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ABSTRACT Target localization utilizing frequency diverse array (FDA) has received much attention in
recent years. In this paper, we propose a tensor subspace-based multiple-target 3-D localization method with
planar frequency diverse subaperturing multiple-input multiple-output (FDS-MIMO) radar. To fully exploit
the inherent multidimensional FDS-MIMO radar matched filter output information, a tensor signal model is
established first. Then, the FDS-MIMO radar range ambiguity problem is mitigated by applying co-prime
frequency offsets along both the dimensions of the planer array. Next, a beamspace-based unitary tensor-
multiple signal classification (UTMUSIC) algorithm is developed to utilize the inherent multidimensional
structure through the higher order singular value decomposition (HOSVD)-based low-rank approxima-
tion. Moreover, two computationally efficient methods, namely, partial spectral search UTMUSIC and
range-angle decoupling UTMUSIC algorithms, are also proposed accordingly. The superiority of the
proposed approaches over conventional methods is verified with numerical results, in terms of both
computational complexity and estimation accuracy.

INDEX TERMS Frequency diverse array (FDA), transmit subaperturing, target localization, range
ambiguity, co-prime frequency offset, tensor MUSIC.

I. INTRODUCTION
Target localization is one of the most important tasks required
for a variety of applications including radar [1], sonar,
wireless communications [2] and others fields. Phase-array
radar (PAR) and multiple-input multiple-output (MIMO)
radar have been widely employed for target localization.
Nevertheless, their beam steering is fixed in an angle for all
ranges. Consequently, the range and angle information of tar-
gets cannot be directly estimated from the beamforming out-
put. However, in some applications such as range-ambiguous
clutter and interferences suppression, it is a desired ability
to control the energy distribution in a range-angle sector of
interest.

In the last few years, a more flexible array radar named
frequency diverse array (FDA) radar was proposed [3], [4],
whose essence lies in that a small frequency increment across
the array antennas is employed to produce range-angle-
dependent beampattern. Recently, FDA radar has drawn a
remarkable amount of attention in radar community owing
to its particular beampattern [5]–[10]. By exploiting the

FDA potential benefits, improved radar performance over
traditional PAR and MIMO radar can be attained, such
as beampattern synthesis [11]–[17], high-resolution imag-
ing [18], [19], range-ambiguous clutter and interference sup-
pression [20], [21], multipath mitigation [22], [23], and target
localization [24]–[27].

The range-angle-dependent beampattern potentially afford
a way to estimate the range and angle of a target simultane-
ously. Nevertheless, it is not accessible for a standard FDA
radar due to the range-angle coupling in the beam domain.
Several strategies have been developed to solve this problem,
which can be generally classified into three types:

1) Linear array with nonuniform element inter-spacings.
In [23], a nonuniform linear FDA is suggested for bistatic
radar which is subsequently developed for range-angle imag-
ing of targets [28], but it is not practical in real life because
of the requirements of relocating the elements mechanically.

2) Linear array with nonuniform frequency increments.
Non-linear frequency increments such as logarithmic [14],
square, cubic [29], and sinusoid increasing frequency
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offsets [30] are suggested. However, these methods will result
in high sidelobes. The author of [31] proposed a focused
beampattern by optimizing the frequency offsets with genetic
algorithm. Nevertheless, the optimized frequency offsets are
dependent on the desired range and angle sector. That is,
the frequency offsets must be optimized again when the
scanning region varies, which requires considerably high
complexity.

3) Combined frequency offsets or co-array structure.
A double-pulse uniform linear array (ULA) is investigated for
targets localization [26], [32]. The subarray-based solutions
divide the FDA antennas into multiple subarrays to handle
the coupling problem [25], [33]. The essence of the above
methods is that two frequency increments are used to decou-
ple the range-angle beampattern. In [34], an interesting FDA
scheme using co-prime frequency increments is proposed for
linear FDA. Besides, nested-array is also employed for FDA
to estimate range and angle of targets [35], [36].

Although the beampattern is decoupled in [25], [26], [32],
and [33], the FDA radar still confronts range ambiguity
problem due to its beampattern periodicity. In [24], a joint
range and angle estimation method is presented to handle
the range ambiguity, but a priori target range estimate is
needed and a constraint on the frequency increments must be
satisfied. Non-linear frequency offsets can alleviate the ambi-
guity, but the high sidelobes will degrade the beamforming
performance [14], [29], [30].

In addition, the aforementioned approaches are primarily
developed for a linear array FDA. In practice, 2D FDA is
also an interesting topic. In [37], planar FDA geometries
are initially discussed. Furthermore, the target localization
performance of the planar MIMO-OFDM radar is inves-
tigated [38]. More noticeably, matrix-based processing is
only considered in existing FDA target localization methods
such as beamforming [26], [32], maximum likelihood estima-
tor (MLE) [24] and MUSIC [25]. Obviously, this operation
ignores the multidimensional information structure inherent
in the received FDA signals. Consequently, the parameter
estimation performance will degrade.

In this paper, we present an FDA and MIMO hybrid
frequency diverse subaperturing MIMO (FDS-MIMO) radar
structure. First, multilinear algebra [39] is introduced
into FDS-MIMO radar to exploit the multidimensional
structure information inherent in the received signals.
Then, a unitary tensor MUSIC (UTMUSIC) method is
developed for multiple-target localization. Furthermore,
to alleviate tremendous spectral search, we propose two
new dimension- reduced methods, namely, partial spectral
search (PPS) UTMUSIC and range-angle decoupling (RAD)
UTMUSIC.

The main contributions of this paper are summarized as
follows:

1) A planar FDS-MIMO radar scheme with a co-prime
frequency increment design strategy is proposed for multiple-
target localization, which circumvents the range ambiguity
problems in existing FDA methods.

2) A theoretical framework of HOSVD-based low-rank
approximation subspace estimation approach is proposed
for the FDS-MIMO radar. To our knowledge, this is the
first time to use tensor subspace technique for FDA-related
applications. This method exploits the inherent multidimen-
sional structure of received data to improve target localization
performance.

3) To reduce computation burden for the UTMUSIC algo-
rithm, we also introduce two computational efficient imple-
mentations. Both methods achieve higher target localization
accuracy at high signal-to-noise ratio (SNR) and significantly
low complexity as compared to [38].

The remainder of this paper is organized as follows.
Section II formulates the tensor signal model for FDS-MIMO
radar. Section III analyzes the range ambiguity prob-
lem, and then presents an elimination strategy. Next, the
UTMUSIC-based FDS-MIMO radarmultiple-target localiza-
tion algorithm is proposed, and two novel dimension-reduced
algorithms are developed, along with their complexity anal-
ysis in Section IV. Finally, extensive numerical results and
performance comparisons are provided in Section V, and
conclusions are drawn in Section VI.
Notations: (·)T , (·)∗, (·)H , and (·)+ represent the transpose,

conjugate, conjugate transpose, and matrix Moore-Penrose
pseudo-inverse, respectively. ⊗,�, ◦, and ⊕ symbolize the
Kronecker product, Hadamard product, outer product, and
Khatri-Rao product, respectively. The n-mode product of
AAA ∈ CI1×I2×···×IN with a matrix X ∈ CJn×In is defined
as YYY = AAA ×n X ∈ CI1×I2×···×In−1×Jn×In+1×···×IN , where

yi1,i2,...,in−1,jn,in+1,...,iN =
In∑

in=1
ai1,i2,...,iN xjn,in . ‖·‖2 , ‖·‖F and

‖·‖H represent vector 2-norm, matrix Frobenius norm, and
higher-order tensor norm, respectively. Ip denotes a p × p
identity matrix. 5p represents the p × p exchange matrix
with ones on its antidiagonal and zeros elsewhere. The unitary
matrix Qp ∈ Cp×p is the left-5-real matrices satisfying
5pQ∗p = Qp, which has the following form

Q2p+1 =
1
√
2

 Ip 0 jIp
01×p

√
2 01×p

5p 0 −j5p

 (1)

where Q2p can be obtained by dropping its central row and
central column.

II. TENSOR SIGNAL MODEL OF FDS-MIMO RADAR
Fig. 1 illustrates a planar FDA radar geometry. The FDA
elements are divided into multiple non-overlapping uniform
rectangular subarrays. The transmitted waveforms among
the subarrays are orthogonal and a small frequency incre-
ment across the subarray elements is employed, while the
waveform transmitted in each subarray is coherent. The first
element in the first subarray is taken as the origin point
(point A) and the reference antenna. The radar consists of
M × N elements and contains P × Q subarray, where M
and N denote the number of elements along the x ′ and
z′-axes, P and Q represent the number of subarrays along the
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FIGURE 1. Basic Geometry of the FDS-MIMO radar.

x ′ and z′-axes, respectively. In doing so, each subarray con-
tains Kx = M/P elements along the x ′-axes and Kz = N/Q
elements along the z′-axes, respectively. The adjacent ele-
ment spacing at each axes are denoted by dx and dz, respec-
tively. In some practical applications, the planar array is
usually oblique, we suppose the inclination angle is β. In the
radar coordinate system Ax ′y′z′, the position vector of the
(m, n)-antenna is

r′mn = (xm, 0, zn)T , m = 1, 2, . . . ,M , n = 1, 2, . . . ,N

(2)

where xm = (m− 1)dx and zn = (n− 1)dz. In the target coor-
dinate systemOxyz, hr denotes the altitude from the reference
point A to reflective surface. According to the space Cartesian
coordinate relation, the position vector of the (m, n)-antenna
in the coordinate system Oxyz is given by

rmn = Crr′mn + (0, 0, hr )T (3)

with Cr being

Cr =

 1 0 0
0 cosβ − sinβ
0 sinβ cosβ

. (4)

The line-of-sight (LOS) range difference between the
(m, n)-antenna and point A is

dmn(θ, ϕ) = [rmn − (0, 0, hr )]T ar =
(
Crr′mn

)T ar (5)

where the normalized LOS direction vector ar = r/r in the
target coordinate system can be written as

ar = (cos θ cosϕ, cos θ sinϕ, sin θ)T . (6)

Then, the transmit steering vector associated with the
(p, q) -subarray can be expressed as

apq(θ, ϕ) =
[
ap(θ, ϕ) ◦ aq(θ, ϕ)

]
� Apq(θ, ϕ) (7)

where

ap(θ, ϕ)=
[
1, . . . , exp

(
j2π fpq(Kx−1)d21(θ, ϕ)/c

)]T (8)

aq(θ, ϕ)=
[
1, . . . , exp

(
j2π fpq(Kz−1)d12(θ, ϕ)/c

)]T (9)

Apq(θ, ϕ)≈ exp
(
j2π

fb
c

[
(p−1)Kxd21(θ, ϕ)

+ (q−1)Kyd12(θ, ϕ)
])

(10)

Here, Apq(θ, ϕ) denotes the (p, q)-element of the transmit
angular steering matrix A(θ, ϕ). fpq is the carrier frequency
in the (p, q)-subarray given by

fpq = fc + (p− 1)1fx + (q− 1)1fz,

p = 1, 2 . . .P, q = 1, 2 . . .Q (11)

where 1fx and 1fz represent the frequency offsets along
the x ′ and z′-axes, respectively. Considering the fact that
(p−1)1fx+(q−1)1fz � fc, the equivalent carrier frequency
can be written as fb = fc+ (P−1)1fx/2+ (Q−1)1fz/2. For
convenience, we define the following vector

F(γ,C) =
[
1, exp (jγ ) , · · · , exp (j(C − 1)γ )

]T
. (12)

Then, we have

A(θ, ϕ)

= F(2π fbKxd21(θ, ϕ)/c,P) ◦ F(2π fbKzd12(θ, ϕ)/c,Q).

(13)

The signal emitted from the (p, q)-subarray can be
expressed as

spq(t) = rect
(
t
T

)
φpq(t) exp

(
j2π fpqt

)
(14)

where T is the pulse width. The signals φpq(t) are orthogonal
with each other, i.e.,∫
T

φpq(t)φ∗uv(t−τ ) exp (j2π (p−u)1fx t)

· exp
(
j2π (q− v)1fy

)
dt = 0, p 6= u and q 6= v (15)

where τ is an arbitrary time delay.
Under point target assumption, the transmitted signals inci-

dent on the target can be modeled as

st (t) =
P∑
p=1

Q∑
q=1

wH
pqapq(θ, ϕ)Apq(θ, ϕ)spq(t − r/c) (16)

where wpq is the weight vector of the (p, q)-subarray, c is the
speed of light. The reflected signals received by the receiving
(m, n)-antenna in the lth pulse has the form

xm′n′l(t)

=

P∑
p=1

Q∑
q=1

βlwH
pqapq(θ, ϕ)Apq(θ, ϕ)spq(t−

2r
c
−τm′n′ ) (17)

where βl is the reflection coefficient of the target dur-
ing the lth transmit pulse period. Assume that βl obeys
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the Swerling-II target model. τm′n′ is the propagation time
delay between the reference point and the (m′, n′)-antenna.
After separately matched filtering xm′n′ (t) with the wave-
forms φpq(t) exp

(
j2π fpqt

)
, the (p, q)-channel output of the

(m′, n′)-antenna can be expressed as

xm′n′pql = βlwH
pqapq(θ, ϕ)bm′n′Apq(θ, ϕ)Rpq(r) (18)

where the constant term exp (−j4π fcr/c) is absorbed into βl
for the sake of simplicity.

bm′n′ ≈ exp
(
j2π

(
(m′−1)d21(θ, ϕ)+ (n′−1)d12(θ, ϕ)

)
/λb

)
is the (m′, n′)-element of the receive angular steering matrix
B(θ, ϕ), which has the form

B(θ, ϕ) = F(2π fbd21(θ, ϕ)/c,M ) ◦ F(2π fbd12(θ, ϕ)/c,N ).

(19)

Similarly,

Rpq(r) = exp (−j4πr ((p− 1)1fx + (q− 1)1fz) /c)

is the (p, q)-element of the transmit steering matrix R(r) in
range dimension, which can be written as

R(r) = F(−4πr1fx/c,P) ◦ F(−4πr1fz/c,Q). (20)

Therefore, the overall transmit steering vector is

AR(r, θ, ϕ) = R(r)� A(θ, ϕ)

= F(−4πr1fx/c+ 2π fbKxd21(θ, ϕ)/c,P)

◦F(−4πr1fz/c+ 2π fbKzd12(θ, ϕ)/c,Q).

(21)

It is obvious that the transmit steering vector is not only
a function of the angle, but also a function of the range.
When all subarrays are steered to the same angle (θ, ϕ),
the conventional non-adaptive beamformer weight vector is

wpq = apq(θ, ϕ)/
∥∥apq(θ, ϕ)∥∥2. (22)

Accordingly, (18) can be simplified as

xm′n′pql = βlbm′n′Apq(θ, ϕ)Rpq(r). (23)

Then (23) can be rewritten in a matrix form

Xm′n′l = βlbm′n′ · F(−4πr1fx/c+ 2π fbKxd21(θ, ϕ)/c,P)

◦F(−4πr1fz/c+ 2π fbKzd12(θ, ϕ)/c,Q). (24)

Furthermore, we can organize all output of the receive anten-
nas in a tensor form

XXX 0 =AAA0(θ, ϕ, r) ◦ s̄T +NNN 0 (25)

where XXX 0 ∈ CP×Q×M×N×L , s̄ = [βl, . . . , βl] ∈ C1×L ,L is
the number of pulses, NNN 0 is a noise tensor with the same
dimension as XXX 0,AAA0(θ, ϕ, r) ∈ CP×Q×M×N is the joint
transmit-receive array steering tensor, constructed in the fol-
lowing fashion:

AAA0(θ, ϕ, r)G1(µ1) ◦G2(µ2) ◦G3(µ3) ◦G4(µ4) (26)

where

G1(µ1) = F(−4πr1fx/c+ 2π fbKxd21(θ, ϕ)/c,P)

G2(µ2) = F(−4πr1fz/c+ 2π fbKzd12(θ, ϕ)/c,Q)

G3(µ3) = F(2π fbd21(θ, ϕ)/c,M )

G4(µ4) = F(2π fbd12(θ, ϕ)/c,N ).

Moreover, assume that there exists D targets located in
far-field and the localization of the d-th target is denoted
by (θd , ϕd , rd ) (25) can be extended to the multiple-target
situation

XXX =AAA×5 S̄T +NNN (27)

where XXX ∈ CP×Q×M×N×L , S̄ = [c1, c2, . . . , cL] ∈
CD×L , cl =

[
β1,l, . . . , βD,l

]T
, βd,l is the reflection coef-

ficient to the d-th target during the lth pulse period.
AAA ∈ CP×Q×M×N×D is the array steering tensor, constructed
in the following fashion:

AAA= [AAA0(θ1, ϕ1, r1) t5 AAA0(θ2, ϕ2, r2) . . . t5 AAA0(θD, ϕD, rD)]

(28)

where AAA t5 BBB is the concatenation of AAA and BBB along the
5-th mode. Consequently, the data model (27) can be
expressed as the outer product operator

XXX =
D∑
d=1

AAA0(θd , ϕd , rd ) ◦ s̄Td +NNN (29)

where s̄Td denotes the d-th row of S̄. In traditional matrix-
based data models, all ‘‘spatial’’ dimensions 1, 2, 3, 4 are
stacked along the rows and the snapshots (dimension 5) are
aligned as the columns. Thus, the received data model can be
written as the following matrix form

X = AS̄+ N (30)

where S̄ = [s̄1, . . . s̄d , . . . , s̄D]T ∈ CD×L . The steering
matrix A can be written as

A = A(1) ⊕ A(2) ⊕ A(3) ⊕ A(4) (31)

where A(r) =
[
Gr

(
µ
(1)
r

)
,Gr

(
µ
(2)
r

)
, . . . ,Gr

(
µ
(D)
r

)]
,

r = 1, 2, 3, 4, the vector Gr

(
µ
(d)
r

)
represents the array

response in the r-th dimension for the d-th target, where

µ
(d)
1 = −4πrd1fx/c+ 2π fbKxd21(θd , ϕd )/c (32)

µ
(d)
2 = −4πrd1fz/c+ 2π fbKzd12(θd , ϕd )/c (33)

µ
(d)
3 = 2π fbd21(θd , ϕd )/c (34)

µ
(d)
4 = 2π fbd12(θd , ϕd )/c. (35)

The target positions {(θd , ϕd , rd )}Dd=1 can be located through
an inverse transformation of the above identities

r̂dx = c
(
Kxµ

(d)
3 − µ

(d)
1

)
/(4π1fx) (36)

r̂dz= c
(
Kzµ

(d)
4 − µ

(d)
2

)
/(4π1fz) (37)
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θ̂d = arcsin
2α1+

√
4α21 − 4

(
1+tan2 β

) (
α21+α

2
2 − tan2 β

)
2(1+tan2 β)

(38)

ϕ̂d = arc cos
(
µ
(d)
3 /π cos θ̂d

)
(39)

where α1 = µ
(d)
4 /(π cosβ), α2 = µ

(d)
3 tanβ/π, r̂dx and

r̂dz are the range estimation values of the d-th target from the
x ′ and z′-axes, respectively. Besides, the matrix data mod-
els can be represented as a transpose of the 5-mode matrix
unfolding of the tensor data models:

X = [XXX ]T(5) ∈ CPQMN×L

A = [AAA]T(5) ∈ CPQMN×D

N = [NNN ]T(5) ∈ CPQMN×L (40)

where [AAA](n) represents the matrix unfolding of the tensor
AAA ∈ CI1×I2×···×IN along the nth mode which is consistent
with [40]. For clarity, we further define J1 = P, J2 = Q,
J3 = M , J4 = N , and J =

∏4
r=1 Jr .

III. RANGE AMBIGUOUS ANALYSIS AND ELIMINATION
A. RANGE AMBIGUITY ANALYSIS
The range ambiguity problems due to FDA beampattern peri-
odicity can be explained quantitatively. The phase differences
between two adjacent channels in the same antenna along
the 1-mode and 2-mode array response can be expressed
in the following fashion because the phase observations are
wrapped within [−π, π) (see also (32) and (33)):

µ
(d)
1 = mod (−4πr1fx/c+ 2π fbKxd21/c, 2π) (41)

µ
(d)
2 = mod (−4πr1fz/c+ 2π fbKzd12/c, 2π) (42)

where mod (·) denotes the complementary operation. Thus,
the relationships between the true phase difference and fre-
quency offsets are given by

µ
(d)
1 + 2kxπ = −4πr1fx/c+ 2π fbKxd21/c (43)

µ
(d)
2 + 2kzπ = −4πr1fz/c+ 2π fbKzd12/c (44)

where kx and kz are unknown integers. Therefore, if the
uniform frequency offsets are employed, neither (43) nor (44)
can unambiguously estimate the target range due to the phase
wrapping, i.e., range ambiguity. In a general way, the angle
estimation is unambiguous while the inter-element spacing
is less than half a wavelength. In fact, this unambiguity is
subject to the scope of [−π/2, π/2], the angle estimation
ambiguity will arise when the angle of the target exceeds
the scope of [−π/2, π/2]. Likewise, it is enough to make
sure that the maximum unambiguous range is larger than
the maximum radar detection range. Assume that the max-
imum radar detection is Rmax, the integers kx and kz are in

the scope of
[
−21fxRmax

c −
1ϕx
2π +

fbKxd21
c ,−

1ϕx
2π +

fbKxd21
c

)
and

[
−21fzRmax

c −
1ϕz
2π +

fbKzd12
c ,−

1ϕx
2π +

fbKzd12
c

)
due to 0 <

r ≤ Rmax. Since the range periodicity is c/ (21f ), the fre-
quency increment 1f needs to satisfy the boundary con-
dition: Ru = c

21f ≥ Rmax, i.e 1f ≤ (c/2Rmax).

This implies that a larger frequency offset will result in a
shorter maximum unambiguous range. However, a small fre-
quency offset means poor range resolution. If 1fx = 1fz =
1f = (c/2Rmax), there are no range unambiguity. While for
1fx = 1fz = N1f with N (> 1) being an integer, there
will be multiple ambiguous ranges. Let ru denote one of the
ambiguous ranges. According to (43), we have{

µ
(d)
1 + 2kx,dπ = −4πrd1fx/c+ 2π fbKxd21/c

µ
(d)
1 + 2kx,uπ = −4πru1fx/c+ 2π fbKxd21/c.

(45)

Therefore, the relationship between the actual range and its
ambiguous range can be modeled as

rd − ru =
c

21f
·
kx,u − kx,d

N
=

c
21f
·
Px
N

(46)

where Px is an integer. According to the scope of kx , Px is
subject to the range of (−N ,N ), i.e., if Px 6= 0, rd is different
from ru, which means that the range estimation is not unique.

B. RANGE AMBIGUITY ELIMINATION WITH
CO-PRIME FREQUENCY OFFSETS
The proposed planar FDS-MIMO radar offers an additional
degree of freedom (DOF) along the z′-axe, which provides us
a way to solve the conflict between range resolution and max-
imum unambiguous range in beam domain. To improve the
range estimation precision and broaden unambiguity range,
the idea of co-prime frequency offsets along the x ′ and z′-axes
is proposed, i.e., 1fx = Nx1f and 1fz = Nz1f , where Nx
andNz are co-prime integers. Different from [27], [34], where
the co-prime frequency offsets are used for ULA, themerits of
our method ensure that the characteristics of resolvability and
uniform frequency offsets in each dimension are maintained,
so that lots of existing algorithms can be used directly.
Theorem 1: Assume that rd is the actual range of the

d th source, multiple maxima at different ranges will present
along the 1-th mode and 2-th mode array response including
the actual range and multiple ambiguous ranges. However,
by intersecting the two-mode array response, there uniquely
exists one range r̂d that presents a peak in both modes when
the co-prime frequency offsets are employed. The proof is
provided in Appendix A.

According to Theorem 1, we can locate D targets by
uniquely finding D peaks in the MUSIC spectrum.

IV. PROPOSED TENSOR-BASED TARGET
LOCALIZATION METHODS
A. PROPOSED UTMUSIC ALGORITHM
In existing subspace-based FDA target localization meth-
ods [24], [25], [38], they does not account for the multi-
dimensional structure information inherent in the received
data. Tensors have a rich history, while they have only
recently become ubiquitous in signal and data analytics [41].
Obviously, tensor processing strategies is more appropri-
ate in the FDS-MIMO radar due to the multidimensional
data structure. Tensor decomposition mainly contains Tucker
decomposition and Candecomp/Parafac (CP) decomposition.
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However, parameter estimates based on CP model are usu-
ally obtained via iterative techniques that might need many
iterations and do not guarantee convergence to the global
optimum [42]. In this paper, we utilize the HOSVD to achieve
tensor Tucker decomposition for target localization, which
allows us to suppress the noise more efficiently than conven-
tional SVD technique. The HOSVD of data tensorXXX ∈ CJ×L

is given by

XXX = SSS ×1 U1 ×2 U2 ×3 U3 ×4 U4 ×5 U5 (47)

where Ur ∈ CJr×Jr , r = 1, 2, 3, 4, U5 ∈ CL×L are the
unitary matrices of n-mode singular vectors, and SSS is the
core tensor with the same sizes as XXX . Ui, i = 1, 2, . . . , 5
is the left singular vector of the i-mode matrix unfolding of
XXX which satisfies the all-orthogonality conditions [39]. The
HOSVD-based low-rank approximation of XXX can be
expressed as

XXX ≈ SSS[s]
×1 U

[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 ×4 U

[s]
4 ×5 U

[s]
5 (48)

where U[s]
r ∈ CJr×ρr , ρr = min {Jr ,D} , r = 1, 2, 3, 4,

U[s]
5 ∈ CL×D, and SSS[s] ∈ Cρ1×ρ2×ρ3×ρ4×D. Then we define a

tensor-based signal subspace

UUU [s]
≈ SSS[s]

×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 ×4 U

[s]
4 . (49)

In order to enhance the estimation accuracy, the forward-
backward averaging can be used. Thus, the number of avail-
able snapshots is virtually doubled without sacrificing the
array aperture. The forward-backward averaging of tensorXXX
is given by

YYY =
[
XXX t5

(
XXX ∗ ×1 5J1 ×2 5J2 ×3 5J3 ×4 5J4 ×5 5L

)]
.

(50)

Note that the corresponding matrix-based data model is
Y = QH

J

[
X 5JX∗5L

]
QH
L ∈ CJ×2L . Since the for-

ward -backward averaged tensor YYY is centro-Hermitian [40],
the tensor YYY can be mapped onto the following real-valued
tensor

TTT YYY = YYY ×1 QH
J1 ×2 QH

J2 ×3 QH
J3 ×4 QH

J4 ×5 QH
2L . (51)

The HOSVD of TTT YYY is given by

TTT YYY = SSS ×1 E1 ×2 E2 ×3 E3 ×4 E4 ×5 E5. (52)

Similarly, the HOSVD-based low-rank approximation ofTTT YYY
can be rewritten in the following fashion

TTT YYY ≈ SSS[s]
Y ×1 E

[s]
1 ×2 E

[s]
2 ×3 E

[s]
3 ×4 E

[s]
4 ×5 E

[s]
5 . (53)

Then, we define a real-valued tensor signal subspace

EEE [s]
≈ S[s]Y ×1 E

[s]
1 ×2 E

[s]
2 ×3 E

[s]
3 ×4 E

[s]
4 . (54)

Theorem 2: The relationship between the matrix-based
real-valued signal subspace Es of matrix Y and the tensor-
based real-valued signal subspace

[
E [s]

]T
5 of tensor TTT YYY are

linked by the following equation[
EEE [s]

]T
5
=

(
E[s]
1 · E

[s]H

1

)
⊗ . . .⊗

(
E[s]
4 · E

[s]H

4

)
· Es. (55)

The proof is provided in Appendix B. One can observe
that

[
EEE [s]

]T
5 stems from the projection of Es onto the

Kronecker product of the space spanned by r-mode vectors
E[s]
r E[s]H

r , r = 1, 2, 3, 4, which allows us to filter out noise in
each mode of the measurement tensor YYY separately, so that
enhanced noise suppression can be achieved for improved
signal subspace estimation. Applying Theorem 2, the Unitary
Tensor-MISIC (UTMUSIC) algorithm can be expressed in
the following formulation, i.e.,

PMUSIC (θ, ϕ, r)

=
1

d(θ, ϕ, r)H
(
IJ −

[
EEE [s]

]T
(5) ·

[
EEE [s]

]∗
(5)

)
d(θ, ϕ, r)

. (56)

Then the parameters with respect to (θ, ϕ, r) can be esti-
mated from the peaks of (56)

(θ̂d , ϕ̂d , r̂d ) = arg max
(θ,ϕ,r)

|PMUSIC (θ, ϕ, r)| (57)

where

d(θ, ϕ, r) =
(
QH
J1 ⊗QH

J2 ⊗QH
J3 ⊗QH

J4

)
· [G1(µ1)⊗G2(µ2)⊗G3(µ3)⊗G4(µ4)].

(58)

Through the HOSVD of TTT YYY , the structure inherent in the
5D data is already utilized in the subspace estimation step to
improve the localization performance.

B. DIMENSION-REDUCED METHODS FOR THE UTMUSIC
There is no doubt that the computation complexity of the
proposedUTMUSIC algorithm in Section IV-A caused by the
3D spectral searching is prohibitively high. To alleviate this
difficulty, we propose two computationally efficient methods.

1) Partial Spectral Search UTMUSIC Algorithm.
To tackle the high dimension subspace estimation, we can

process the received data along the x ′ and z′-axe separately.
Extracting theq-th 2-mode slices (along the x ′-axe) notating
TTT YYY(q) ∈ CJ1×J3×J4×2L from the real-valued tensor TTT YYY , then
we can obtain the corresponding real-valued tensor signal

subspace
[
UUU (q)
x

]T
(4)

in the similar way as Section IV-A. There-

fore, the MUSIC spatial spectrum for the Q slices (along the
x ′-axe) is given by

PMUSIC,x(θ, ϕ)

=

∣∣∣∣∣∣
Q∑
q=1

1

dx(θ, ϕ, r)H
(
IJ1J3J4−

[
UUU (q)

]T
(4) ·

[
UUU (q)

]∗
(4)

)
dx(θ, ϕ, r)

∣∣∣∣∣∣
(59)

where dx(θ, ϕ, r) = (QH
J1
⊗QH

J3
⊗QH

J4
) · (G1(µ1)

⊗G3(µ3)⊗G4(µ4)). Thus we have

(θ̂d , ϕ̂d , r̂dx) = arg max
(θ,ϕ,r)

∣∣PMUSIC,x(θ, ϕ, r)∣∣. (60)

Similarly, we can obtain

(θ̂d , ϕ̂d , r̂dz) = arg max
(θ,ϕ,r)

∣∣PMUSIC,z(θ, ϕ, r)∣∣. (61)
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Searching for the peaks of all possible angles and ranges
by (60) and (61) is feasible. However, the searching compu-
tational is still very high. Note that when the received data
are processed in the above fashion, the frequency offsets
in each axe are uniformed, thus the range periodicity can
be exploited, i.e., the actual and ambiguous range peaks
are uniformly distributed in the UTMUSIC range spectrum.
Consequently, according to (43) and (44), we can recover all
other possible ranges{

µ̂
(1)
d = µ̃

(1)
d + 2kxπ

µ̂
(2)
d = µ̃

(2)
d + 2kzπ

(62)

where µ̃(1)
d and µ̃(2)

d are obtained within [−π, π). Note that
the range differences between adjacent peaks are fixed as
c/ (21fx) or c/ (21fz), there must exist one peak for each
source at an arbitrary c/ (21fx) or c/ (21fz) area. Therefore,
we can divide the total search scope into several small sectors
of size c/ (21fx) = Rmax/Nx and c/ (21fz) = Rmax/Nz
along x ′ and z′-axes respectively, and only search the first
sector Rmax/Nx and Rmax/Nz to find the corresponding D
peaks in x ′ and z′-axes respectively. Then, we can recover
all other ambiguous peaks for each source by (62) without
any other spectral search. Consequently, D targets can be
uniquely located by finding the common D peaks by the
partial spectral search UTMUSIC (PPS UTMUSIC), where
it involves a limited spectral search over only a small sector.

2) Range-angle decoupling UTMUSIC Algorithm.
In the FDS-MIMO radar, the decoupled range-angle

response can be mitigated due to the combination of FDA and
MIMO radar. Consequently, the range and angle of targets
can be solely estimated from the FDS-MIMO beamform-
ing peaks. Moreover, the receive steering vector is inde-
pendent of range as shown in (19). Therefore, the angle
(θd , ϕd ) and rd can be estimated separately which we term the
range-angle decoupling (RAD UTMUSIC) method, i.e., esti-
mate angles (θd , ϕd ) before the ranges rd estimation. The
(p, q)-channel received data TTT YYY(p,q) ∈ CJ3×J4×2L after
the forward-backward averaging can be obtain by extracting
the (p, q)-slices of real-valued tensorTTT YYY . TheMUSIC spatial
spectrum for the P× Q channels can be expressed as

PMUSIC,pq(θ, ϕ)

=

∣∣∣∣∣∣
P∑

P=1

Q∑
q=1

1

d(θ, ϕ)H
(
IJ3J4−

[
U (p,q)

]T
(3) ·
[
UUU (p,q)

]∗
(3)

)
d(θ, ϕ)

∣∣∣∣∣∣
(63)

where
[
UUU (p,q)

]T
(3) is the (p, q)-real-valued tensor subspace

of TY(p,q),d(θ, ϕ) =
(
QH
J3
⊗QH

J4

)
· (G3(µ3)⊗G4(µ4)).

We have

(θ̂d , ϕ̂d ) = argmax
(θ,ϕ)
|PMUSIC (θ, ϕ)|. (64)

After obtaining the angle estimation (θ̂d , ϕ̂d ), the received
data with respect to (θ̂d , ϕ̂d ) can be compensated, then the

MUSIC cost function in range domain can be expressed as

PMUSIC (rd ) ≈

∣∣∣∣∣∣ 1

d(r)H
(
IJ1J2 − [UUU r ]T(3) · [UUU r ]∗(3)

)
d(r)

∣∣∣∣∣∣ (65)

whereUUU r is the real-valued tensor-based signal subspace after
the angle compensation, d(r) =

(
QH
J1
F(−4πr1fx/c,P)

)
·(

QH
J2
F(−4πr1fz/c,Q)

)
.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In this subsection, we analyze the computational burden of
the proposed PSS UTMUSIC and RADUTMUSIC and com-
pare them with the UTMUSIC, as well as the methods used
in the FDA-based radar (MUSIC in [38] and MLE in [24]).

1) MUSIC IN [38]
for a uniform linear array with M antennas, the complex-
ity of the SVD for an M × L data matrix is O (MLD)
[43]. All J ′ spectral search steps require the computational
burden in the standard MUSIC algorithm is J ′(M + 1)
(M − D), where L denotes the number of snapshots, D is
the number of sources, J ′ denotes the total sample points
of spatial spectral over [−π/2, π/2]. In the FDS-MIMO
radar, the data X is a J × L matrix. Therefore, the com-
putational complexity in the MUSIC algorithm is given by
O
(
JLD+ JθJϕJr (J + 1)(J − D)

)
, where Jθ and Jϕ denote

the total sample points of spatial spectral over [−π/2, π/2],
and Jr denotes the total sample points of spatial spectral over
(0,Rmax].

2) MLE IN [24]
the target angles are estimated in receiver side and
then the ranges are obtained in the joint transmit-receive
dimensions. Firstly, the 5-dimension data TTT YYY is decom-
posed into J1J23-dimension tensor TTT Y(p,q) to estimate
the angles. The matrix inverse operation of covariance
matrix Rpq(

[
TTT Ypq

]T
3

[
TTT YYYpq

]∗
3 /L) has the complexity of

O
(
(J3J4)3

)
, the SVD of the whole channels output data

need the computation complexity O
(
J1J2 (J3J4)3

)
, all the

spectral search steps for the angles need O
(
JθJϕJJ3J4

)
.

Similarly, for the ranges, the computational burden of the
matrix inverse operation is O

(
(J1J2)3

)
, the search step

needs O
(
Jr (J1J2)2

)
. Thus the total computational complex-

ity isO
(
J1J2 (J3J4)3 + JθJϕJJ3J4 + (J1J2)3 + Jr (J1J2)2

)
.

3) PSS UTMUSIC
in the x ′-axe direction, the 5-dimension data TTT YYY is decom-
posed into J2 Q 4-dimension data TTT YYY(q). Computation
cost of the HOSVD is O (4JLD), which is same as the
z′-axe direction. Thus the total computational burden is
O
{
8JLD+JrJθJϕ [(J+J2)(J/J2 − D)+ (J+J1)(J/J1−D)]

}
.

when the PSS UTMIUSC method is used, the computational
complexity is O(8JLD + JθJϕJr (J + J2)(J/J2 − D)/Nx +
JθJϕJr (J + J1) · (J/J1 − D)/Nz).
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4) RAD UTMUSIC
the 5-dimension data TTT YYY is decomposed into J1J2
3-dimension tensor TTT YYY(p,q). The HOSVD of TTT YYYpq has the
complexity ofO (3JLD/J1J2), the SVDof thewhole channels
output data need the computation complexity O (3JLD),
all the spectral search steps for the angles have the com-
putational burden of the standard MUSIC algorithm is
O
(
JθJϕ(J + J1J2)(J3J4 − D)

)
. For the ranges, the compu-

tational burden of the SVD is O (3JLD/J3J4) , the search
steps need O (Jr (J1J2 + 1) (J1J2 − D)). Thus the total com-
putational cost is O{3JLD + JθJϕ(J + J1J2)(J3J4 − D) +
3JLD/J3J4 + Jr (J1J2 + 1) · (J1J2 − D)}.
The computation complexity mainly lies in the parameter

search, which is much heavier than that of the SVD or the
HOSVD due to min{Jθ , Jϕ, Jr } � J . Their computational
complexities are approximately computed in Table 1.

TABLE 1. Computational complexity comparison.

V. NUMERICAL SIMULATIONS
In this section, several simulations are conducted. Unless
stated otherwise, we use the following simulation parameters:
fc = 300 MHz,1f = 3 kHz, the maximum unambiguous
range Ru = 50 km, β = 10◦. The antennas at each axes are
spaced half a wavelength. The noise is modeled as zero-mean
spatially white complex Gaussian process. D = 3 uncorre-
lated targets are supposed which are located at {θd }3d=1 =
{10◦, 30◦, 60◦} , {ϕd }3d=1 = {45◦, 60◦, 80◦} , {rd }3d=1 =
{20.0, 20.5, 21.2} km,
respectively.

A. JOINT TRANSMIT-RECEIVE 4-D BEAMPATTERN
To better grasp the advantage of FDS-MIMO radar over
traditional PAR and MIMO radar in terms of beampattern,
the 4-D pattern visualization technique is employed to show
the joint transmit-receive beampattern of FDS-MIMO radar
and conventional MIMO radar. The proposed FDS-MIMO
radar consists of J3 × J4 = 12 × 12 antennas, which is
divided into J1 × J2 = 6× 6 uniform rectangular subarrays.
One target of interest is supposed to reflect the transmit
signals and impinge on the radar from location (θ1, ϕ1, r1).
Fig. 2 shows the joint transmit-receive 4D beampattern cut
at -25dB in the FDS-MIMO radar and traditional MIMO
radar, respectively. It is seen that from Fig. 2 that: 1) The
target angle can be obtained from the beamforming peak
in the traditional MIMO radar, while the range cannot be

FIGURE 2. Beampattern comparison cut at -25dB in 4D view.
(a) FDS-MIMO radar. (b) Traditional MIMO radar.

directly estimated due to the range- independent beampat-
tern. 2) The beampattern of FDS-MIMO radar has range-
angle dependence and the mainbeam is quasi-ellipsoid in 4D
view which can be used to locate the target directly from
the beamforming peak. 3) The range and angle coupling
is mitigated owing to the jointly utilization of FDA and
MIMO. The detail with enlarged scale in Fig. 2 (a) shows
the -3dB beamwidth cut at ϕ1, one can observe that range
resolution is about Ru/(P+ Q− 1) = 4.55km which does
not satisfy the requirement of target localization. In order
to improve range resolution, more antennas and larger fre-
quency increments should be employed. Fig. 3 (a) depicts
the pattern under uniform increment (Nx ,Nz) = (4, 4),
the range resolution is enhanced while the range ambigu-
ity problem arises. However, when the strategy of co-prime
frequency offsets (Nx ,Nz) = (4, 3) is used, the range
ambiguity is eliminated and range resolution is approxi-
mately Ru/((P− 1)Nx + (Q− 1)Nz) ≈ 1.43km as shown
in Fig. 3(b). Accordingly, the contradiction between the range
resolution and maximum unambiguous range can be resolved
by our method.

B. PERFORMANCE ANALYSIS OF TENSOR
SUBSPACE ESTIMATION
In this simulation, we examine the accuracy of the esti-
mated signal subspace obtained by different methods,
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FIGURE 3. Beampattern cut at -25dB in 4D view. (a)
(
Nx , Nz

)
=

(
4, 4

)
.

(b)
(
Nx , Nz

)
=

(
4, 3

)
.

e.g., the proposed HOSVD-based low-rank approximation
method and the traditional SVD-based method, via the corre-
sponding root mean square error (RMSE) which is defined as

‖1Es‖F =
∥∥∥Ẽs − Es

∥∥∥
F

where1ud = ũd
ũHd ud∣∣ũHd ud ∣∣−ud is the d-th column of real-valued

signal subspace error matrix1Es,ud denotes the d-th column
of the true real-valued signal subspace Es, ũd denotes the
d-th column of the estimated real-valued signal subspace Ẽs
obtained by (76) and

[
EEE [s]

]T
5 obtained by (77), respectively.

We employ the parameters J1 = J2 = 4, J3 = J4 = 8
with the number of pulses L = 10, and (Nx ,Nz) = (7, 5).
Fig. 4. plots the RMSE of signal subspace estimation versus
SNR when the number of pulses is L = 10. One can observe
that the accuracy of the HOSVD-based low-rank approxi-
mation is clearly advantageous over the matrix-based SVD.
This advantage is due to the fact that the multidimensional
structure information of the received data is exploited and
the matrix unfoldings of the received data tensor is processed
’jointly’. Our received multidimensional signal obeys this
unique characteristic while the noise does not—this can be
utilized to filter out more of the noise. This is something the
matrix-based SVD of the stacked matrix representation does
not exploit.

FIGURE 4. RMSE of the signal subspace estimation versus SNR.

FIGURE 5. Computational complexities versus J4.

C. PERFORMANCE ANALYSIS OF
UTMUSIC-BASED ALGORITHMS
This simulation is carried out to compare the comput-
ing complexities and target localization performance among
the proposed methods (UTMUSIC, PSS UTMUSIC, RAD
UTMUSIC) and the methods used in the FDA-based radar
(MUSIC in [38] andMLE in [24]). The used performance cri-
terion is also the RMSE, which is calculated by the following
equations

RMSE (θ, ϕ)=

√√√√ 1
2DMc

Mc∑
i=1

D∑
d=1

[(
θ̂i,d−θd

)2
+
(
ϕ̂i,d−ϕd

)2]

RMSE (r)=

√√√√ 1
DMc

Mc∑
i=1

D∑
d=1

(̂
ri,d − rd

)2
where θ̂i,d , ϕ̂i,d , and r̂i,d represent the estimations of the
elevation angle, azimuth angle, and range for the d-th tar-
get in the i-th Monte Carlo trial, respectively, Mc =

200 Monte Carlo trials are conducted in the following
simulations.
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Suppose J3 = 8, J1 = 4, and J2 = J4/2, i.e., each subarray
consists of 2 × 2 antennas. According to the computational
complexities shown in Table 1. Fig. 5 plots the complexities
of the above methods versus J4 for spectral search interval
0.05◦ and 10m, respectively. It is obvious that the complexity
of the RAD UTMUSIC algorithm is lower than that of other
approaches, followed by the MLE in [24], PSS UTMUSIC,
UTMMUSIC, and MUSIC in [38].

FIGURE 6. RMSE of parameters estimation versus SNR. (a) Angle
dimension. (b) Range dimension.

Finally, we investigate the PSS and RAD based
methods. We use the same parameter as Section V-B,
hence the complexities of the MLE, MUSIC, UTMUSIC,
PSS UTMUSIC, and RAD UTMUSIC are approxi-
matelyO

(
4.25× 1011

)
,O

(
3.39× 1016

)
,O

(
8.47× 1015

)
,

O
(
7.19× 1014

)
,O

(
1.01× 1011

)
, respectively. Fig. 6 depicts

the RMSE of the fivemethods versus SNR. It can be seen that:
1) The localization performance of the proposed UTMUSIC
is better than that of other approaches and afford about
5dB improvement compared with the matrix-based MUSIC
in [38]. 2) The proposed PSS UTMUSIC is superior to

the RAD UTMUSIC in low SNR region, while the RAD
UTMUSIC has the lowest complexity. Besides, the PSS
and RAD UTMUSIC exhibit better performance when the
SNR is higher than 0dB but with a significantly lower
complexity as compared to the MUSIC algorithm in [38].
3) As a dimension-reduced method, the RAD UTMUSIC
outperforms the MLE in [24] at lower computational com-
plexities. The improvement of our methods comes from the
improved subspace estimation in the HOSVD-based low-
rank approximation method and the forward-backward aver-
aging technique. Thus, in high SNR, the RAD UTMUSIC
algorithm is the best choice with satisfactory accuracy and
significantly lower computational burden. In low SNR,
we can choose the UTMUSIC method to obtain higher local-
ization performance. Besides, the proposed PSS UTMUSIC
method makes a good tradeoff between computation com-
plexity and estimation accuracy.

VI. CONCLUSIONS
In this paper, we investigated the target localization in
3D using a planner FDS-MIMO radar system. The FDA
range ambiguity problem, originated from range periodic-
ity of the beampattern, is analyzed, and a co-prime fre-
quency increment design strategy is proposed to circumvent
the above problem. Using tensor-based representation and
HOSVD-based low-rank approximation subspace estimation,
an extension to traditional MUSIC algorithm, called unitary
tensor MUSIC (UTMUSIC), is proposed. Moreover, two
modifications of this algorithm are made to reduce the com-
putational complexity. The proposed methods successfully
exploit FDS-MIMO inherent multidimensional structure to
achieve outperformed performance over the SVD-based
MUSIC and MLE in terms of accuracy and complexity. Note
that the Doppler information is ignored in this paper, which
may be further investigation in our future work.

APPENDIX A
In this Appendix, we show that the targets can be located
uniquely when co-prime frequency offsets are employed
along the x ′ and z′-axes.

A. EXISTENCE
Since rd is the range of the d th target echo impinging on
the receive planar array, it will present a peak in the MUSIC
spectrum of the range due to the spatial spectrum estima-
tion without dependence on array configuration. Therefore,
the peak in the MUSIC spectrum at the position of rd will
present along 1-th mode and 2-th array response. Thus there
exists at least one common peak at the same position of the
spatial spectrum for the two modes.

B. UNIQUENESS
Suppose that there exists two distinct common peaks
r̂d,1 and r̂d,2. According to (46), the relationship between
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r̂d,1 and r̂d,2 for x ′-axes can be expressed as

r̂d,1 − r̂d,2 =
c

21f
·
Px
Nx
. (66)

Similarly, for the frequency increments 1fz = Nz1f with
Nz(> 1) being an integer, we can obtain

r̂d,1 − r̂d,2 =
c

21f
·
Pz
Nz

(67)

where Pz is subject to the ranges of (−Nz,Nz). Therefore we
have

Px
Nx
=
Pz
Nz
. (68)

Note that Nx and Nz are denoted as mutually co-prime
integers. Besides, Px and Pz are subject to (−Nx ,Nx) and
(−Nz,Nz), respectively. According to the co-prime prop-
erty between Nx and Nz, (68) has no solution except for
Px = Pz = 0, which means that

rd = r̂d,1 = r̂d,2. (69)

Therefore, there uniquely exists one common range rd
for both the two modes, which is he desired result. Hence,
the proof of the Theorem 1 is completed.

APPENDIX B
In this Appendix, we discuss the relationships between the
two signal subspaces. According to (52), the HOSVD-based
low-rank approximation of SSS[s]

Y can be computed as

SSS[s]
Y ≈ TTT YYY ×1 E

[s]H

1 ×2 E
[s]H

2 ×3 E
[s]H

3 ×4 E
[s]H

4 ×5 E
[s]H

5 .

(70)

Inserting (70) into (54) yields

EEE [s]
= TTT YYY ×1

(
E[s]
1 · E

[s]H

1

)
. . .×4

(
E[s]
4 · E

[s]H

4

)
×5

(∑[s]−1

5
· E[s]H

5

)
(71)

Here we add the inverse of the matrix
∑[s]

5 , which is the
diagonal matrix including the D dominant singular values of
the 5-mode matrix unfolding of YYY . Note that this scaling has
no impact on the real-valued tensor signal subspace. After
5-mode unfolding ofUUU [s] and using the following property of
the n-mode product

[AAA×1 X1 ×2 X2 × . . .×R XR](n)
=Xn · [AAA](n) · (Xn+1 ⊗ Xn+2 · · · ⊗ XR ⊗ X1 · · · ⊗ Xn−1).

(72)

Then we obtain[
EEE [s]

]T
5
=

((
E[s]
1 · E

[s]H

1

)
⊗ . . .⊗

(
E[s]
4 ·E

[s]H

4

))
·[TTT YYY]T(5) ·E

[s]∗

5 ·
∑[s]−1

5
.

(73)

The SVD of Y is given

Y = [TTT YYY]T(5) ≈ Es ·
∑

s
· FHs (74)

where Us ∈ CJ×D,
∑

s ∈ CD×D, and Vs ∈ CL×D. Note that

[TTT YYY](5) = E[s]
5
∑[s]

5 F[s]H

5 , we have

E[s]∗

5 = Fs. (75)

Consequently, we have[
EEE [s]

]T
5
=

((
E[s]
1 · E

[s]H

1

)
⊗ . . .⊗

(
E[s]
4 · E

[s]H

4

))
· Es.

(76)

which is the desired result. This completes the proof of
Theorem 2.
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