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ABSTRACT Based on the explicit finite-difference time-domain (FDTD) and implicit Crank–Nicolson (CN)
FDTDmethods, this paper presents a hybrid sub-gridded scheme whose time step size depends on the coarse
grid size for numerically simulating the 3-D ground penetrating radar (GPR) scenarios in lossy, dispersive,
and inhomogeneous soils. The time step size of CN-FDTD is independent of the grid size in the dense grid
region due to its unconditional stability. Thus, the whole region can be runwith a time step size determined by
the coarse grid in an absolutely stable fashion. Moreover, a multi-pole Debye dispersion model, solved with
auxiliary differential equations (ADEs) for both FDTD and CN-FDTD, is incorporated to simulate realistic
GPR scenarios, including the detection of different objects buried in dispersive soils. In order to reduce
the matrix size of the 3-D implicit CN-FDTD method, the domain decomposition technique is originally
employed to achieve fast calculation. Several numerical examples of the GPR scenarios are provided to
demonstrate the accuracy and efficiency of the hybrid sub-gridded ADE-FDTD method.

INDEX TERMS Auxiliary differential equation (ADE) technique, finite-difference time-domain (FDTD)
method, ground penetrating radar (GPR) simulation, unconditional stability.

I. INTRODUCTION
Ground penetrating radar (GPR) systems, in which the source
emitting device is connected to the transmitting antenna and
the signal processing equipment is connected to the receiving
antenna, are widely applied to various aspects [1], [2]. Espe-
cially, GPR is an effective and convenient way in detecting the
objects such as pipes, cables, land mines and hidden tunnels
buried beneath the earth surface [3]. In GPR systems, a time-
domain electromagnetic pulse is emitted from the transmit-
ting antenna, and the reflected signals from the buried objects
and ground are obtained and post-processed at the receiving
antenna. Then, instead of running a time-consuming simu-
lation, we can easily identify the concerned characteristics
of the geometry under test by directly matching the received
GPR response to a previously computed model. Therefore,
electromagnetic simulation is useful in compiling a signal
dictionary of reflected time-domain waveforms correspond-
ing to interested GPR scenarios.

The finite-difference time-domain (FDTD) method [4], [5]
is usually used for numerical modeling and simulation

of microwave metasurfaces [6], electromagnetic radia-
tion [7], [8], nanostructures [9], [10], wireless network
and whole-space field diffusion [11], [12], and GPR sys-
tems [13]–[17], because it not only provides versatile
solutions of Maxwell’s equations for dispersive and inho-
mogeneous materials but also possesses powerful ability of
capturing time-domain impulse of GPR systems. However,
in order to keep numerical stability in the standard FDTD
simulation, the time step size is determined by the minimal
grid size in the computational domain due to the Courant-
Friedrichs-Lewy (CFL) condition [5]. Usually, fine grid divi-
sion is required when parts of the geometric features need
to be modeled in detail in simulating a GPR system. Thus,
the uniform dense grid results in a huge number of unknowns
and an extremely small time step size, which largely reduce
the calculating efficiency of the standard FDTD method,
especially for the multiscale problems.

The sub-gridded scheme, in which fine density grids are
located inside coarse host grids to locally refine the mesh
at regions requiring high resolution, is an efficient way to
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numerically model and simulate the GPR system. In litera-
ture, a variety of techniques have been proposed to realize
the sub-gridded FDTD method. In [18], the whole region
including dense and coarse grids is run by using a common
small time step size which is chosen according to the dense
grid; in [19] and [20], the dense grid region is run at a small
time step size and the coarse grid region is run at a large time
step size while time-space interpolations connect the different
grids together; dense grids in the sub-gridded region can be
run with a large time step size determined by the coarse grid,
where the dense grid is stabilized by either the alternating-
direction-implicit (ADI) FDTD [21]–[23], by a priori removal
of unstable eignmodes of the dense grid [24], or by the
filtering of unstable spatial harmonics [25], [26]. However,
ADI-FDTD uses two sub-marching procedures at each time-
marching step, and its tridiagonal property of the coefficient
matrix is always broken when the boundary condition is
incorporated into ADI-FDTD.Moreover, as the time step size
of the ADI-FDTD increases, the rapidly degraded numerical
dispersion will largely compromise its accuracy [27], [28].
Although the two methods presented in [24] and [26] retain
the explicit update nature of the standard FDTD, model-order
reduction and eigenvalue perturbation require the eigenvalue
decomposition of the FDTD matrix, and the accuracy of
spatial filtering is largely compromised as the time step size
increases when the computational domain contains materials
with a high value of relative permittivity. The unconditionally
stable Crank-Nicolson (CN) FDTD method [29], in which a
full time-marching step is used to discretize the Maxwell’s
equations, is believed to have high numerical accuracy and
quite small numerical velocity anisotropy compared with
ADI-FDTD [30], [31]. Therefore, CN-FDTD is suitable for
the simulation of multiscale problems.

In this paper, a three-dimensional (3-D) hybrid sub-gridded
FDTDmethod, in which the implicit CN-FDTD is used in the
local dense-grid region while the explicit FDTD is used in the
global coarse-grid region, is presented for efficient simulation
of practical GPR detection scenarios. Notably, in the hybrid
sub-gridded scheme, the coarse and dense grids can be easily
synchronized without time-consuming temporal extrapola-
tions and interpolations because CN-FDTD can be run at a
time step size that is free from the CFL stability condition
imposed to the dense grid. Then, a stable and convenient way
to communicate information between the dense CN-FDTD
region and coarse FDTD region is proposed. By doing so,
the total unknowns are reduced largely and a common time
step size can be chosen according to the CFL limit of the
coarse grid.

In realistic GPR simulations, the propagation, reflection
and attenuation of electromagnetic waves can be significantly
influenced by the frequency dispersion of the soil materi-
als in a wide frequency range from 50 to 1000 MHz [14].
Therefore, a multi-pole Debye dispersion model [32]–[34]
is adopted here and incorporated into both FDTD and
CN-FDTD based on a generalized auxiliary differential
equation (ADE) technique [35]. The uniaxial anisotropic

perfectlymatched layer (PML) absorbing boundary condition
extended to the dispersive soil regions truncates the compu-
tational domain [36], [37]. Moreover, the domain decompo-
sition (DD) technique [38]–[40] is originally introduced to
reduce the coefficient matrix size and save calculating time
of the 3-D CN-FDTD method. Compared with the numer-
ical results obtained from the standard ADE-FDTD and
sub-gridded ADE-FDTD, the results of hybrid sub-gridded
ADE-FDTD show its high accuracy and efficiency in solving
the computationally challenging GPR problems.

II. THEORIES AND FORMULATIONS
A. NUMERICAL FORMULATIONS FOR MULTI-POLE
DEBYE MEDIA
The time-domain Maxwell’s equations of a medium with
frequency-dependent dielectric permittivity can be written

∂ D|r,t
∂t

= ∇ × H|r,t − J |r,t (1)

µ0
∂ H|r,t
∂t

= −∇ × E|r,t (2)

where µ0 is the magnetic permeability of free space, and J
is the excitation current density. The relative dielectric per-
mittivity εr is employed to connect the electric displacement
vector D with the electric field intensity E in frequency
domain through

D|r,ω
ε0
= εr|r,ω E|r,ω (3)

where ε0 is the electric permittivity of free space. The
frequency-dependent relative permittivity function of a
P-pole Debye dispersion model is given by

εr|r,ω = ε∞ +

P∑
p=1

(εs − ε∞)Ap
1+ jωτp

(4)

where ε∞ is the permittivity at infinite frequency, εs is the
static permittivity, Ap is the pole amplitude, ω represents the
angular frequency, τp is the relation time, and j =

√
−1. The

dispersion parameters of the soil in (4) with moisture content
of 2.5% are assigned to be ε∞ = 3.2, εs = 4.2, σ = 0.397×
10−3 S/m, A1 = 0.75, A2 = 0.3, τ1 = 2.71 ns and
τ2 = 0.108 ns, and the dispersion parameters of the soil with
moisture content of 5.0% are assigned to be ε∞ = 4.15,
εs = 5.15, σ = 1.11 × 10−3 S/m, A1 = 1.8, A2 = 0.6,
τ1 = 3.79 ns and τ2 = 0.151 ns. The constitutive parameters
of the soil model without dispersion are chosen as εr = 3.6
and σ = 2.8×10−3 S/m for the moisture content of 2.5% and
εr = 4.8 and σ = 6.5 × 10−3 S/m for the moisture content
of 5.0%, respectively [14].
The Debye model (4) can be imported into the update

equations of unconditionally stable CN-FDTD with the gen-
eralized ADE scheme. Inserting (4) into (3), we get

D|r,ω
ε0
= ε∞ E|r,ω +

P∑
p=1

(εs − ε∞)Ap
1+ jωτp

E|r,ω . (5)
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Introducing

P∑
p=1

Rp
∣∣
r,ω = jωε0

P∑
p=1

(εs − ε∞)Ap
1+ jωτp

E|r,ω (6)

as an auxiliary variable, we can get

jω
D|r,ω
ε0
= jωε∞ E|r,ω +

1
ε0

P∑
p=1

R|r,ω. (7)

From (6), the relationship between the auxiliary variable R
and the electric field density E can be derived

jωτp Rp
∣∣
r,ω + Rp

∣∣
r,ω = jωε0 (εs − ε∞)Ap E|r,ω . (8)

With the relation between frequency domain and time domain
(jω→ ∂

/
∂t), (7) and (8) can be written as

∂ D|r,t
∂t

= ε0ε∞
∂ E|r,t
∂t
+

P∑
p=1

Rp
∣∣
r,t (9)

τp
∂ Rp

∣∣
r,t

∂t
+ Rp

∣∣
r,t = ε0 (εs − ε∞)Ap

∂ E|r,t
∂t

. (10)

The final equation for updating E is obtained by substitut-
ing (9) into (1)

∂E|r,t
∂t
=

1
ε0ε∞

∇×H|r,t −
1

ε0ε∞

P∑
p=1

Rp
∣∣
r,t −

1
ε0ε∞

J |r,t .

(11)

Using the central difference scheme for temporal discretiza-
tion (n is the time step index), (11) and (2) become

E|n+1r − E|nr
1t

=
1

ε0ε∞
∇ ×

H|n+1r + H|nr
2

−
1

ε0ε∞

P∑
p=1

Rp
∣∣n+1
r + Rp

∣∣n
r

2

−
1

ε0ε∞

J |n+1r + J |nr
2

(12)

µ0
H|n+1r − H|nr

1t
= −∇ ×

E|n+1r + E|nr
2

. (13)

Similarly, (10) can be discretized as

τp
Rp
∣∣n+1
r − Rp

∣∣n
r

1t
+

Rp
∣∣n+1
r + Rp

∣∣n
r

2

= ε0 (εs − ε∞)Ap
E|n+1r − E|nr

1t
(14)

which can be used to express the auxiliary variable Rp in
terms of the electric field density, (14) and (15) become the
update equations for E andH at time step n+ 1, respectively.
Inserting (13) and (14) into (12) with reference to [29],

we can obtain the implicit updating equations for the electric
field in 3-D CN-FDTD. Rewriting the implicit equations as a
matrix form, we get

AEn+1x,y,z = bn +
Jn+1 + Jn

2
, n = 0, 1, 2, · · · (15)

where A is the coefficient matrix, and b is the known
terms. This completes the ADE implementation of (4) in the
CN-FDTD method.

B. IMPLEMENTATIONS OF THE HYBRID SUB-GRIDDED
SCHEME AND THE DOMAIN DECOMPOSITION
TECHNIQUE
Since the unconditionally stable CN-FDTD is employed to
stabilize the dense grid, both the coarse and dense grid regions
can be run at the time step size determined by the CFL limit of
the coarse grid. Instead of the boundary between coarse and
dense grids aligned with the tangential magnetic field [19],
in this paper, the tangential electric field is located at the
boundary between coarse and dense grids [26], [41]. The
coarse electric field E on the boundary is calculated by coarse
magnetic field H inside the coarse grid and dense magnetic
field h inside the dense grid. However, the implicit updating
equations in CN-FDTD results in n + 1 time step index for
both e and h inside the dense grid, while the explicit updating
equations in FDTD results in n+ 1 time step index for E and
n+ 1/2 time step index for H inside the coarse grid. In order
to keep numerical stability in communicating information,
the boundary nodes connect the dense CN-FDTD region with
the coarse FDTD region based on an additional set of equa-
tions to update magnetic fields. Here, the explicit formulation
to update the dense hz inside the dense grid by CN-FDTD is
shown as

hn+1z

∣∣∣
i+ 1

2 ,j+
1
2 ,k

=

2ε0 ε∞|i+ 1
2 ,j+

1
2 ,k
−1t σy

∣∣
i+ 1

2 ,j+
1
2 ,k

2ε0 ε∞|i+ 1
2 ,j+

1
2 ,k
+1t σy

∣∣
i+ 1

2 ,j+
1
2 ,k

hnz
∣∣
i+ 1

2 ,j+
1
2 ,k

+ CH
z1

∣∣∣
i+ 1

2 ,j+
1
2 ,k

CE
zy

∣∣∣
i+ 1

2 ,j+
1
2 ,k

·

(
en+1x

∣∣
i+ 1

2 ,j+1,k
− en+1x

∣∣
i+ 1

2 ,j,k

+ enx
∣∣
i+ 1

2 ,j+1,k
− enx

∣∣
i+ 1

2 ,j,k

)
− CH

z1

∣∣∣
i+ 1

2 ,j+
1
2 ,k

CE
zx

∣∣∣
i+ 1

2 ,j+
1
2 ,k

·

 en+1y

∣∣∣
i+1,j+ 1

2 ,k
− en+1y

∣∣∣
i,j+ 1

2 ,k

+ eny
∣∣∣
i+1,j+ 1

2 ,k
− eny

∣∣∣
i,j+ 1

2 ,k


+

(
CH
z1

∣∣∣
i+ 1

2 ,j+
1
2 ,k

CH
zz

∣∣∣
i+ 1

2 ,j+
1
2 ,k
− CH

z2

∣∣∣
i+ 1

2 ,j+
1
2 ,k

)
· bnz

∣∣
i+ 1

2 ,j+
1
2 ,k

(16)

where the coefficients are defined as

CH
z1

∣∣∣
i+ 1

2 ,j+
1
2 ,k

=

2ε0 ε∞|i+ 1
2 ,j+

1
2 ,k
+1t σz|i+ 1

2 ,j+
1
2 ,k

µ0 µr|i+ 1
2 ,j+

1
2 ,k

(
2ε0 ε∞|i+ 1

2 ,j+
1
2 ,k
+1t σy

∣∣
i+ 1

2 ,j+
1
2 ,k

) ,
CH
z2

∣∣∣
i+ 1

2 ,j+
1
2 ,k

=

2ε0 ε∞|i+ 1
2 ,j+

1
2 ,k
−1t σz|i+ 1

2 ,j+
1
2 ,k

µ0 µr|i+ 1
2 ,j+

1
2 ,k

(
2ε0 ε∞|i+ 1

2 ,j+
1
2 ,k
+1t σy

∣∣
i+ 1

2 ,j+
1
2 ,k

) ,
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CH
zz

∣∣∣
i+ 1

2 ,j+
1
2 ,k

=

2ε0 ε∞|i+ 1
2 ,j+

1
2 ,k
−1t σx |i+ 1

2 ,j+
1
2 ,k

2ε0 ε∞|i+ 1
2 ,j+

1
2 ,k
+1t σx |i+ 1

2 ,j+
1
2 ,k
,

CE
zy

∣∣∣
i+ 1

2 ,j+
1
2 ,k

=

1tε0 ε∞|i+ 1
2 ,j+

1
2 ,k

1y
(
2ε0 ε∞|i+ 1

2 ,j+
1
2 ,k
+1t σx |i+ 1

2 ,j+
1
2 ,k

)
and

CE
zx

∣∣∣
i+ 1

2 ,j+
1
2 ,k
=

1tε0 ε∞|i+ 1
2 ,j+

1
2 ,k

1x
(
2ε0 ε∞|i+ 1

2 ,j+
1
2 ,k
+1t σx |i+ 1

2 ,j+
1
2 ,k

) .
An additional set of update equation of dense hz modified
by (16), which is used to calculate the coarse Ey on the
boundary by FDTD, can be written as

h
n+ 1

2
z

∣∣∣∣
i+ 1

2 ,j+
1
2 ,k

=

2ε0 ε∞|i+ 1
2 ,j+

1
2 ,k
−1t σy

∣∣
i+ 1

2 ,j+
1
2 ,k

2ε0 ε∞|i+ 1
2 ,j+

1
2 ,k
+1t σy

∣∣
i+ 1

2 ,j+
1
2 ,k

h
n− 1

2
z

∣∣∣∣
i+ 1

2 ,j+
1
2 ,k

+ 2 CH
z1

∣∣∣
i+ 1

2 ,j+
1
2 ,k

CE
zy

∣∣∣
i+ 1

2 ,j+
1
2 ,k

·

(
enx
∣∣
i+ 1

2 ,j+1,k
− enx

∣∣
i+ 1

2 ,j,k

)
− 2 CH

z1

∣∣∣
i+ 1

2 ,j+
1
2 ,k

CE
zx

∣∣∣
i+ 1

2 ,j+
1
2 ,k

·

(
eny
∣∣∣
i+1,j+ 1

2 ,k
− eny

∣∣∣
i,j+ 1

2 ,k

)
+

(
CH
z1

∣∣∣
i+ 1

2 ,j+
1
2 ,k

CH
zz

∣∣∣
i+ 1

2 ,j+
1
2 ,k
− CH

z2

∣∣∣
i+ 1

2 ,j+
1
2 ,k

)
· b

n− 1
2

z

∣∣∣∣
i+ 1

2 ,j+
1
2 ,k
. (17)

By doing so, the late-time stability can be maintained
for the proposed hybrid sub-gridded ADE-FDTD method,
which is confirmed by running an extended time simulation
for 300000 time-marching steps.

The conformal FDTD technique [42] is employed to accu-
rately model curvedmetallic and dielectric boundaries, which
are often encountered when typical underground targets are
modeled. Furthermore, the efficient DD technique [40] is
extended to 3-D computational domain to reduce the matrix
size and save the calculating time of the implicit CN-FDTD.
The whole computational domain is decomposed into some
small subdomains, and the solution of the original large sys-
tem of equations can be reduced to those of small independent
subsystems. As for the independence of each subsystem,
DD-CN-FDTD is easy to be implemented in a parallel
manner.

III. NUMERICAL RESULTS
In this section, two typical GPR scenarios, in which the
target to be detected is a cylindrical pipe buried in dispersive

soils, are numerically solved by the hybrid sub-gridded ADE-
FDTD method. The cylinder is either metallic or dielectric.
All calculations in this paper were performed on an Intel (R)
Xeon (R) CPU E5-2650 v2 @ 2.60 GHz Workstation with
128 GB RAM.

FIGURE 1. 3-D computational region of a typical GPR system with a
cylindrical pipe. The Tx and Rx antennas are placed at (0.48 m, 0.09 m,
1.05 m) and (2.46 m, 0.09 m, 1.05 m), respectively, 0.09 m above the soil
surface. The diameter and the length of the cylindrical pipe are 0.15 m
and 0.30 m, respectively, and its center is located 1.98 m beneath the soil
surface.

A. METALLIC CYLINDRICAL PIPE
The time-domain GPR response from a metallic cylindri-
cal pipe buried in the dispersive soil with moisture content
of 2.5% is considered. Homogeneous media are considered
in this case and the soil parameters come from [14], [43].
The Debye dispersive model of (4) is applied to the hybrid
sub-gridded FDTDmethod with the ADE approach [35]. The
uniaxial anisotropic PML [36], [37] consists of ten grids here.
As illustrated in Fig. 1, since the emphasis is to model the
time-domain wave propagation of a GPR system, both the
transmitting (Tx) and receiving (Rx) antennas are chosen as
point electric dipoles. And the Tx antenna is excited with the
first derivative of the Blackmann-Harris pulse [44]

Jz (t) =

−
2π
Ts

3∑
n=0

ann sin
(
2πnt
Ts

)
, 0 < t < Ts

0, elsewise

(18)

where the central frequency fc = 200 MHz, the time period
Ts = 1.55/fc, and the coefficients are a0 = 0.3532,
a1 = −0.488, a2 = 0.145 and a3 = −0.0102.
The computational domain is 3.00 m, 3.60 m and 2.10 m

along the x-, y- and z-directions, respectively. In the standard
FDTD method, a uniform cubic grid of 1dense× 1dense ×

1dense Yee cells with 1dense = 10 mm is used as a refer-
ence solution. In the sub-gridded FDTD methods, the pipe
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is discretized by dense grids of 1dense × 1dense × 1dense,
embedded in coarse grids of 1coarse × 1coarse × 1coarse
with 1coarse = 30 mm. The time step size of the standard
ADE-FDTD and sub-gridded ADE-FDTDmethods is chosen
according to the CFL limit of the dense grid. However, with
DD-CN-FDTD applied to the sub-gridded region, the hybrid
sub-gridded ADE-FDTD scheme is enabled to use a larger
time step size from the coarse grid, which is 3 times of that
from the CFL limit of the dense grid. Furthermore, to cover
the same time interval, both the standard ADE-FDTD and
sub-gridded ADE-FDTD need 3000 time-marching steps to
complete the simulations, whereas the hybrid sub-gridded
ADE-FDTD only includes 1000 time-marching steps.

FIGURE 2. Simulation results obtained from three methods. (a) Received
amplitude of Ez at the Rx antenna in the GPR system with a metallic
cylindrical pipe, calculated by the standard ADE-FDTD, sub-gridded
ADE-FDTD and hybrid sub-gridded ADE-FDTD. (b) Relative errors of the
sub-gridded ADE-FDTD and hybrid sub-gridded ADE-FDTD.

Fig. 2(a) shows the received amplitudes of Ez at the
Rx antenna, obtained with all the three methods. Excellent
agreement is clearly observed in Fig. 2(a). To quantify the

numerical accuracy, the relative errors of the sub-gridded
ADE-FDTD and hybrid sub-gridded ADE-FDTD are given
as

Error (t) =

∣∣Ez (t)− E ref
z (t)

∣∣∣∣E ref
z

∣∣
max

× 100% (19)

where Ez (t) is the result from the sub-gridded ADE-FDTD
or hybrid sub-gridded ADE-FDTD, E ref

z (t) is the reference
solution calculated from the standard ADE-FDTD with an
uniform dense grid, and

∣∣E ref
z

∣∣
max is the maximum value of

the reference solution over the whole time interval. Fig. 2(b)
shows the relative errors and demonstrates that a large time
step size has little effect on the numerical accuracy. Further-
more, the time snapshots of the amplitudes ofEz in Fig. 3 con-
firm the smooth evolution of the scattered fields through the
sub-gridded region in which DD-CN-FDTD is operated over
the CFL limit of the dense grid.

FIGURE 3. Time snapshots of the amplitude of Ez in the computational
region with a metallic pipe target, calculated by the hybrid sub-gridded
ADE-FDTD method. (a) Snapshot 1. (b) Snapshot 2. (c) Snapshot.
(d) Snapshot 4.

The CPU time and memory requirement for the three
methods are shown in Table 1, indicating that the CPU time
is significantly saved in the hybrid sub-gridded ADE-FDTD
scheme. Due to the storage of the sparse coefficient matrices
of implicit DD-CN-FDTD, the memory requirement of the
hybrid sub-gridded ADE-FDTD is larger than that of the sub-
gridded ADE-FDTD, as indicted in Table 1. In fact, it is worth
employing the proposed method to save much CPU time at
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TABLE 1. CPU time and memory requirement for the three methods.

the expense of memory requirement since the hybrid sub-
gridded scheme only needs 1/G (G is the grid refinement
factor) time-marching steps to cover the same time interval
of the standard ADE-FDTD and sub-gridded ADE-FDTD.

FIGURE 4. Received amplitude of Ez at the Rx antenna in the GPR system
with a metallic cylindrical pipe, calculated by the hybrid sub-gridded
ADE-FDTD method with and without taking the soil dispersion into
consideration.

The reflected waveform from the metallic cylindrical pipe
with and without the soil dispersion, obtained from the hybrid
sub-gridded ADE-FDTD method, is compared in Fig. 4.
It can be found that the received pulse shape can be visibly
influenced by the ground dispersion. Moreover, by normaliz-
ing to the maximum amplitude, Fig. 5 shows the normalized
amplitudes of Ez at the Rx antenna as the Tx-Rx antenna
distance is changed from 0 to 2.07 m along the x-direction.

B. DIELECTRIC CYLINDRICAL PIPE
In the second example, the GRP scenario with a target of
dielectric cylindrical pipe is considered. In reality, the GPR
system is especially useful for the detection of dielectric
objects buried in loss, dispersive and inhomogeneous soil.
The contrast between the values of permittivity of the target
and soil affects the resultant waveforms. In order to illustrate
the effects of the relative permittivity of the target, a number
of simulations with different relative permittivity values of 9,
25, 49 and 81 are performed in this section. Here, themoisture
content of the soil layer 1 is 2.5% and the moisture content of
the soil layer 2 is 5.0%, as illustrated in Fig. 1.

FIGURE 5. Comparison of radar traces for several Tx-Rx antenna
distances in the GPR system with a metallic cylindrical pipe.

FIGURE 6. Simulation results obtained from two methods with different
relative permittivity values of the target. Received amplitude of Ez at the
Rx antenna in the GPR system with a target of dielectric cylindrical pipe,
calculated by the sub-gridded ADE-FDTD and hybrid sub-gridded
ADE-FDTD. (a) Relative permittivity of the target is 9. (b) Relative
permittivity of the target is 25. (c) Relative permittivity of the target
is 49. (d) Relative permittivity of the target is 81.

In this example, a much finer discretization is required
since the target has a high permittivity value and supports
small wavelength compared with that of the surrounding soil
and air. Therefore, a grid refinement factor of 5 is used
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FIGURE 7. Time snapshots of the amplitude of Ez in the computational region with a dielectric pipe target which has different relative
permittivity values, calculated by the hybrid sub-gridded ADE-FDTD method. (a) Relative permittivity of the target is 9 and the normalized value of
the maximal reflection is 0.21. (b) Relative permittivity of the target is 25 and the normalized value of the maximal reflection is 0.39. (c) Relative
permittivity of the target is 49 and the normalized value of the maximal reflection is 0.59. (d) Relative permittivity of the target is 81 and the
normalized value of the maximal reflection is 1.00.

in the sub-gridded region. Hence, 1coarse = 30 mm and
1dense = 6 mm for the sub-gridded ADE-FDTD and hybrid
sub-gridded ADE-FDTD. As before, the time step size for the
sub-gridded ADE-FDTD is assigned to be the CFL limit of
the dense grid, and 5000 time-marching steps are required to
simulate the complete time-domain reflection of the dielectric
pipe. In the hybrid sub-gridded ADE-FDTD, a time step size
determined by the CFL limit of the coarse grid can be used
and only 1000 time-marching steps are required to cover
the same time interval enabled by the unconditionally stable
DD-CN-FDTD. The time step size of the proposed method
is 5 times over that of the sub-gridded FDTD. A standard
ADE-FDTD simulation with the uniform dense grid of this
problem would require too large memory and execution time,
and is omitted here.

The received amplitudes of Ez at the Rx antenna, with
different relative permittivity values of the target, are shown
in Fig. 6. Excellent agreements are observed between the two
methods. In Fig. 7, the time snapshots of the amplitude of Ez
further confirm the smooth evolution of the scattered fields
through the sub-gridded region in which DD-CN-FDTD is
operated over the CFL stability limit of the dense grid. Both
Figs. 6 and 7 show that the higher relative permittivity value
of the target is, the larger reflection is obtained, as expected.
The CPU time and memory requirement for the two methods
are also given in Table 2, which indicates the largely reduced
CPU time by using the hybrid sub-gridded ADE-FDTD.
Additionally, Table 2 illustrates again that the time saving
is associated with the expense of slightly larger memory
requirement than that of the sub-gridded ADE-FDTD.
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FIGURE 8. Comparison of radar traces for several Tx-Rx antenna distances with different relative permittivity values of the dielectric target.
(a) Relative permittivity of the target is 9. (b) Relative permittivity of the target is 25. (c) Relative permittivity of the target is 49. (d) Relative
permittivity of the target is 81.

TABLE 2. CPU time and memory requirement for the two methods.

Finally, the reflected Ez waveform from the environment
and the target with different relative permittivity values at the
Rx antenna are shown in Fig. 8. It can be pointed out that the
largest reflections are obtained from the dielectric cylindrical
pipe with relative permittivity value of 81. The simulation
results in this section demonstrate that as the contrast between
the soil and the target increases, scattered fields observed at
the Rx antenna get larger in amplitude.

IV. CONCLUSION
It is computationally challenging for the standard
ADE-FDTD method to numerically model and simulate

3-D realistic GPR scenarios which involve the electromag-
netic reflection, diffraction and scattering with multiscale
geometries. Fine grid discretization is often required in
simulating practical GPR systems either because of their
geometrical features which can span several scales of mag-
nitude or because of their high dielectric permittivity and
conductivity of the objects and surrounding materials. Sub-
gridded ADE-FDTD methods are suitable for this kind of
problems, since they can accurately simulate multiscale
features. In this paper, a hybrid sub-gridded ADE-FDTD
method, in which the overall time step size is no longer
restricted by the CFL limit of the dense grid, is presented for
simulating the 3-DGPR scenarios efficiently. Therefore, long
simulation time due to small time step size is not required any
more.

In conclusion, three contributions are made in this paper.
First, a hybrid sub-gridded scheme, in which the implicit
CN-FDTD is used in the local dense-grid region while the
explicit FDTD is used in the global coarse-grid region,

15784 VOLUME 6, 2018



X.-K. Wei et al.: Hybrid Sub-Gridded Time-Domain Method for Ground Penetrating Radar Simulations Including Dispersive Materials

is presented, and a time step size from the CFL limit of the
coarse grid can be used throughout the computational region.
Second, an efficient and stable implementation of exchanging
data between the dense CN-FDTD region and coarse FDTD
region is proposed, and no time-consuming temporal interpo-
lation or extrapolation is necessary to synchronize the coarse
and dense grids. Third, the DD technique is extended to the
3-D computational region that includes general dispersive,
conductive and inhomogeneous media and fast calculation
is achieved. Challenging computations, including the time-
domain response from targets with high relative permittivity
values, demonstrate that the proposed method is accurate and
efficient for GPR numerical modeling. The proposed hybrid
sub-gridded ADE-FDTD can also be applied to complex
geometries and structures involving multiscale grid division,
such as metamaterials, photonic crystals, microwave devices
and antennas.
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