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ABSTRACT In this paper, we propose a unified array geometry, dubbed generalized nested subar-
ray (GNSA), for the underdetermined direction-of-arrival estimation. The GNSA is composed of multiple,
identical subarrays, which can be a minimum redundancy array (MRA), a (super) nested array, a uniform
linear array (ULA), or any other linear arrays with hole-free difference coarrays (DCAs). By properly design
the spacings between subarrays, the resulting DCA of the GNSA can also be a hole-free (filled) ULA. When
the subarray is an MRA and meanwhile its sensors’ positions also follow an MRA configuration, a nested
MRA (NMRA) is constructed. This NMRA can provide up to O(M2N 2) degrees of freedom (DOFs) using
only MN physical sensors. In order to fully utilize the increased DOF, we develop a new DOA estimation
algorithm, which consists of a dimensional reduction matrix to exploit the data of all virtual elements,
a Toeplitz matrix to decorrelate the equivalent coherent sources, and a root-MUSIC method to mitigate
the computational workload. This new algorithm can achieve better DOA estimation performance than
traditional spatial smoothingMUSIC algorithmwith lower computational complexity. Numerical simulation
results demonstrate the superiorities of the proposed array geometry in resolving more sources than sensors,
DOA estimation performance, and the angular resolution.

INDEX TERMS Coprime array, difference coarray, direction-of-arrival (DOA) estimation, minimum
redundancy array, nested array, sensor arrays.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation is an important topic
in various applications, such as radar and sonar. It is well
known that the maximum number of sources that can be
resolved by a K -element uniform linear array (ULA) using
traditional DOA estimation methods, such as MUSIC [1]
and ESPRIT [2], is K − 1. The underdetermined DOA esti-
mation problem, i.e., resolving more sources than sensors,
has received considerable interest in recent years [3]–[6].
An effective approach to solve this problem is to increase
the number of degree of freedom (DOF) by designing an
equivalent virtual array (see, e.g., [7]). The number of DOF
is an important array design criteria because more DOFs
mean more sources can be resolved by the array system.

In principle, the virtual array is constructed by vectorizing
the covariance matrix of the received data collected from a
properly designed non-uniform linear array [7]–[11].

A. NON-UNIFORM LINEAR ARRAY DESIGN FOR
DOA ESTIMATION
Various non-uniform linear array design methodologies have
been reported in the literature, for example, the minimum
redundancy array (MRA) [8], the nested array [7], and the
coprime array [9], [10], etc. An MRA is a linear array
designed to minimize the number of array elements by reduc-
ing the redundancy of the element spacing. The virtual array
derived from an MRA is a hole-free ULA with the largest
possible aperture for a given number (K ) of physical sensors.
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Unfortunately, no closed-form expressions for the sensor
positions and for the number of achievable DOF as a func-
tion of K have reported in literature. Other relatively ad-hoc
approaches exist, for example, design of MRAs for K 6 17
sensors has been found by exhaustive search routines [9],
[12]. Ishiguro [13] discussed amethod of using a combination
of twoMRAs to find anMRA for a large number of antennas.
However, only a constructing method with several combi-
nations of the two MRAs is given. Therefore, a systematic
mathematical tractable design approach for larger MRAs is
lacking.

Recently, a new nested array (NA) design approach has
been proposed [7]. Nested linear arrays are nonuniform arrays
constructed by concatenating two or more ULAs where each
of the subarray has a different inter-element spacing. One
subarray has denser unit inter-element spacing than the other
one. By using the second order statistics of the received
sensor data, it is possible to achieve O(K 2) DOFs from K
physical sensors. Moreover, there is a closed-form expression
for sensor positions and computing DOFs [7], [14]. However,
as reported in [9]–[11], a limitation of the NA approach is that
the sensors in the first subarray of the nested array are usually
closely located in space, whichwould lead tomutual coupling
problems between adjacent sensors.

Most recently, a coprime array (CA) [9], [10], [15] consists
of two uniform linear subarrays with M and N elements
has been proposed, where M , N are coprime integers. The
coprime array is capable of providing a higher number of
DOF than the number of physical sensors, and it has the
advantage of reducing mutual coupling between sensors by
increasing the inter-element spacing. One can also create a
virtual array from a CA. However, the created virtual array
is not a filled ULA (i.e., it has holes) [10], which will
leads to other problems in the following DOA estimation
process. Furthermore, when constructing a virtual array from
the covariance matrix of the received data, the equivalent
sources of the virtual array are considered as fully coherent
sources. A spatial smoothing based MUSIC algorithm may
be employed to de-correlate the sources [7], [10] and then to
estimate the DOAs. However, since spatial smoothing based
methods are usually only applicable to ULAs [7], [16], only
the ULA part of the virtual array generated from a coprime
array may be utilized to perform the DOA estimation. This
limitation leads to a reduction in both the DOF and the
aperture of the virtual array [10], [15].

B. ALGORITHMS FOR UNDERDETERMINED
DOA ESTIMATION
A diversity of algorithms [4], [7], [9], [10], [16]–[19] have
been proposed to resolve more sources than sensors using
the virtual array derived from a non-uniform linear array,
i.e., to solve the underdetermined DOA estimation problem.
One representative approach is the spatial smoothingMUSIC
(SS-MUSIC) algorithm [7], [9], [16]. A disadvantage of this
approach is that not all the elements of the virtual array are
used when performing DOA estimation, which may result in

a reduction of the signal to noise ratio (SNR). Another repre-
sentative approach is the sparse signal reconstruction method
that takes advantage of the fact that the signal spectra are
sparse [10], [17]–[19]. However, algorithms used to imple-
ment this approach typically suffer from heavy computational
workload.

C. CONTRIBUTIONS OF THIS PAPER
We first summarize the challenges in the array design and in
the DOA estimation algorithm.

1) No closed-form expressions for the sensor positions and
for the number of achievable DOF in an MRA.

2) Mutual coupling is a considerable problem in an NA.
3) The virtual array generated from a CA is not a filled

ULA.
4) Algorithms for the underdetermined DOA estimation

are not efficient.

Bearing the above concerns in mind, in this paper we
propose a unified array geometry named generalized nested
subarray (GNSA) with desired array properties and develop
a new algorithm for the underdetermined DOA estimation
based upon the proposed GNSA. The contributions of this
paper are threefold.

{A.} The proposed GNSA is composed of multiple identical
subarrays. Each subarray of the GNSA can be anMRA,
a (super) nested array [7], [20], a ULA, or any other lin-
ear arrays that have hole-free DCAs. The positions of
these subarrays also follow a linear array configuration.
By properly designing the inter-subarray spacings,
we can obtain a virtual array of this GNSA being a
hole-free (filled) ULA. Following our GNSA design
methodology, a class of new arrays can be constructed
due to the variety of existing linear arrays that have
hole-free DCAs. In particular, when the subarray is
an MRA and its sensors’ positions follow an MRA
configuration, the resulting GNSA becomes a nested
MRA (NMRA) [11]. Therefore, the NMRA is one
special example of our proposed GNSA. Note that the
requirement of hole-free DCA is an important con-
straint for the subsequent DOA estimation. Although
it is possible that the nested array might have lower
mutual coupling, larger aperture, and more DOFs than
our proposed GNSA when the antennas in the nested
array are placed inmultiple levels, the resultingDCAof
the nested array is, unfortunately, not a hole-free ULA,
which will cause difficulties in the spatial smoothing
based DOA estimation. Furthermore, since the con-
stituent subarrays in the GNSA are identical, the GNSA
has noticeable advantages of low cost, relatively simple
structure, and easy extension to an array with a very
large aperture, and is thus suitable for a wide variety of
real-world applications.

{B.} We provide a detailed theoretical analysis on the prop-
erties of a GNSA constructed by two subarrays called
Subarray A and Subarray B. Four propositions
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TABLE 1. Abbreviations used in the paper.

are presented with proofs to reveal the intrinsic rela-
tionships between the GNSA and its components.
Based upon these propositions, we analyze the charac-
teristics of different GNSAgeometries and compare the
GNSAwith theMRA, the nested array, and the coprime
array using the NMRA as a representative example.

{C.} We propose a new estimation algorithm for the
underdetermined DOA estimation using the proposed
GNSA. In the algorithm, we introduce a dimension
reduction matrix to exploit the data of all virtual ele-
ments, and then construct a Toeplitz matrix of the
observed data instead of the spatial smoothing opera-
tion to decorrelate the equivalent coherent sources. Fol-
lowing this, we apply the root-MUSICmethod to avoid
the costly angle grid search. Numerical simulations
demonstrate that the proposed algorithm can achieve a
higher performance than the popular SS-MUSIC algo-
rithm with a lower computational cost.

D. NOTATIONS AND ABBREVIATIONS
Throughout the paper, matrices and vectors are represented
by capital letters and lower case letters in boldface, respec-
tively. Superscript (·)T , (·)∗ and (·)H respectively denote
the transpose, the conjugate and the conjugate transpose of
a matrix or a vector. Statistical expectation is denoted by
E(·), and vec(·) is the vectorization operation that stacks all
columns of a matrix into a vector. Table 1 summaries the
abbreviations used in the paper.

E. ORGANIZATION OF THIS PAPER
The rest of the paper is organized as follows. The signalmodel
is presented in Section II. The proposed array geometry and
its properties are developed in Section III, and the array
characteristics of the GNSA with different array geometries
are described in Section IV. In Section V, we use the NMRA
as the representative to compare its characteristics with the
nested array and the coprime array. In Section VI, the DOA
estimation algorithm is developed for the proposed array.

FIGURE 1. Array geometry (normalized by d ) for DOA estimation.

Section VII presents numerical examples. Section VIII con-
cludes the paper.

II. SIGNAL MODEL
Consider a K -element linear antenna array with sensors
located at

v = [v1, v2, · · · , vK ]d, (1)

where {vi}Ki=1 are integers, and d is the unit inter-element
spacing, usually equal to a half wavelength of the incident
signal. Let Q uncorrelated narrow-band sources impinge on
the array from directions

{
θq, q = 1, 2, · · · ,Q

}
as shown

in Fig. 1. A steering vector is the array response to a unit
power source at angle θ,

a(θ ) =
[
ejκv1 sin θ , ejκv2 sin θ , · · · , ejκvK sin θ

]T
, (2)

where κ = 2πd/λ, and λ is the signal wavelength.
The data received by the array can be expressed as

x(t) = As(t)+ n(t), t = 1, · · · ,T , (3)

where A =
[
a(θ1), a(θ2), · · · , a(θQ)

]
is the array manifold

matrix and T is the number of snapshots. The source signals
s(t) =

[
s1(t), s2(t), · · · , sQ(t)

]T are assumed unknown, but
each source sq (t) is assumed to follow a complex Gaussian
distribution CN (0, σ 2

q ) with zero mean and variance σ 2
q .

These signals are assumed to be mutually independent and
uncorrelated over time. The components of the noise vector
n(t) are assumed to be independent and identically distributed
(i.i.d.) additive white Gaussian noise with zero mean and
variance σ 2

n , and are independent from the sources. The
covariance matrix of the received data x(t) can be expressed
as

Rxx = E[xxH ] = ARssAH
+ σ 2

n IK

=

Q∑
q=1

σ 2
q a(θq)a

H (θq)+ σ 2
n IK , (4)

whereRss = E[ssH ] is aQ×Q diagonal matrix with diagonal
elements {σ 2

1 , σ
2
2 , · · · , σ

2
Q}, and IK is aK×K identity matrix

with the (m, l)-th element denoted as Iml . It should be noted
that Iml = 1 when m = l, and Iml = 0 otherwise. In order
to exploit the information implied in the covariance matrix,
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we examine its (m, l)-th element

Rml =
Q∑
q=1

σ 2
q e

jκ(vm−vl ) sin θq + σ 2
n Iml

= bTml(θ )c+ σ
2
n Iml, 1 ≤ m, l ≤ K , (5)

where bml(θ ) =
[
ejκ(vm−vl ) sin θ1 , · · · , ejκ(vm−vl ) sin θQ

]T
, c =[

σ 2
1 , σ

2
2 , · · · , σ

2
Q

]T
. From (5), the covariance Rml may be

interpreted as an aggregated signal received from all sources
observed at a virtual element located at (vm − vl)d . By vec-
torizing matrix Rxx, we obtain a K 2

× 1 vector

z̃ = vec(Rxx) = Bc+ σ 2
n 1n, (6)

where
•

B =
[
a∗(θ1)⊗ a(θ1), · · · , a∗(θQ)⊗ a(θQ)

]T
=
[
b(θ1),b(θ2), · · · ,b(θQ)

]
∈ CK2

×Q, (7)

with symbol ⊗ standing for the Kronecker product;
• 1n =

[
eT1 , e

T
2 , · · · , e

T
K

]T , with ei denoting a vector of all
zeros, except the i-th element, which is equal to one;

• c is interpreted as an equivalent source signal vector in
the virtual array.

However, it should be noted that the vector c only contains
the powers of the actual sources without their phase infor-
mation. The rank of its autocorrelation matrix is one, and
hence these equivalent sources are considered fully coherent
sources to the virtual array.

From (5) and (6), we observe that the vector z̃ is equivalent
to the data received by a virtual array with elements located
at the location set

V = {(vm − vl)d,m, l = 1, 2, · · · ,K } . (8)

In this location set V of the virtual array, there are in
total K 2 elements, but some locations may be repeated. More
specifically, there may exist multiple pairs of {vm, vl}Km,l=1
for which (vm − vl) are the same. In this case, multiple virtual
elements are associated with the same virtual sensor location.
We refer to the repeated elements as redundancies. The num-
ber of redundancies in a virtual array is determined by the
structure of the original array. A higher redundancy implies
fewer distinct elements in V. The locations of a virtual array
are symmetric due to the fact that for any pml = (vm − vl)d
in the location set V in (8), −pml = (vl − vm)d is also in the
set V.
We define the virtual array that has sensors located at

distinct elements of V, as a difference coarray (DCA) of
the original array [7]. It should be pointed out that in the
location set of the DCA, denoted by D, we have removed all
repeated elements in V. Therefore, the number of elements
in the DCA is equal to the number of DOF achieved by the
virtual array, denoted by fV , and fV < K 2. If the original
array is properly designed, fV can be larger than the number
of physical sensors. Therefore, it is possible to resolve more

sources than the number of physical sensors by using a part
of or the entire DCA instead of the original array to perform
DOA estimation.

When designing an array for which it is possible to resolve
more sources than sensors, the following features are desired:
(a) A large number of DOFs and a large aperture, which

means low redundancies in the virtual array,
(b) A closed-form expression for sensor positions and the

number of achievable DOF,
(c) A DCA that is a hole-free ULA, and
(d) A configuration that reduces mutual coupling by pre-

venting elements from being too close to each other.
The proposed GNSA array geometry, especially the NMRA,
described in next section meets all these design criteria.

III. PROPOSED GENERALIZED NESTED
SUBARRAY (GNSA)
A. ARRAY GEOMETRY
The proposed array is composed of N identical subar-
rays, denoted by Subarray A, and the locations of these
Subarray A follow the geometry of another subarray
denoted by Subarray B.
• Subarray A: Each subarray hasM sensors with loca-
tions specified by the vector

uM = [m1,m2, · · · ,mM ] d, (9)

where d is the unit inter-element spacing, {mi}Mi=1 are
integers. Without loss of generality, we choose m1 = 0.
Each of the subarrays constituting the GNSA is a linear
array, such as an MRA, a ULA, or a nested array with
two levels, whose difference coarray is a hole-free ULA.

• Subarray B: It has N elements, where N may or may
not be equal to M . Let the element locations in
Subarray B be

uN = [n1, n2, · · · , nN ]D, (10)

where {ni}Ni=1 are integers, n1 = 0, and D > mM · d .
As mentioned earlier, we now combine these two arrays
by placing a Subarray A at each element location of
Subarray B. Then the positions of all sensors form a cross
summation set

S =
{
nj · D+ mi · d, 1 ≤ j ≤ N , 1 ≤ i ≤ M

}
. (11)

Let⊕ denote the cross summation of every element in uN and
every element in uM . In this way the sensor positions of the
entire array may be expressed by the vector

v = uN ⊕ uM . (12)

This is the unified array geometry proposed in our paper. Note
that the nesting method embodied in (12) between two linear
arrays is different from the nested array introduced in [7],
which is a union of two or more uniform linear subarrays.

Owing to the fact that Subarray B and Subarray
A can be any linear array with a hole-free DCA, there are
many combinations of the array geometries. We use the form
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TABLE 2. Parameters of GNSA and its subarrays.

‘‘Subarray B + Subarray A’’ to denote the specific
array geometry. For example, ‘‘MRA + MRA’’ means that
Subarray B andSubarray A are bothMRAs, ‘‘MRA+
ULA’’ means that Subarray B is anMRA and Subarray
A is a ULA, etc.

Fig. 2 depicts an example of the proposed array geometry
when Subarray A and Subarray B are both MRAs.
With M = 4 and N = 3, the GNSA has MN = 12 sensors.
Subarray A, Subarray B, the GNSA and its DCA are
shown in Fig. 2, with D = 13d . We can see that the aperture
length of the GNSA is 45d , and the DCA is a hole-free ULA
with 2 × 45 + 1 = 91 elements. Hence the number of DOF
associated with the DCA is 91. Note that if D > 13d , there
will be holes in the DCA, which may cause difficulties with
spatial smoothing based DOA estimation. On the contrary,
D < 13d will result in some additional redundant elements
in the virtual array. Therefore it is important to choose a
proper spacing D in the GNSA. The following properties
establish the optimum value of the spacing D, the aperture
of the original array and the number of the DOF in the DCA
associated with the GNSA.

B. PROPERTIES OF GNSA
Our design assumes the structures of Subarray A and
Subarray B are known. We denote the parameters of the
two subarrays in Table 2. Next we derive the properties of a
GNSA using the parameters of its components, Subarray
A and Subarray B.
Proposition 1: The location setDV of the DCA associated

with a GNSA is obtained by the cross summation of location
sets DB and DA, that is

DV = DB ⊕ DA. (13)
Proof: The proof is provided in Appendix A. �

This proposition reveals the relation between the DCA of
a GNSA and the DCAs of its components, Subarray B
and Subarray A. According to proposition 1, the locations
of the DCA of a larger GNSA may be calculated using
the locations of the DCAs of the constituent two subarrays.
Proposition 1 also inspires us to compute the aperture length
and the number of DOF of the GNSA using parameters of the
Subarrays A and B. The following proposition specifies
the GNSA.
Proposition 2: If the inter-subarray spacing D = fA · d,

the following properties hold for the GNSA constructed
according to (12):
(a) The virtual array of the GNSA is a hole-free ULA with

the largest possible aperture.
(b) The aperture length of the GNSA is lV · d =

(fA · lB + lA) d.

(c) The aperture length of the DCA is fV · d = (2lV + 1)d.
(d) The number of DOF in the DCA of the GNSA is

fV = fA · fB. (14)
Proof: The proof is provided in Appendix B. �

In order to analyze the characteristics of the virtual array
of a GNSA, we define a weight function w(k) to denote the
number of times that kd , where−lV < k < lV , appears in the
location set V. We use the following proposition to describe
the characteristic of the weight function of a GNSA.
Proposition 3: Assume that the weight function of

Subarray A is wA ∈ RfA , and the weight function of
Subarray B is wB ∈ RfB . The weight function wV of the
GNSA can be calculated by the Kronecker product of wB and
wA, that is

wV = wB ⊗ wA. (15)
Proof: The proof is provided in Appendix C. �

Proposition 4: For the GNSA v defined in (12), if we
exchange Subarray A and Subarray B and their inter-
element spacing, that is using M identical N-sensor subar-
rays to form a new GNSA v′ and the unit spacing D′ among
the subarrays becomes fB · d, then the aperture length of the
GNSA v′ and the number of DOF in its DCA will keep the
same as those of v.

Proof: The proof for the DOF is obvious using the
commutative law of multiplication because both numbers
of the DOF associated with the two GNSAs are equal
to fA · fB.

Because the DCAs of Subarray A and Subarray
B are hole-free ULAs and have the symmetric property,
we can obtain the relations fA = 2lA + 1, fB = 2lB + 1
for Subarray A and Subarray B, respectively. From
proposition 2 we know that the aperture length of the GNSA
v constructed by N identical M -sensor subarrays is

lV · d = (fA · lB + lA)d

= [(2lA + 1) lB + lA] d

= (2lA · lB + lB + lA) d . (16)

The aperture length of the new GNSA v′ constructed by M
identical N -sensor subarrays can be obtained by

lV ′ · d = (fB · lA + lB)d

= [(2lB + 1) lA + lB] d

= (2lB · lA + lA + lB) d . (17)

Thus lV ′ = lV . �
Proposition 4 implies that there exist two array manifolds

to construct a GNSA for a given number ofM and N . There-
fore we may consider some other factors, such as mutual
coupling, peak side lobe level, in addition to the aperture and
the DOF to select one of the manifolds.

In the following, we will use these properties to analyze the
GNSA with some examples.
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FIGURE 2. An example geometry of GNSA consists of 3 identical 4-element minimum redundancy subarrays, in which D = 13d .

TABLE 3. Parameter comparisons of different GNSA geometries.

IV. CHARACTERISTICS OF NESTED SUBARRAY WITH
DIFFERENT ARRAY GEOMETRIES
In the proposed unified array geometry, the subarray can
be an MRA, a nested array, a ULA, or any other lin-
ear arrays with hole-free DCAs. Therefore, there are mul-
tiple combinations of array geometries. In this section,
we will analyze the characteristics of the GNSA with dif-
ferent array geometries using the properties presented in
Section III-B.

A. MRA + MRA
When Subarray B and Subarray A are both MRAs,
the nested subarray can be treated as an MRA of MRA sub-
arrays. This array has the largest aperture, maximum number
of DOF and lowest redundancies among these combinations
for a fixed number of physical sensors. We also name this
array as Nested MRA (NMRA) [11]. This array can be used
to construct an MRA with a large number of antennas. The
numbers of DOF of Subarray A and Subarray B can
be expressed respectively by [12]

fA = M2
−M + 1−MR,

fB = N 2
− N + 1− NR, (18)

where MR and NR are the number of redundancies for an
M -sensor MRA and an N -sensor MRA, respectively. Substi-
tuting (18) into (14), we obtain

fV = fA · fB

=

(
M2
−M + 1−MR

) (
N 2
− N + 1− NR

)
. (19)

Therefore it can be concluded that an NMRA can pro-
vide O(M2N 2) DOFs using only MN physical sensors when
Subarray A and Subarray B are both MRAs.
Fig. 2 is an illustration of 12-element NMRA. We will

compare the characteristics of the NMRA with the MRA,
the nested array and the coprime array in Section V.

B. ULA (MRA, NA) + ULA
If Subarray A is a ULA, the GNSA is a repetition of
multiple ULA subarrays. This kind of array has been widely
studied [21]–[23] because the array aperture can be easily
extended without causing significant increase in software and
hardware costs. However, there is no criteria for the inter-
subarray spacing. In our proposed GNSA, we properly design
the inter-subarray spacing to form a hole-free DCA, and
derive closed-form expressions for the sensor positions and
the number of achievable DOF.

For anM -element ULA with unit inter-element spacing d ,
the aperture length and the number of DOF achieved by its
DCA are (M − 1)d and 2M − 1, respectively. According to
Proposition 2, the inter-subarray spacing is D = (2M − 1)d
when Subarray A is a ULA. Therefore, we can obtain the
aperture length of the ‘‘ULA + ULA’’, ‘‘MRA + ULA’’ and
‘‘NA + ULA’’and their number of DOF using Proposition 2,
which are shown in Table 3.

C. NA + NA
If both Subarray B and Subarray A are nested linear
array, we will obtain a nested subarray of ‘‘NA + NA’’.
Fig. 3(f) gives an example of ‘‘NA + NA’’, from which we
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FIGURE 3. Array geometries of GNSA for N = 4 and M = 4. (a) MRA+MRA. (b) ULA+MRA. (c) NA+MRA. (d) MRA+NA. (e) ULA+NA. (f) NA+NA.
(g) MRA+ULA. (h) ULA+ULA. (i) NA+ULA.

can see that the array geometry is composed of several NAs.
This geometry is different from the nested array with multiple
levels [14] which consists of multiple level ULAs with an
increased inter-element spacing in each level. Although the
NA with more than two levels can obtain more degrees of
freedom, its difference coarray is not a hole-free ULA [7].
Therefore in our paper we will only consider two level nested
array whose DCA has no holes, for a fair comparison. The
‘‘NA + NA’’ structure is more suitable for distributed array
application owing to its multiple subarray structure.

For a two level nested array with M physical sensors,
the maximum number of DOF is [7]

fNA =

{
M2/2+M − 1, if M is even;

(M + 1)2/2− 1, if M is odd.
(20)

The aperture length is

lNA · d = (fNA − 1) · d/2. (21)

Substituting (20) and (21) into Proposition 2, we can obtain
the corresponding parameters of the ‘‘NA + NA’’ shown
in Table 3.

D. OTHER COMBINATIONS
In addition to the above three array geometries, there are
some other combinations such as ‘‘MRA + NA’’, ‘‘ULA +
MRA’’, ‘‘NA + MRA’’ and ‘‘ULA + NA’’, etc. The num-
ber of achievable DOF and the aperture length for different
array geometries can be obtained using Proposition 2 and
relevant expressions from [7], [8], and [10], which are sum-
marized in Table 3. Furthermore, the array configurations can
be extended to other combinations when the subarrays are
other linear array geometries with hole-free DCAs, e.g. super
nested array (SNA) [20]. We can form some other new array
geometries, e.g. ‘‘MRA + SNA’’, ‘‘ULA + SNA’’, ‘‘SNA +
MRA’’ and so on.

TABLE 4. Array configuration parameters.

Fig. 3 illustrates the array geometries of GNSA for M =
N = 4. The inter-subarray spacing is chosen to form a hole-
free DCA. From Fig. 3, we can see that the ‘‘MRA +MRA’’
structure has the largest aperture 84d , the ‘‘ULA + ULA’’
structure has the smallest aperture 24d , and the apertures of
other arrays are in between the former two array structures.

Next, we compare the number of achieved DOF from the
DCA of the GNSA. Let the total number of sensors be some
integers from 9 to 36, and choose the optimal number of
sensors in the subarrays of different array geometries as listed
in Table 4. The number of achievable DOF and the aperture
length for different array geometries can be obtained using
the equations in Table 3. The comparison results are shown
in Fig. 4. We can see that the ‘‘MRA + MRA’’ structure
can achieve the maximum number of DOF, the ‘‘ULA +
ULA’’ structure has the minimum number of DOF, and the
numbers of DOF from other array geometries are somewhere
in between. This feature gives us more options to choose an
appropriate array geometry from these combinations based
on practical applications.

The difference between the proposed GNSA and the exist-
ing non-uniform linear array will be discussed in the next
section.

V. COMPARE NMRA WITH OTHER ARRAY GEOMETRIES
In this section, we use the NMRA as an example of the
proposed GNSA to compare its characteristics with other
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FIGURE 4. DOF comparisons of different GNSA geometries with total
number of sensors.

arrays, including the MRA, the nested array and the coprime
array.

1) Since the MRA [8] is optimized to produce the largest
DCA under the constraint that the DCA is a hole-free ULA,
the proposed NMRA will not produce more DOFs than
an MRA with the same number of physical sensors. How-
ever, the optimal design of an MRA is usually analytically
intractable, obtainable only by exhaustive search or com-
plicated algorithms [9]. By contrast, the NMRA uses cross
summation of two MRA subarrays to generate a new array,
which is easy to construct based on the known MRA. The
sensor positions and the number of DOF can be obtained
using (12) and (19) when these parameters of the MRA
subarrays are known. Thus, given an N -element MRA, it is
possible to design a much larger N 2-element NMRA.

2) The nested array [7] is the union of two ULA subarrays,
where the first ULA hasM1 sensors with inter-element spac-
ing d , the other has N1 sensors with inter-element spacing
d2 = (M1 + 1)d . One shortcoming of the nested array is
the possible mutual coupling problem caused by the sensor
pairs separated by d = λ/2 [16]. When maximizing the
total DOF, the optimal values of M1 and N1 in the nested
array are integers around K/2 under the constraint of fixed
K sensors [7]. Thus there are M1 ≈ K/2 pair of sensors
separated by d for a K -element nested array.
There are a small number of sensor pairs spaced by d

in an MRA, e.g., four at most for MRAs with less than
17 sensors [12]. The NMRA is composed of multiple MRA
subarrays and thus an NMRAmay have fewer closely spaced
elements than the nested array. Let m denote the number of
sensor pairs, which are separated by d in anM -elementMRA.
Then the NMRA constructed by N identicalM -element min-
imum redundancy subarrays has mN pairs of sensors sep-
arated by d . We plot the number of sensor pairs separated
by d in the nested array (NA) and the NMRA with some
total number of physical sensors K in Fig. 5. We see that the
number of sensor pairsM1 in the nested array is proportional

FIGURE 5. Number of sensor pairs, which are separated by d , comparison
of the nested array with two ULA subarrays and the NMRA versus total
number of sensors.

to K , and these numbers are larger than the number of sensor
pairs in the NMRA. Thereby the NMRA is subject to lower
mutual coupling than the nested array with same number of
sensors. At the same time, the NMRA has a larger aperture
and more DOFs than the nested array which will be shown
in Fig. 6 and is discussed next.

The nested array with more than two ULA subarrays [14]
has lessmutual coupling by increasing the inter-element spac-
ing of last few subarrays. But the virtual array generated from
the nested array is not a hole-free ULA, which may cause
difficulties with spatial smoothing based DOA estimation.

3) The coprime array [9], [10] is constructed by two ULA
subarrays with M2, N2 elements respectively, where M2,
N2 are coprime integers. The corresponding inter-element
spacings in both ULAs are N2d and M2d , respectively. The
coprime array allows adjacent elements to be spaced far-
ther apart, which is helpful for reducing the mutual cou-
pling between elements. However the DCA generated from a
coprime array is not a hole-free ULA. The NMRA can avoid
holes by setting a proper unit spacing D in Subarray B.
Next, we compare the aperture length and the number

of DOF of the four array geometries mentioned above.
We use the coprime array with compressed inter-element
spacing (CACIS) in [10], which is an extended coprime array
with fewer holes, as the representative of the coprime array.
Let the total number of sensors be some integers from 9 to 36,
and choose the optimal number of sensors in the subarrays of
different array geometries as listed in Table 4. The number
of achievable DOF and the aperture length for different array
geometries can be obtained using Proposition 2 and relevant
expressions from [7], [10]. The comparison results are shown
in Fig. 6, in which the table at the top-left corner lists the
first six corresponding values. We show that our proposed
NMRAs have the highest DOF and largest aperture except
the MRAs smaller than 17 sensors. However, no such MRAs
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FIGURE 6. Parameter comparisons of different array geometries with
total number of sensors, in which the table at the top-left corner lists the
first 6 corresponding values for clear viewing and NA is short for nested
array. When the number of sensors is larger than 17, there are no such
known MRAs and no expression for their parameters, shown by ‘NaN’ in
the corresponding cell. (a) The number of DOF comparison. (b) Aperture
length comparison in the unit of the spacing d .

with more than 17 sensors have been reported in the litera-
ture and hence their parameters are shown as ‘NaN’ in the
corresponding table. Although the CACIS has the advantage
of reducing mutual coupling, it has fewer DOF and smaller
aperture than the nested array and the NMRA.

To summarize, the proposed NMRA satisfies all of the four
features required for an array to resolve more sources than
the number of sensors, which are listed in Section II. The
sensor positions, aperture length and the number of the DOF
of an NMRA can be predicted using the parameters of the
known MRA subarrays. The DCA can be a hole-free ULA
when D = fA · d . The NMRA has more DOFs and larger
aperture than the nested array and the CACIS, with the same

number of physical sensors. Moreover, the NMRA has lower
mutual coupling than the nested array with two levels.

VI. DOA ESTIMATION ALGORITHM
In this section we develop DOA estimation algorithms
applied to the virtual array of a GNSA to resolve more
sources than sensors. Recall the equivalent source signal

vector c =
[
σ 2
1 , σ

2
2 , · · · , σ

2
Q

]T
in (6), which is composed

of the powers of the actual sources. All elements in c are
real values, and hence the rank of its autocorrelation matrix
is one. The equivalent sources are considered fully coherent
sources to the virtual array. The traditional subspace-based
DOA estimation algorithms, such as MUSIC and ESPRIT,
cannot be directly applied to the virtual array to estimate
DOAs. Various algorithms [7], [9], [10], [18], [19] have been
proposed to decorrelate the sources and to perform DOA
estimation. However, as we pointed out earlier in Section I,
the SS-MUSIC algorithm [7], [9] does not use all elements of
the virtual array, whichmay degrade the performance of DOA
estimation. In addition, sparse signal reconstruction based
algorithm [18], [19] usually requires a heavy computational
workload because it is based on the signal spectra sparsity
which is typically divided into numerous small grids to main-
tain the accuracy. To overcome these limitations, we propose
a new DOA estimation algorithm for the virtual array in this
section.

First, we obtain the observation data of theDCAby exploit-
ing the data of all virtual elements, instead of removing the
repeated ones. Then we impose a Toeplitz structure matrix on
the observation data to decorrelate the sources. This Toeplitz
matrix is constructed by reshaping the observation data and
thus no multiplication is required. Finally, a polynomial
root MUSIC algorithm is employed to calculate the DOA,
which avoids the angle grid search in the standard spectral
MUSIC [1]. The use of the Toeplitz matrix and root-MUSIC
algorithm make the computation of our approach more effi-
cient than the SS-MUSIC algorithm [7]. To be more specific,
we analyze the computation of both SS-MUSIC and our
method in Section VI-D, and the corresponding comparison
results are enumerated in Table 5, which shows the superiority
of our method clearly.

A. OBSERVATION DATA OF DIFFERENCE COARRAY
Consider a K -element GNSA constructed by (12), and the
signal model of its virtual array is given by (6) in Section II.
The virtual array of the GNSA has K 2 elements with a steer-
ing vector b(θ ) given by (7). From Proposition 2, we know
that the DCA associated with the GNSA is a hole-free ULA
with fV elements located at [−lV , lV ] d , recalling that lV
is the aperture length of the GNSA and fV = 2lV + 1.
Therefore, the steering vector of the DCA, g(θ ) ∈ CfV×1 can
be expressed as

g(θ ) =
[
ejκ(−lV ) sin θ , ejκ(−lV+1) sin θ , · · · , ejκlV sin θ

]T
.

(22)
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The two steering vectors g(θ ) and b(θ ) are related by

b(θ ) = Eg(θ ), (23)

where

E =
[
êp1 , êp2 , · · · , êpK2

]T
∈ CK2

×fV , (24)

where êpl is a fV × 1 vector of all zeros except a 1 at the
pl-th position, and pl = vi − vj + (fV + 1)/2, with l = (j −
1)K + i, i, j = 1, 2, · · · ,K . Taking the GNSA in Fig. 2 as an
example. The virtual array has K 2

= 144 elements, and the
DCA has fV = 91 elements. Then E is the 144 × 91 matrix
as shown in (25) at the bottom of this page.

The location of the k-th virtual element in the virtual array
is mapped to a ‘‘1’’ in the k-th row of E. For example,
the positions of the first four virtual elements are vi − v1 =
[0, 1, 4, 6]d, i = 1, 2, 3, 4. Hence the positions of ‘‘1’’s in the
first four rows ofE are vi−v1+(fV+1)/2 = [46, 47, 50, 52],
respectively.

Let W = ETE. We show in Appendix D that W is a diag-
onal matrix, and its diagonal elements are equal to the values
of the weight functionw defined in Section III-B. Therefore,

w = diag(W) = diag(ETE), (26)

where diag(W) extracts the diagonal elements of W.
Equation (25) shows that there exist several ‘‘1’’s located at

the same column, which correspond to the repeated elements
in the location set V. The repeated elements are deleted
when performing DOA estimation with the SS-MUSIC algo-
rithm [7], [9], which may lead to a reduction in SNR. Here,
we use a reduced dimensional matrix to obtain the observa-
tion data of the DCA using the data of all elements of the
virtual array. The reduced dimensional matrix is constructed
by

T =W−1ET ∈ CfV×K2
. (27)

It can transform b(θ ) ∈ CK2
×1 into g(θ ) ∈ CfV×1, that is

g(θ ) = Tb(θ ). Then the observation data at the DCA of the
GNSA can be obtained by

z = T̃z

= TBc+ σ 2
nT1n

= Gc+ σ 2
n ẽ, (28)

whereG =
[
g(θ1), g(θ2), · · · , g(θQ)

]
∈ CfV×Q2

is a manifold
matrix, ẽ is a (2lV + 1) × 1 vector of all zeros except a 1 at
the (lV + 1)-th position. By T = W−1ET , (28) averages out
the amplitudes of the data of the repeated virtual elements.

B. DECORRELATION OF EQUIVALENT SOURCES
As mentioned above, the equivalent sources behave like fully
coherent signals in the DCA, and some operation should be
performed to decorrelate the signals prior to applying tradi-
tional DOA estimation algorithms to the DCA. A common
method is to apply a spatial smoothing technique [24], and it
is applicable to the GNSA. First let us briefly review the SS-
MUSIC algorithm in [7] applied to the DCA of the GNSA.

The DCA z is divided into lV +1 overlapping subarrays zsi
(i = 1, 2, · · · , lV + 1, each with lV + 1 elements), where
the i-th subarray has sensors located at {(−i + 1 + n)d,
n = 0, 1, · · · , lV }. Define the covariance matrix of zsi as
Ri = zsizHsi . Then taking the average of Ri over i, we get
the spatially smoothed matrix

RSS =
1

lV + 1

lV+1∑
i=1

Ri. (29)

If the number of sources Q is less than lV + 1, the rank
of matrix RSS can be restored [24]. Therefore the MUSIC
algorithm [1] can be applied to RSS for DOA estimation.
It has been shown that the SS-MUSIC algorithm can resolve
more sources than sensors, and can achieve a high angu-
lar resolution [7]. However it involves the average of sev-
eral covariance matrices, which implies a high computation
cost.

Hereby, we employ a computationally efficient method to
decorrelate the signals. We directly use the observation data z
to construct a Toeplitz data matrix Y. It can be proved that Y
is a full rankmatrix and it share the same signal subspace with
RSS, that is the coherency problem of the equivalent sources
can be solved by Y. Therefore we can directly use Y, instead
of the spatially smoothed matrix RSS, to estimate the signal
subspace and noise subspace, and subsequently performDOA
estimation.

E =



1 · · · 40 41 42 43 44 45 46 47 48 49 50 51 52 · · · 91
1 0 · · · 0 0 0 0 0 0 1 0 0 0 0 0 0 · · · 0
2 0 · · · 0 0 0 0 0 0 0 1 0 0 0 0 0 · · · 0
3 0 · · · 0 0 0 0 0 0 0 0 0 0 1 0 0 · · · 0
4 0 · · · 0 0 0 0 0 0 0 0 0 0 0 0 1 · · · 0
...

... · · ·
. . . · · ·

...

141 0 · · · 1 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0
142 0 · · · 0 1 0 0 0 0 0 0 0 0 0 0 0 · · · 0
143 0 · · · 0 0 0 0 1 0 0 0 0 0 0 0 0 · · · 0
144 0 · · · 0 0 0 0 0 0 1 0 0 0 0 0 0 · · · 0


∈ C144×91. (25)
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The Toeplitz matrix is constructed by

Y =


zlV+1 zlV · · · z1
zlV+2 zlV+1 · · · z2
...

...
...

...

z2lV+1 z2lV · · · zlV+1

, (30)

where zi is the i-th element of z. We state the following
theorems about the matrix Y.
Theorem 1: If the number of the sources Q < lV + 1, Y is

a full rank matrix, which is independent of the coherency of
the sources.

Proof: The proof is provided in Appendix E. �
From Theorem 1 we know that Y is a full rank matrix,

which has no connection with the coherency of the equivalent
sources. Therefore, it is possible to estimate the signal and
noise subspace correctly with Y.
Theorem 2: The Toeplitz matrixY is Hermitian symmetric

and Y2
= (lV + 1)RSS.

A similar conclusion and proof can be found in
[7] and [25]. It follows that Y and RSS share the same
eigenvectors. Therefore we can use the eigenvalue decompo-
sition (EVD) of Y to obtain the signal and noise subspace.
From this perspective, Y has the same decorrelation effect as
the spatial smoothing step, and the spatial smoothing step can
be avoided. Since Y is constructed by reshaping the elements
of z, it does not need multiplication. The computational com-
plexity is reduced when using Y, instead of RSS, to conduct
DOA estimation.

C. ROOTING BASED DOA ESTIMATION
The standard spectral MUSIC algorithm [1] can be directly
applied to Y or RSS to perform DOA estimation. However
the spectral MUSIC algorithm needs an angle grid search,
which leads to a high computational cost especially for a
large angle scope and/or a fine angle grid. Here we apply a
polynomial rooting method to perform DOA estimation. This
method does not need costly angle grid search, and hence
reduces computational complexity.

Define the EVD of Y as

Y = US3SUH
S + σ

2
nUNUH

N , (31)

where3S = Diag{λ1, λ2, · · · , λQ}with λi (i = 1, 2, · · · ,Q)
being the signal eigenvalues, and US ∈ C(lV+1)×Q, UN ∈

C(lV+1)×(lV+1−Q) are the signal and noise subspace, respec-
tively.

Then the root-MUSIC polynomial [26], [27] is given by

fMUSIC(r) = dT (1/r)UNUH
N d(r), (32)

where r = ej(2π/λ)dsinθ , and d(r) =
[
1, r, · · · , r lV

]
. By

finding the Q roots ri(i = 1, 2, · · · ,Q) which are closest to
the unit circle, we obtain the DOAs of the sources

θi = arcsin
(
arg(ri)λ
2πd

)
, (33)

where arg(x) represents the angle of the complex number x.
The procedure of the entire algorithm is shown in Algo-
rithm 1.

Algorithm 1 Proposed DOA Estimation Algorithm
Require: The received data x(t) = As(t) + n(t), t =

1, 2, · · · ,T , and the source number Q.

1: Compute the covariance matrix R̂xx =
1
T

T∑
t=1

x(t)xH (t).

2: Vectorize R̂xx to obtain the data vector z̃ of the virtual
array.

3: Construct the reduced dimensional matrix T =

(ETE)−1ET , and compute the observation data z = T̃z
of the DCA.

4: Construct the Toeplitz matrix Y using (30).
5: Perform EVD on Y to obtain the noise subspace UN .
6: Construct the root-MUSIC polynomial fMUSIC using

(32), and compute its roots.
7: Pick Q roots ri(i = 1, 2, · · · ,Q) which are closest to the

unit circle, and compute the DOAs using (33).

In summary, our proposed algorithm utilizes the data of
all virtual elements, a Toeplitz matrix instead of the spatial
smoothing operation to decorrelate the equivalent sources,
and a root-MUSIC algorithm to avoid costly angle grid
search. The new algorithm achieves better DOA estimation
performance and reduces computational complexity.

Although the new DOA estimation algorithm is designed
for the GNSA, it also works for any non-uniform linear array
whose DCA is a hole-free ULA, e.g. the MRA [8] and the
nested array with two levels [7]. When the new algorithm
is applied to a coprime array whose DCA is not a hole-
free ULA, the reduced dimensional matrix T can also be
constructed by (27). However, the Toeplitz matrix and the
root-MUSIC algorithm can only use theULApart of theDCA
generated by a coprime array.

D. COMPLEXITY ANALYSIS
Our DOA estimation algorithm has advantages of reducing
the computational cost. In this subsection we analyze its com-
putational complexity and compare it with the SS-MUSIC
algorithm. The DOA estimation algorithms can be divided
into the following steps:

1) Compute covariance matrix Rxx (4) and construct the
data vector z̃ (6) of the virtual array. It needs O(K 2T ) com-
plex multiplications to compute Rxx. Since the data vector of
the virtual array can be obtained by vectorizing the covariance
matrix, it does not need multiplication. These steps are the
same for the two algorithms.

2) Compute the observation data z (28) of the DCA. We
use a reduced dimensional matrix T (27) to compute z. The
matrix T can be determined once the element locations of the
original array are given, and every column of T is a unitary
vector. The essence of (28) is to average the amplitudes of
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TABLE 5. Complexity comparison.

the data of the repeated virtual elements, and it just needs
one multiplication to compute the average value. Because the
number of repeated elements in the virtual array is K 2

− fV ,
the maximum number of multiplications isK 2

−fV to obtain z
from z̃. For SS-MUSIC algorithm, the repeated elements are
removed, and hence no multiplication is needed. However the
signal power of these repeated elements is lost, and the SNR
of the observation data will be decreased simultaneously for
SS-MUSIC algorithm.

3) Decorrelation of the equivalent sources. The Toeplitz
matrix Y in (30) is used to decorrelate the equivalent
sources in our algorithm, and it is just the reorganiza-
tion of z. Therefore no multiplication is required. How-
ever, the computational complexity of RSS in (29) is
O
(
(lV + 1)3 + (lV + 1)2

)
, which is much larger than the

cost of constructing Y.
4) Perform EVD on Y (30) or RSS (29) to obtain the

noise subspace and signal subspace. Since the dimension of
RSS is the same as the dimension of Y, the computational
complexities of EVD on Y and RSS are the same, which is
O
(
(lV + 1)3

)
.

5) DOA estimation. The roots of a root-MUSIC poly-
nomial is used to estimate the DOAs of the sources in
our algorithm. The main computational costs focus on
the coefficients and roots computations of the polynomial
fMUSIC(r) (32), and they are O

(
(lV + 1)2 (lV + 1− Q)

)
and O

(
2(lV )3

)
[28], respectively. The computational cost

can be much lower when using some real-valued polyno-
mial [29] or Multi-taper root MUSIC method [28]. For the
spectral MUSIC algorithm [1], the computational complexity
is O (J (lV + 1) (lV + 1− Q)), where J is the number of
angle girds. J will be very large for a large angle scope and/or
a fine angle grid.

The computational complexities of the proposed algorithm
and SS-MUSIC are summarized in Table 5. Two examples
of 12 and 24 physical sensors are also included, where J is set
to obtain 20 angle gird points in a half power beamwidth of an
array. It can be concluded from Table 5 that the computational
complexity of our algorithm has been reduced significantly,
i.e., it is around 1/3 of that using the SS-MUSIC algorithm
for the two examples.

VII. NUMERICAL EXAMPLES
In this section we conduct simulation experiments to eval-
uate the DOA estimation performance of the GNSA using
our proposed DOA algorithm and the SS-MUSIC algorithm
described in Section VI.

FIGURE 7. MUSIC spectrum as a function of sine of the DOA (Sources
number Q = 37), using the NMRA with 12 physical sensors. The vertical
dash lines are the true positions of the sources.

A. MUSIC SPECTRUM
First we show the ability of the proposed array to resolvemore
sources than sensors using the SS-MUSIC algorithm. We use
the NMRA with 12 physical sensors illustrated in Fig. 2 as
an example, and the number of DOF in its DCA is 91. Since
the spatial smoothing operation halves the number of DOF in
the DCA [10], the available DOF for SS-MUSIC becomes 46.
We consider Q = 37 uncorrelated, equal power, narrowband
sources impinging on the array at spatial frequencies sin θ ,
uniformly distributed between −0.95 and 0.95. The number
of sources Q is assumed to be known to the system. The
spatial MUSIC spectrum of the NMRA is shown in Fig. 7,
where 1000 noise-free snapshots are used. The figure shows
that the NMRA can resolve all the 37 sources correctly, which
is much larger than the number of physical sensors (=12).

B. DOA ESTIMATION ALGORITHMS COMPARISON
In order to compare the estimation performance of our algo-
rithm with the SS-MUSIC algorithm, we use Monte Carlo
simulations to evaluate the average root-mean-square error
(RMSE) of the estimated DOAs as a function of SNR. The

RMSE is defined RMSE =

√
1
Q

Q∑
q=1

E(θ̂q − θq)
2
, where θ̂q

is the estimated value of θq. All the following RMSEs are
averaged over 500 independent Monte Carlo trials. We use
the NMRA in Fig. 2 and considerQ = 16 narrowband uncor-
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FIGURE 8. DOA estimation performances versus SNR with 12-element
NMRA for two algorithms: SS-MUSIC and our proposed algorithm. The
number of sources Q = 16.

related sources uniformly distributed between−45◦ and 45◦.
And the angle grid search interval of SS-MUSIC is 0.01◦.
Fig. 8 plots the RMSEs of the two algorithms as a function of
SNR with 1000 snapshots. It can be seen that our proposed
algorithm outperforms the SS-MUSIC algorithm.

The performance improvement of our DOA estimation
algorithm mainly depends on the following two aspects.
One is that we obtain the observation data of the difference
co-arrays by exploiting the data of all virtual elements using
a dimension reduction matrix. But the repeated elements are
removed in the conventional SS-MUSIC algorithm [7], [9],
which may lead to a reduction of SNR. The other is that
we adopt a Root-MUSIC algorithm to estimate the DOA
instead of the conventional spectral searchMUSIC algorithm.
It has been shown [26] that the Root-MUSIC algorithm has
a better DOA estimation performance than the conventional
MUSIC [1] algorithm. Therefore, our proposed algorithm can
reach a better DOA estimation performance with a lower
computational cost.

When the SNR is low or the number of snapshots is
small, the DOA estimation performance of the Root-MUSIC
degrades. We can adopt some approach such as pseudo-noise
resampling [27], [30] to improve the estimation performance.

C. DOA ESTIMATION PERFORMANCE FOR DIFFERENT
ARRAY GEOMETRIES
There are many possible array geometries for the GNSA
with a fixed number of physical sensors, e.g., the 16-element
geometries illustrated in Fig. 3. Their aperture lengths,
the numbers of DOF are various, and hence their DOA esti-
mation performance will also be different. First, we use the
GNSA array configurations with 16 physical sensors in Fig. 3
as an example, and compare their DOA estimation perfor-
mances versus SNR using our proposed DOA estimation
algorithm. The simulation results are shown in Fig. 9, where
Q = 19 narrowband uncorrelated sources uniformly dis-
tributed between−45◦ and 45◦, and the number of snapshots

FIGURE 9. DOA estimation performances versus SNR of various GNSA
array configurations with 16 physical sensors. The number of sources
Q = 19.

is 500. Fig. 9 shows that the ‘‘MRA + MRA’’ structure
obtains the lowest RMSE while the ‘‘ULA+ULA’’ structure
has the highest RMSE, and the performances of other arrays
are between the former two array structures. By comparing
Fig. 9 and Fig. 3, it can be concluded that the RMSEs of
DOA estimation for different array geometries are inverse
proportional to their aperture lengths.

In addition, the NMRA has been shown to have a larger
aperture and a larger number of DOF than the nested array
(NA) and the coprime array with compressed inter-element
spacing (CACIS) with the same number of physical sensors
in Section V. Therefore the NMRA is expected to obtain a
better DOA estimation performance. In this example, we use
the three array geometries (NA, CACIS, and NMRA) with
24 physical sensors, whose configuration parameters are
listed in Table 4, and compare their DOA estimation per-
formances using our proposed DOA estimation algorithm
in Section VI. We consider Q = 16 narrowband uncorre-
lated sources uniformly distributed between −45◦ and 45◦.
Fig. 10(a) plots the RMSEs of three array geometries as a
function of SNR when the number of snapshots is fixed at
1000, and Fig. 10(b) shows the corresponding performance
versus the number of snapshots for SNR = 0 dB. The result
of the 24-element MRA is not shown owing to the fact that no
such array configuration has been published in existing [12].
It can be concluded that the DOA estimation performances
improve with the increase of SNR and the number of snap-
shots. The CACIS has the highest RMSE because it has the
shortest aperture, least number of DOF and its DCA is not
a hole-free ULA. Our proposed NMRA achieves the best
performance with the lowest RMSE in both figures, which
shows the superiority of the NMRA in DOA estimation over
other array geometries.

D. RESOLUTION PERFORMANCE
The MUSIC algorithm is able to resolve closely spaced
sources due to its super-resolution characteristics. Since the
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FIGURE 10. DOA estimation performances of different arrays with
24 physical sensors. The number of sources Q = 16. (a) RMSE versus SNR
(1000 snapshots). (b) RMSE versus number of snapshots (SNR = 0 dB).

proposed NMRA has a larger aperture than the NA and the
CACIS, the NMRA is expected to achieve a higher resolution.
We use the same three arrays of 24 physical sensors as in
Section VII-C, and the apertures of the NA, the CACIS and
the NMRA are 155d , 143d and 175d , respectively. We con-
sider two uncorrelated sources with equal power and angle
separation 1θ = θ1 − θ2, where θ1, θ2 are the DOAs of two
sources. We use the following equation [31] as the resolution
analysis criteria

γ (θ1, θ2) ,
1
2
[P(θ1)+ P(θ2)]− P(θm) > 0, (34)

where θm = (θ1 + θ2)/2 stands for the mid-angle between
two sources, and P(θi), i = 1, 2, · · · ,m denotes the MUSIC
spectrum at the angle θi. We would say that the two signals
are resolvable if the inequality (34) holds, and they are irre-
solvable otherwise. We define the probability of resolution as
the probability of γ (θ1, θ2) > 0, that is

Pres = Pr{γ (θ1, θ2) > 0}. (35)

FIGURE 11. Probability of resolution as a function of angle separation for
different arrays with 24 physical sensors. The result is obtained over
1000 trials with 100 snapshots and SNR = 0 dB.

Fig. 11 illustrates the variation of the probability of reso-
lution with the angle separation 1θ , which is obtained over
1000 Monte Carlo runs with 100 snapshots at SNR = 0dB.
It can be seen that the probabilities of resolution for the three
array geometries improve with the increase of the angle sepa-
ration, and all of them can reach 100%when the angle separa-
tion is larger than 0.4◦. Our proposed NMRA outperforms the
NA and the CACIS when the angle separation between 0.13◦

and 0.35◦. We define the resolution threshold of an array as
the minimum angle separation at which the probability of
resolution reaches one. In Fig. 11, the resolution threshold
of the NMRA is 0.25◦, which is lower than the resolution
threshold of the NA and the CACIS. This demonstrates that
the NMRA has better resolution performance due to its larger
aperture.

VIII. CONCLUSION
In this paper we proposed a unified array geometry, dubbed
generalized nested subarray (GNSA), which can be easily
constructed by the cross summation of two subarrays. It is
possible to predict the sensor positions and the number of
DOF when these parameters of the subarrays are given.
We have derived the aperture length of a GNSA, the number
of DOF in its DCA, and have unveiled the parameter relation-
ship of a GNSA with its subarray configurations. We have
used the nested MRA (NMRA) as an example to compare its
characteristics with the nested array and the coprime array.
The simulation results have demonstrated that the NMRA has
a larger aperture as well as a higher number of DOF than the
two-level nested array and the CACIS with the same number
of physical sensors. Furthermore, the NMRA enjoys lower
mutual coupling than the nested array.

In order to overcome the limitations of the existing under-
determined DOA estimation algorithms, we develop a new
DOA estimation algorithm for the GNSA. The new algo-
rithm has achieved better DOA estimation performance than
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traditional SS-MUSIC algorithm with lower computational
cost. We demonstrate the superiorities of the proposed array
in resolving more sources than sensors, DOA estimation
performance, and probability of resolution using the new
algorithm over the SS-MUSIC algorithm.

One shortcoming of the proposed array geometry is that
the new array relies on the structures of the known subarrays,
and therefore not all GNSA geometries with any number of
sensors can be obtained. For example, when the total number
of sensors is a prime number, it is impossible to construct a
GNSA. However, the new array geometry provides a closed-
form solution to generate a suboptimal coarray, and can easily
provide a larger array employing the known MRA. In addi-
tion, owing to the structure of multiple identical subarray,
the GNSA enjoys some advantages in real applications, such
as low cost and easy extension to a larger array, etc.

APPENDIX A
PROOF OF PROPOSITION 1
The location set VV of the virtual array generated from a
GNSA can be calculated by (8). Substituting (11) into (8),
we obtain

VV = {
(
nj · D+ mi · d

)
−
(
nj′ · D+ mi′ · d

)
,

1 ≤ j, j′ ≤ N , 1 ≤ i, i′ ≤ M}

=
{
(nj − nj′ )D+ (mi − mi′ )d

}
= VB ⊕ VA. (36)

where VB = {(nj − nj′ )D, 1 ≤ j, j′ ≤ N } and VA =

{(mi − mi′ )d, 1 ≤ i, i′ ≤ M} are the location set forming the
virtual array of Subarray B and Subarray A, respec-
tively. Thus, the location set of the virtual array generated
from a GNSA can be calculated by the cross summation of
VB and VA.
We have defined in Section II that the location set D of the

DCA of a linear array only contains the unique elements of
the location set V of its virtual array. We denote the location
sets of the DCA associated with the GNSA, Subarray B
and Subarray A as DV , DB and DA, respectively. The
DCAs of both Subarray B and Subarray A are hole-
free ULAs with symmetric property in our definition. There-
fore, DB and DA can be expressed respectively as

DB = {nD = nLd,−lB ≤ n ≤ lB},

DA = {md,−lA ≤ m ≤ lA}. (37)

where D = Ld , L is an integer, lB and lA are the aperture
length of Subarrays B and A, respectively.

Combining (36) and (37), we obtain

DV = {(nL + m)d,−lB ≤ n ≤ lB,−lA ≤ m ≤ lA}

= DB ⊕ DA. (38)

Therefore, DV can also be calculated by the cross summation
of DB and DA.

APPENDIX B
PROOF OF PROPOSITION 2
The number of DOF is equal to the number of distinct
elements in the location set. From (37) we can obtain the
relations between the number of DOF and the aperture length
of Subarray B and Subarray A respectively, that is
fA = 2lA+1, fB = 2lB+1. Next, we prove Proposition 2 using
the following three steps.
1) There are 2lA+1 (= fA) possible consecutive integers for

m in (38). Thus the item nL+m are consecutive integers
when L = fA, which leads to the fact that the DCA of
the GNSA is a hole-free ULA if D = fA · d . However if
L > fA, there will be some missed integers for the item
nL + m, that is there will be holes in the DCA. Hence
the DCA is not a hole-free ULA. On the contrary, L < fA
will result in additional overlapped elements. Therefore
when L = fA, the DCA of the GNSA is a hole-free ULA
with minimum overlapped elements (that is minimum
redundancies).
For example, if L = fA + 1, then there will be holes
appeared at locations (n+1)lA+ lA+1 between nL+ lA
and (n + 1)L − lA for −lB ≤ n ≤ lB − 1. If letting
L = fA − 1, we can obtain nL + lA = (n+ 1)L − lA for
−lB ≤ n ≤ lB − 1 by substituting fA = 2lA + 1. Thus
there are additional fB− 1 redundancies than the case of
L = fA.

2) From (11) we know that the aperture length of a GNSA
is lB · D+ lA · d . Substituting D = fA · d , we get

lV · d = (lB · fA + lA) d . (39)

3) The DCA of a GNSA is a hole-free ULA with elements
located within the range of [−lV , lV ] d . Therefore the
aperture length of the DCA is (2lV + 1)d = fV · d , and
the number of DOF in the DCA is

fV = 2lV + 1 = 2fA · lB + 2lA + 1

= 2fA · lB + fA = fA · (2lB + 1)

= fA · fB. (40)

APPENDIX C
PROOF OF WEIGHT FUNCTION
By (36) and (38) we know that the number of times that
k = (nL + m)d occurs in VV depends on the number of
times that n occurs in VB and m occurs in VA, which are the
weight functionwB(n) andwA(m), respectively. For example,
if n occurs two times in VB and only one m appears in VA,
then the k = (nL + m)d will occur two times in VV . Thus,

wV (nL + m) = wB(n) · wA(m),

−lB ≤ n ≤ lB, − lA ≤ m ≤ lA. (41)

Traversing all n and m, we can obtain the weight function
wV of the GNSA

wV = wB ⊗ wA, (42)

where ⊗ stands for the Kronecker product.
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APPENDIX D
PROOF OF (26)
The matrix E is a column orthogonal matrix owing to that
every row ofE is a unitary vector. The (i, j)-th element ofETE
is the product of i-th column and j-th column. Thus the non-
diagonal elements of ETE, where i 6= j, are zeros. Therefore
ETE is a diagonal matrix.
Every diagonal element ofETE is the quadratic summation

of elements in the corresponding column of E. Since the
elements ofE are 0 or 1, the quadratic summation of elements
inE is equal to the summation of the corresponding elements.
Thus the diagonal elements of ETE are the summation of
elements in the corresponding column of E, which are equal
to the value of weight function w defined in Section III.

APPENDIX E
PROOF FOR THEOREM 1
z is the equivalent received data of a hole-free ULA with
elements located at the range of [−lV , lV ] d . Omitting the
noise, the i-th element of z can be expressed by

zi =
Q∑
q=1

ejκ(i−lV−1) sin θq · σ 2
q = gTQiD

−lV−1c, (43)

where gQi =
[
ejκi sin θ1 , ejκi sin θ2 , · · · , ejκi sin θQ

]T
, D =

Diag
[
ejκ sin θ1 , ejκ sin θ2 , · · · , ejκ sin θQ

]
. The following rela-

tions hold for gQi and D

gQ0 = [1, 1, · · · , 1]T ∈ CQ×1,

gQ1 = diag (D),

gQi = gQ(i−1)D = diag
(
Di
)
,

i = 1, 2, · · · , 2lV + 1. (44)

The first column of Y is

yc1 =
[
zlV+1, zlV+2, · · · , z2lV+1

]T
=
[
gQ0, gQ1, · · · , gQlV

]T c

= G1c, (45)

where G1 =
[
gQ0, gQ1, · · · , gQlV

]T
∈ C(lV+1)×Q.

We observe that G1 is a (lV + 1)× Q Vandermonde matrix.
Therefore the rank ofG1 isQ (we have assumed that lV+1 >
Q).

Then i-th column of Y is

yci =
[
zlV−i+2, zlV−i+3, · · · , z2lV−i+2

]T
= G1D−i+1c. (46)

Therefore,

Y =
[
yc1, yc2, · · · , yc(lV+1)

]
=

[
G1c,G1D−1c, · · · ,G1D−lV c

]
= G1C

[
g∗Q0, g

∗

Q1, · · · , g
∗
QlV

]
= G1CGH

1 , (47)

where C = Diag(c) ∈ CQ×Q is a diagonal matrix of signal
powers. Because the signal powers of sources are not zeros,
the rank of C is Q.
From the above analysis, we know that the ranks ofG1 and

C are both equal to Q.
From (28) we know that noise only exists at the (lV +1)-th

element of z, i.e., zlV+1. Therefore when considering noise,
Y can be expressed as

Y = G1CGH
1 + σ

2
n I, (48)

where I is a (lV + 1)× (lV + 1) identity matrix. Because the
identity matrix I is a full rank matrix, and its eigenvectors
can be any vectors with size (lV + 1) × 1. The item σ 2

n I
will enhance the rank of Y to lV + 1. Thus, Y is a full rank
matrix independent of the coherency of the sources. And the
eigenvectors corresponding to the first Q-largest eigenvalues
form the signal subspace.
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