligent system (CIS). FLS is a decision-making algorithm
that has been used to enhance network performance [18].
FLS is defined as a nonlinear input-output mapping [19].
It exhibits human intelligence reasoning behavior in handling
incomplete data and unexpected situations. For designing a
WSN routing protocol, FLS offers advantages in terms of
transmissionmedia characteristics and protocol performance,
therebymaking fuzzy representation easy and realistic.More-
over, FLS can efficiently address several issues regarding
WSNs [20]. FLS receives values (parameters) from the nodes
as inputs and computes them to infer output values. The
computation process includes converting input values (crisp
input) into a fuzzy set and processing it using rule-based
FLS, where rules are expressed as a collection of IF-THEN
statements that are intended to mimic human reasoning.
Subsequently, the processed fuzzy set is converted back to
obtain an aggregated output value (crisp output) [21].

When determining an itinerary for an MA in WSNs,
numerous parameters, such as remaining energy, distance,
and number of neighbors, should be considered simultane-
ously when selecting the nextMA’smigration hop. Therefore,
choosing the appropriate node for the next MA’s hop under
these multi-parameters exerts a considerable influence on
overall network performance. Here, FLS can offer an appro-
priate solution for this type of multi-parameter evaluation
problem. That is, FLS can integrate several node selection
parameters.

In the proposed FuMAM approach, FLS is used to calcu-
late the MA’s hop sequences between each two source nodes
(intermediate nodes) by computing the probability of each
candidate node based on their input parameters. Before the
sink dispatchesMAs to the network for data gathering, it must
maintain the global information of all the nodes to partition
the network and determine the visiting order of each MA
for both source and intermediate nodes. The visiting order
of source nodes is obtained by using the LCF algorithm,
whereas the visiting order of intermediate nodes is calculated
by using FLS. For each MA’s hop among the intermediate
nodes, three parameters are used as inputs to FLS for each
candidate node. These parameters include remaining energy,
distance to the source node, and number of neighbors of the
candidate node. After FLS determines the next node for an
MA, the selected node will be added to the MA’s visiting
order. The same process will be repeated for the next hop
of MA’s migration until all of the MAs’ itineraries for all
partitions are determined. Figure 2 shows the flowchart of the
FuMAM approach.

A. FLS INPUT PARAMETERS
As mentioned earlier, three parameters were used as inputs
to FLS in our proposed FuMAM approach. In this work,
we limited the input parameters to three inputs to avoid the
problem of fuzzy rule explosion. Increasing the number of

FIGURE 2. The flow chart of FuMAM approach.

input parameters in FLS will increase the complexity of the
rule base in the proposed approach. However, a method, such
as the hierarchical fuzzy system (HFS) [22], is intended to
reduce the size of the rule base while maintaining adequate
accuracy. The three parameters used in this research are
described as follows:

1) NODE’S REMAINING ENERGY
This parameter indicates the remaining energy of a node.
At the outset, all nodes have the same initial energy. After
starting the first data gathering task, the nodes begin to
lose energy because of the MA migration process. There-
fore, the remaining energy of each node can be calculated
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using Equation (1).

RE = NodeCurrentEnergy− CEnergy (1)

where CEnergy is the energy spent at a particular node to
receive, process, and transmit anMA [7], [23]. The node with
the maximum remaining energy is preferred as the next hop
for the MA.

2) DISTANCE TO THE SOURCE NODE
This parameter refers to the distance of a candidate node to
the next source node. The geographical information of all the
deployed nodes in the network is assumed to be known to
the sink; hence, the distance between each two nodes can
be easily calculated. The candidate node with the shortest
distance from the next source node is highly recommended as
the next hop for the MA because the cost of MA migration is
proportional to the distance among nodes [15]. The distance
between each candidate node and the next source node can be
calculated using Equation (2)

D(cand) =
√
(SNx − Candx)+ (SNy − Candy) (2)

where (SNx and SNy) represent the position of the next source
node points, and (Candx and Candy) determine the position
of each candidate node.

3) NUMBER OF NODE’S NEIGHBORS
This parameter denotes the number of nodes that lies within
the radius of each candidate node within the location of the
current MA. The number of candidate’s neighbors is used in
this research to ensure that the MA always has a sufficient
number of candidates for the subsequent hop decisions due to
the multi-hop migration model for MA-based data gathering.
In certain cases, if anMA reaches a node with a fewer number
of neighbors (for example, two neighbors) and the remaining
energy of the neighbors is extremely low, then the MA will
select one of the neighbors as its next hop. Consequently,
theMAwill be dropped for selecting a node with low residual
energy. Therefore, using the number of candidate’s neighbors
as one of the decision factors for FLS can provide an effective
solution for overall performance.

B. FLS DESIGN IN FuMAM
The main objective of this research is to determine an opti-
mal itinerary for an MA using FLS. The proposed FuMAM
approach should calculate the MA’s itinerary by considering
three parameters (remaining energy, distance, and number of
neighbors) for each MA’s next hop selection. The concept of
FLS is based on four main phases (Figure 3): fuzzification,
rule evaluation, aggregation, and defuzzification [24]. They
are used in FuMAM to calculate the probability values of each
candidate node to be selected as the next MA’s migration hop.
The details of the operations of the four phases are as follows:
• Fuzzification: The crisp input values (remaining
energy, distance, and number of neighbors) for each
candidate node are forwarded to the fuzzification

FIGURE 3. Fuzzy logic system phases.

FIGURE 4. Memberships of the input parameters.

phase (Figure 3). In this phase, the input values are con-
verted into suitable linguistic values by mapping each
value into the corresponding universal set (Figure 4). For
example, if X is the universal set, its then elements are
denoted by x, such that the fuzzy set A in X is a set.

A = x, µA(x)|x ∈ X (3)

where µA(x) is a membership function (MF) of x in A.
This function maps each element of X into a value
between 0 and 1. The MF value is the intersection
point of the value of the input parameters with the MF
degree [25]. In this paper, in order to allow the fuzzy
sets inputs (input parameters) to be applicable for any
network configuration, we represents the domain of the
input parameters to be a value between 0 and 1.
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• Rule evaluation: In this phase, the membership val-
ues are interpreted by applying the IF-THEN rules,
which are expressed as a collection of IF-THEN state-
ments, to determine the new fuzzy output set. The IF-
THEN rules have multiple inputs that are evaluated by
the fuzzy (AND) operator. This work uses three input
parameters, and each parameter is divided into three
levels. Thus, we obtain 27 IF-THEN rules as shown
in Table 1.

TABLE 1. Fuzzy IF-THEN rules in FuMAM approach.

• Fuzzy Inference System and Aggregation: This phase
is used to form inferences, such that the rules are com-
bined to achieve an aggregated fuzzy output. We use
the most common fuzzy inference technique, called the
Mamdani method [26], due to its simplicity in calculat-
ing the output value of each candidate node.

• Defuzzification: The defuzzification phase is applied to
achieve the crisp output value after the aggregation of
the results obtained from each rule. A defuzzification
method called center of area (CoA) [27] is used to obtain
the crisp output value, which can be computed using
Equation (4).

Output =

∫
µ(x)× xdx∫
µ(x)dx

(4)

where µ(x) is the aggregated MF of the fuzzy set,
and x is the output variable. To acquire flexible output
results, the linguistic variables of the probability value
are divided into nine levels as shown in Figure 5. For a
candidate node, a high output value increases its proba-
bility of being selected as the next MA’s migration hop.

FIGURE 5. Membership of the probability value.

IV. PERFORMANCE EVALUATION
As stated in Section 2, the MIP approach consists of
two or more SIPs working concurrently to visit groups
of source nodes. Most of the proposed MIP approaches
adopt the proposed SIP algorithms (LCF and GCF) for the
itinerary of each individual MA. In this section, the FuMAM
approach is evaluated relative to GIGM-MIP [16], the well-
known CL-MIP approach [6] and our previous work (spawn
multi-mobile agent itinerary planning (SMIP) approach [23]).
We test the GIGM approach with two MA’s itinerary algo-
rithms (LCF and GCF) to compare their performance with
the proposed FuMAM. For the other compared approaches,
the LCF algorithm is adopted to determine an MA’s itinerary.
Simulations are performed using MATLAB R2014a. The
itineraries of MAs are statically predetermined at the sink
node before the MAs are dispatched to the network.
In FuMAM, the LCF algorithm is adopted to determine the
order of the visited source nodes, whereas the visiting order
of the intermediate nodes between each two source nodes is
determined by FLS. The sink node is positioned at the center
of the network and is the starting and ending points of each
MA’s itinerary. The same network model in [6], [7], [16], and
[28] is adopted, and the energy consumption model in [7]
and [13] is used. The nodes are static, dense, and uniformly
deployed in a large-scale network (800 nodes) to validate the
scaling of FuMAM. All nodes have the same initial energy,
and each node has at least one neighbor node with a transmis-
sion range of 60 m. Table 2 shows the simulation parameters
used in the experiments.

TABLE 2. Simulation parameters.

All the compared approaches are evaluated using five
performance metrics, namely, MA’s round-trip rate, network
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lifetime, task energy consumption, task duration, and energy
distribution usage. For each performance metric, a random
number of source nodes from 10 to 80 is selected to study
their impact on the performance of FuMAM. We plot the
average of 100 simulation runs for each data point in each
presented figure.

FIGURE 6. Success rate of MA’s round-trip.

Figure 6 shows the impact of the varying number of source
nodes on the success rate of MAs’ round-trip (Srate). The
success rate of MAs’ round-trip represents the ratio of the
number of MAs that are successfully received at the sink
after migration to the total number of MAs dispatched by the
sink [29]. This metric can be calculated using Equation (5).

Srate =
NreceivedMAs
NdispatchedMAs

× 100 (5)

where NreceivedMAs represents the number of MAs that are
received at the sink after migration. NdispatchedMAs represents
the total number of the MAs that are dispatched by the sink
before migration. As shown in Figure 6, FuMAM outper-
forms the compared schemes in terms of the success rate of
MAs’ round-trip. In this scenario, we increase the number
of source nodes to 80 to ascertain the effectiveness of the
proposed approach. FuMAM enhances the success rate of an
MA’s round-trip by 26.84%, 22.92%, 29.76%, and 22.19%
comparedwith CL-MIP, GIGM-MIP, GIGM-GCF, and SMIP,
respectively. These outcomes are obtained because FuMAM
considers the remaining energy of candidate nodes. That
is, the node with the highest residual energy is selected as
the next MA’s migration hop. By contrast, the compared
approaches have lower success rates for an MA’s round-
trip because distance is the only parameter they consider
in constructing the MA itinerary. Consequently, some MAs
fail to complete their round-trip because certain nodes with
low residual energy are selected. Figure 7 illustrates network
lifetime with the impact of varying the number of source
nodes. Network lifetime is defined in this work as the duration
when the first sensor node in the network dies because of the
depletion of its energy [30].

FIGURE 7. Network lifetime.

As shown in Figure 7, network lifetime decreases as
the number of source nodes increases. This trend occurs
because an increase in the number of MA hops generates a
lengthyMA itinerary and results in high energy consumption.
The network lifetime of FuMAM is reduced at a slow rate
compared with the rate of other approaches. Moreover,
the network lifetime of FuMAM significantly increases by
approximately 76.86%, 61.8%, 63.51%, and 53.11% rela-
tive to CL-MIP, GIGM-MIP, GIGM-GCF, and SMIP, respec-
tively. Such improvement is achieved due to the adoption of
FLS during the determination of an MA’s itinerary. In this
manner, the node with the lower remaining energy among its
neighbors will not be selected as the next hop for MA migra-
tion. This method can also be used to achieve an improved
distribution of energy usage among nodes.

To evaluate the performance of FuMAM in terms of
energy distribution usage among nodes, we examine its
energy-balancing feature and observe its impact on network
performance. In this evaluation, 100 data gathering rounds
are simulated with 80 randomly selected source nodes from
the entire network. Before the start of the first round, each
node begins with an initial energy of 2 J. Then, we evaluate
the residual energy of each node at the end of the simu-
lated rounds. The cumulative distribution function plot of
the remaining energy distribution is shown in Figure 8. This
figure demonstrates that 82% of the deployed nodes in the
network has a remaining energy of less than or equal to
1 J with FuMAM, whereas for the other algorithms (SMIP,
CL-MIP, GIGM-GCF, and GIGM-LCF), 42%, 27%, 25%,
and 22%, of the deployed nodes in the network has a residual
energy of less than or equal to 1 J, respectively. These out-
comes indicate that FuMAMoutperforms the compared algo-
rithms in terms of distribution of energy usage among nodes.
Moreover, the plot also shows that the maximum remain-
ing energy in the network is 1.4 with FuMAM, whereas
for the other algorithms, the maximum remaining energy in
the network is approximately 2 J. This finding is attributed
to the involvement of more nodes in forwarding MAs in
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FIGURE 8. Energy consumption distribution (80 source nodes).

FIGURE 9. Task energy consumption.

FuMAM,which indicates the energy-balancing feature of this
algorithm. These results prove that some of the nodes in the
network are not involved in forwardingMAs in the other algo-
rithms. In summary, FuMAM effectively increases network
lifetime because it always consider the maximum remaining
energy of candidates when determining an MA’s itinerary.
Figure 9 shows the task energy consumption with the impact
of varying source nodes. Task energy consumption is the
total energy spent for transmitting, receiving, and exchanging
control messages to complete the data gathering process from
all the source nodes. Such consumption is the accumulated
migration energy cost for all theMAs’ itineraries [31]. There-
fore, the total energy cost of all distributed MAs’ itineraries
can be calculated using Equation (6).

Ctotal =
|I |∑
t=1

IC t (6)

where IC t is the energy cost of itinerary I t covered by anMA,
and IC t can be simplified into Equation (7)

IC t
=

|I t |∑
j=1

(jdf + pc)ci,j (7)

where |I t | represents the number of sensor nodes in itinerary
I t visited by an MA, j is the visited sensor node, jdf refers
to the data aggregated by an MA at sensor node j, f is the
aggregation ratio, pc is the initial MA’s size (processing code
plus MA packet header), and ci,j is the energy consumed by
an MA when migrating from sensor nodes i to j. Notably, j
can act as a source node (which has data to be collected by
the MA) or as an intermediate node.

Figure 9 illustrates that when the number of source
nodes is less than 25, the proposed FuMAM approach con-
sumes nearly the same amount of energy as that in the
GIGM-MIP algorithm because the nodes still have sufficient
remaining energy. As the number of source nodes increases,
FuMAM begins to consume more energy relative to the other
approaches. This increase in energy consumption is attributed
to FuMAM constructing a large number of hops during the
determination of an MA’s itinerary. This condition occurs
because FuMAM selects the candidate node with the max-
imum remaining energy and a large number of neighbors
as the next MA’s hop. Although FuMAM consumes more
energy than the other approaches when the number of source
nodes increases, it performs well when the number of source
nodes is small.

FIGURE 10. Task duration.

Task duration in MA-based data gathering is represented
by the round-trip time for one particular data gathering task.
In the SIP approach, where only one MA migrates to the
network, task duration indicates the average delay from the
time when the MA is dispatched to the time it returns to the
sink. In MIP, where multiple MAs migrate to the network
in parallel, task duration is the delay of the last MA that
returns to the sink. Figure 10 illustrates the task duration of
FuMAMwith the impact of source nodes. Compared with the
other approaches, FuMAM has a shorter task duration when
the number of source nodes is less than 25. This finding is
attributed to FuMAM considering the distance parameter as
one of the FLS inputs when calculating the itinerary of an
MA. Furthermore, FuMAM selects the node with the shortest
distance for the next MA’s hop. When the number of source
nodes increases, FuMAM begins to consume more time than
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GIGM-MIP because FuMAM considers the residual energy
of the nodes along with distance. If the distance of a candidate
node is short and its residual energy is low, FuMAM selects
another candidate node with sufficient residual energy even
if its distance is far. Therefore, FuMAM builds a long MA
itinerary when the remaining energy of the candidate node is
low, which can lead to an increase in the number of MA hops,
and consequently, in task duration.

V. CONCLUSION
Determining an appropriate itinerary for each MA in MIP
is considered a critical issue because it directly impacts the
overall performance of data gathering in WSNs. In a static
itinerary, most of the well-known algorithms consider the dis-
tance between nodes as the main parameter for determining
MA itinerary. Other parameters, such as remaining energy
and number of neighbors, are disregarded. This situation can
affect MA migration and result in an unsuccessful MA’s
round-trip, which consequently decreases network lifetime.
In this work, the FuMAM approach is proposed to determine
an appropriate MA itinerary. FuMAM considers three param-
eters: distance, remaining energy, and number of neighbors.
Extensive simulation experiments are conducted to evaluate
the performance of FuMAM. The simulation results show
that FuMAM outperforms the compared MIP approaches in
terms of the success rate of MA’s round-trip. In addition,
FuMAM improves network lifetime relative to the other MIP
approaches. As a future work, other input parameters to FLS
can be considered to evaluate the performance of FuMAM.
The remaining energy of the candidate’s neighbors can be
added as an input to FLS in the proposed FuMAM. This
inclusion can enhance energy balancing among nodes for
each computed itinerary. However, an increase in the number
of input parameters will increase the complexity of the rule
base. Therefore, a method such as HFS can be used to reduce
the size of the rule base.
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