
SPECIAL SECTION ON RESEARCH CHALLENGES AND OPPORTUNITIES IN SECURITY AND
PRIVACY OF BLOCKCHAIN TECHNOLOGIES

Received January 10, 2018, accepted February 26, 2018, date of publication March 7, 2018, date of current version March 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2812844

RBAC-SC: Role-Based Access Control
Using Smart Contract
JASON PAUL CRUZ 1, (Member, IEEE), YUICHI KAJI2, (Member, IEEE), AND NAOTO YANAI1
1Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
2Information Strategy Office, Nagoya University, Nagoya 464-8601, Japan

Corresponding author: Jason Paul Cruz (jpmcruz@ymail.com)

ABSTRACT The role-based access control (RBAC) framework is a mechanism that describes the access
control principle. As a common interaction, an organization provides a service to a user who owns a certain
role that was issued by a different organization. Such trans-organizational RBAC is common in face-to-
face communication but not in a computer network, because it is difficult to establish both the security
that prohibits the malicious impersonation of roles and the flexibility that allows small organizations to
participate and users to fully control their own roles. In this paper, we present an RBAC using smart
contract (RBAC-SC), a platform that makes use of Ethereum’s smart contract technology to realize a trans-
organizational utilization of roles. Ethereum is an open blockchain platform that is designed to be secure,
adaptable, and flexible. It pioneered smart contracts, which are decentralized applications that serve as
‘‘autonomous agents’’ running exactly as programmed and are deployed on a blockchain. TheRBAC-SC uses
smart contracts and blockchain technology as versatile infrastructures to represent the trust and endorsement
relationship that are essential in the RBAC and to realize a challenge-response authentication protocol that
verifies a user’s ownership of roles. We describe the RBAC-SC framework, which is composed of two main
parts, namely, the smart contract and the challenge-response protocol, and present a performance analysis.
A prototype of the smart contract is created and deployed on Ethereum’s Testnet blockchain, and the source
code is publicly available.

INDEX TERMS Blockchain technology, role-based access control, smart contracts.

I. INTRODUCTION
Roles and titles are often used to distinguish the eligibility
of users to access certain services. Such mechanism is mod-
eled as the role-based access control (RBAC) [1] framework,
which describes the access control relation among users and
services. In RBAC, users are associated with roles, and roles
are associated with services. Many organizations and compa-
nies use such framework in their computer systems to imple-
ment their internal access control requirements. For example,
programmers in a company have access to both the backend
and frontend source codes, whereas quality assurance person-
nel only have access to the frontend source codes. This access
control is commonly used within an organization, but it must
be noted that RBAC is a versatile framework; that is, roles
are often used in a trans-organizational manner. For example,
students are often allowed to purchase books at discounted
prices. In this example, the ‘‘student’’ role that is issued by
an organization (university) is used by another organization
(book shop) to determine if a user is eligible to receive a

certain service (discounted price). Such trans-organizational
use of roles is common in face-to-face communication, but it
is not obvious in a computer network.
To realize a trans-organizational RBAC mechanism in a

computer network, users should not be able to disguise their
roles; that is, they should not be able to use roles they do
not own. In face-to-face communication, this role disguise
is prevented with the use of physical certificates, such as
identification (ID) cards and passports, which are expected
to be difficult to forge or alter (especially that the photo in
the certificates can be matched with the person’s face). In
a computer network, however, role disguise is not a trivial
problem. Even if a user has a certain role (student role) that
is issued by an organization (university), he/she has no sys-
tematic way of convincing another organization (book shop)
that he/she really owns that role. An online book shop may,
for example, ask for a scanned copy of a physical certificate
(student ID card) as proof of the asserted student role, but
this process can be insecure, time consuming, and can easily

12240
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-9935-1534


J. P. Cruz et al.: RBAC-SC

be falsified. Digital certificates [2] can be utilized as an
analogue of physical certificates, but the use of digital certifi-
cates is not favorable because it requires a secure public-key
infrastructure (PKI). PKI-based systems are costly to setup
and maintain, and they can be insecure (e.g., DigiNotar [3]).
Another less sophisticated approach to the security problem
is for a service-providing organization (book shop) to contact
a role-issuing organization (university) about the user-role
assignments. This approach works in some cases [4], but it
requires the agreed beneficial relationship among organiza-
tions. Consequently, a third-party organization will not be
able to join the partnership if it does not provide any benefit
to the other organizations involved, severely restricting the
trans-organizational utilization of roles.

Therefore, in this paper, we ask the following questions:
How can we effectively realize an RBAC mechanism in
a trans-organizational manner? and How can we verify
the user-role assignments of organizations in a secure
manner? Following these questions, how can we provide
flexibility to users to fully control their roles and to organiza-
tions to effectively manage their user-role assignments?What
other benefits can such trans-organizational RBAC mecha-
nism provide?

We propose a role-based access control using smart con-
tract (RBAC-SC), which realizes a trans-organizational RBAC
mechanism using blockchain technology and smart contracts.
Blockchain technology, which was pioneered by Bitcoin [5],
was originally intended to enable a payment system and
complete digital money that is secure and decentralized;
that is, it is a peer-to-peer network powered by its users
and with no central authority. As Bitcoin and its blockchain
technology began attracting attention, alternative blockchain-
based cryptocurrencies have emerged, the biggest of which
are Ethereum [6], Litecoin [7], and Dogecoin [8]. In this
paper, we have implemented a prototype of the smart contract
of RBAC-SC using Ethereum, an open blockchain platform
that allows the deployment of smart contracts, which are
self-executing scripts triggered bymessages and transactions.
The smart contract of RBAC-SC was written in the Solidity
programming language [9] and was deployed and tested on
the Ropsten Testnet of Ethereum [10]. See Appendix for
details about the deployed smart contract of RBAC-SC.

In this paper, we aim to realize a trans-organizational
RBAC mechanism that is secure (users cannot disguise roles
and only authorized entities can execute functions), user-
oriented (users can disclose their roles to any organization),
verifiable (anyone can verify if a user has a certain role
that is managed and issued by another organization), extend-
able (users can endorse other users), and manageable (roles
can be modified and revoked). The key ideas are to pub-
lish all relevant information of user-role assignments in a
smart contract deployed on a blockchain and to employ a
challenge-response authentication protocol for verifying if a
user owns an asserted role. Ethereum’s protocols and cryp-
tography make the proposed system suitable for the trans-
organizational utilization and authentication of roles.

The contributions of this paper are as follows:
1. We present the design and framework of the RBAC-SC

and provide a performance analysis.
2. We implement a smart contract prototype of the

RBAC-SC, which is deployed on the Testnet blockchain
of Ethereum, and publish the source code on GitHub
(https://github.com/jpmcruz/RBAC-SC).

3. We discuss other related mechanisms based on PKI,
smart contracts, and the Bitcoin blockchain and compare
them with the RBAC-SC.

The rest of the paper is organized as follows: The models
for RBAC, research goals, desired properties, and adver-
sarial model are presented in Section II. A background of
the Ethereum protocols is presented in Section III. The
proposed RBAC-SC is discussed in Section IV. Analysis
and evaluation of the prototype of RBAC-SC are presented
in Section V. Related works on RBAC are discussed in
Section VI. Finally, the conclusion and future direction are
presented in Section VII.

II. MODELS FOR RBAC AND PROBLEM DEFINITION
In the simplest model of RBAC [1], the access structure is
defined by three sets (set U of users, set R of roles, and set
S of services) and two relations (user-role assignment UA
⊂ U×R and role-service assignment SA⊂ R×S). A user u is
eligible to access a service s if and only if there is a role r such
that (u, r) ∈ UA and (r , s) ∈ SA. Roles assigned to users can
be used to access services in a trans-organizational manner.
A service-providing entity can consult a role-providing entity
about a role it issued to determine if a service should be
given to an unknown guest. The role-providing entity is not
always concerned about the service-providing entities, that is,
a service-providing entity is not always allowed access to the
user-role assignments of the role-providing entity. Therefore,
the service-providing entity needs to use an alternative means
to confirm if an unknown guest legitimately owns a certain
role or not. In such framework, we extend the basic model of
RBAC by introducing a set of organizations.

The trans-organizational RBAC is defined similarly to the
usual RBAC, but a set O of organizations is defined in
addition to the sets of users, roles, and services. Furthermore,
the set R of roles is partitioned into several subsets, with each
subset of R associated with an element in O, that is, R =
Ro1

⋃
. . .

⋃
Ron , where o1, . . . , on ∈ O and Roi

⋂
Roj = φ

if i 6= j. To make the relation among roles and organizations
explicit, a role r in Ro1 is written as o1.r . Similarly, the user-
role assignment UA is partitioned into disjoint subsets;
UA = UAo1

⋃
. . .

⋃
UAon , where UAoi ⊂ U × Roi . Obvi-

ously, o1.r ∈ Roi means that the role o1.r is managed by
the organization oi and the assignment of users to o1.r is
controlled by that organization oi.

In the trans-organizational RBAC, a user u requests a ser-
vice s by asserting the role o1.r ∈ Roi that has been issued
by a role-providing entity (organization) o1. The service-
providing organization provides the service to the user if
and only if (u, oi.r) ∈ UAoi and (oi.r , s) ∈ SA. Note that

VOLUME 6, 2018 12241



J. P. Cruz et al.: RBAC-SC

the service-providing organization can easily verify (oi.r , s)
∈ SA because it defined SA. On the other hand, it cannot
trivially verify (u, oi.r) ∈UAoi , which is sometimes called an
authentication, because another organization defined UAoi .

A. PROBLEM STATEMENT
In a trans-organizational RBAC, the verification of the
authenticity of roles in a user-role assignment is important.
For example, a service-providing organization should be able
to verify if a user is the rightful owner of the asserted role (and
that the role was issued by the corresponding role-issuing
organization). Without this verification process, the RBAC
will be insecure and result in unfair and unreliable access con-
trol. In face-to-face communication, the verification problem
is naturally handled with the use of physical certificates, such
as ID cards and passports. However, these physical certifi-
cates cannot be easily imported to the digitalized world over
a computer network. Digital certificates have been studied for
the replacement of physical certificates [2], but they are not
widely implemented because of the cost issues for acquiring
these certificates, keeping related keys secure, and maintain-
ing a PKI [11], [12] that should be secure and always avail-
able. A less sophisticated but simpler approach is for the role-
providing organizations and service-providing organizations
to create a partnership or mutual agreement. However, such
a framework will be semi-closed and only include organi-
zations that share reciprocal benefits. For example, different
universities may create a partnership, but a restaurant will not
be able to join such partnership because it does not provide
any benefit to the universities.

In this paper, we mainly focus on the realization of an
RBAC mechanism in a trans-organizational scenario and
on the secure verification of a user’s ownership of roles.
To achieve these goals, the proposed system should have the
following properties:

1. Issuance: Role-issuing organizations can issue roles
and other related information, such as expiration dates and
personalizations if needed, to users.

2. Management: Role-issuing organizations can manage
and modify information as needed in a transparent manner.

3. Revocation: Role-issuing organizations can revoke the
roles issued to users if needed.

4. Endorsement: Users can endorse other users.
5. Verification: Any entity can verify the user-role assign-

ment through a challenge-response protocol.
6. Transparency: All actions (functions executed) per-

formed in the smart contract are recorded and any entity can
audit these actions.

7.Restriction: An entity can only perform specific actions
and cannot perform actions on behalf of other entities or as
other entities.

B. ADVERSARIAL MODEL
An adversary can try to act as a role-issuing organization or a
user. Acting as a role-issuing organization, the adversary’s
goal is to issue, modify, and/or revoke any role/information it

wants to a user on behalf of another organization. As a user,
the adversary’s goal is to disguise its role, if it has any; that
is, it asserts and tries to prove ownership of a role it does
not own. We assume that the adversary cannot break stan-
dard cryptographic primitives used in the proposed system,
such as finding hash collisions or forging digital signatures.
Moreover, the adversary cannot compromise the private keys
of the entities in the system (unless the entities knowingly
leak them to the adversary). Finally, given that the proposed
system is based on the blockchain technology, the adversary
is assumed to not control a majority of the hashing power
participating in the blockchain network to prevent the double-
spending attack [13] and the 51% attack [14].

III. BLOCKCHAIN TECHNOLOGY AND ETHEREUM
Blockchain technology was introduced to the world by Bit-
coin, which is a decentralized global currency cryptosystem
that has increased in value and popularity since its inception
by Satoshi Nakamoto in 2008 [5]. In the case of Bitcoin,
the blockchain enables a payment system and complete dig-
ital money that is secure and decentralized; that is, it is a
peer-to-peer network powered by its users and with no central
authority. This allows a distributed computing architecture
where the transactions are publicly announced and the partic-
ipants agree on a single history of these transactions (or some
kind of ledger). The transactions are grouped into blocks,
given timestamps, and then published. The hash of each block
includes the hash of the previous block to form a chain,
making published blocks difficult to alter.

As Bitcoin began attracting attention, developers have
taken advantage of the features of blockchain technology as
an infrastructure to create their own platforms (aside from the
main use of blockchain in facilitating the transfer of digital
currency in Bitcoin). On the one hand, some platforms use the
Bitcoin network as infrastructure for notarization or proof of
existence of digital files, crowdfunding, dispute mediation,
and spam control, among others. On the other hand, some
platforms have emerged and took the form of ‘‘alt coins’’,
which are alternative blockchain-based cryptocurrencies that
aim to improve the capabilities of Bitcoin (or lack thereof)
by implementing their own features and capabilities. The
‘‘improvements’’ can come in the form of a different proof-
of-work algorithm (to shorten the verification time of trans-
actions) or different hashing algorithm. There are almost a
1,000 alt coins, but the biggest ones that have attracted a
following and attention are Ethereum [6], Litecoin [7], and
Dogecoin [8]. In this paper, we are going to use Ethereum.

A. ETHEREUM
In 2013, Ethereum was proposed by Vitalik Buterin to cre-
ate a blockchain-based distributed computing platform with
the capability of building and running decentralized appli-
cations or smart contracts [6], [15]. The development of
Ethereum was successfully funded by an online crowdsale in
mid-2014, and the platform went live in 2015. Since then,
Ethereum has received significant attention and is a pioneer

12242 VOLUME 6, 2018



J. P. Cruz et al.: RBAC-SC

in blockchain 2.0, which is the next-generation cryptoledger
space. As of October 2017, Ethereum has a market capital-
ization of 28.3 billion USD, market price per ether (ETH)
of approximately 300 USD, and on average, 300,000 trans-
actions daily [16]. As a blockchain-based cryptocurrency,
it offers the same features as Bitcoin of easy mobile pay-
ments, reliability, full control of one’s own money, high
availability, fast international payments, zero or low fees, pro-
tected identity, and privacy. Ethereum, however, offers more
than enabling online transfer of digital money; it enables its
users to build and deploy smart contracts.
Ethereum is composed of most of the protocols that

other cryptocurrencies, like Bitcoin, also use. For exam-
ple, Ethereum also includes a peer-to-peer protocol for the
blockchain, and the blockchain is managed and kept secure
by nodes in the network. In addition to these protocols,
the main modification and innovation of Ethereum is being
a programmable blockchain, i.e., it allows its users to create,
deploy, and run decentralized applications on the blockchain.

B. ETHEREUM VIRTUAL MACHINE
At the center of Ethereum is the Ethereum Virtual Machine
(EVM), which can execute codes of arbitrary algorithmic
complexity. Therefore, applications that are created using
known programming languages, such as Javascript, can be
run on the EVM. To facilitate the execution of codes in
the blockchain and to maintain consensus, the nodes of the
network run the EVM and execute the same instructions.
Computations in the EVM are payed in ether (ETH), which
is the currency used in Ethereum.

C. ETHEREUM ACCOUNTS
Ethereum’s basic unit is the account. Ethereum uses two
types of accounts: Externally Owned Account (EOA) and
Contract Account. An EOA is controlled by a correspond-
ing private key, has an ether balance, can send transactions
(transfer ether to another account or trigger a contract code),
and does not have an associated code. Similar to a Bitcoin
address, an EOA is in the form of random numbers and letters,
e.g., 0x1d7073d23eF7490974aCb7C7F3bBD634dB3417a0,
and therefore looks anonymous and can be shared pub-
licly. A contract account (or simply called contract) has an
ether balance and has an associated code. All actions in the
blockchain are set in motion by the transactions created by
EOAs. This means that the code in a contract is executed
when it receives a transaction from an EOA, where the input
parameters for the code execution are included in the transac-
tion. Therefore, contracts can be considered as ‘‘autonomous
agents’’ inside the EVM that execute a specific piece of code
when ‘‘poked’’ by a transaction. Code execution in a contract
can also be triggered by messages from other contracts (see
the next subsection for detailed explanation on transactions
and messages). In contrast to Bitcoin’s script, a contract per-
forms Turing-complete computations and is typically written
using some high-level language, such as Solidity, Serpent,
and Lisp Like Language. A contract’s behavior is fully

dependent on the its code and on the transactions sent to it
and therefore offers the possibility for creating decentralized
and trusted systems.

D. TRANSACTIONS AND MESSAGES
An Ethereum transaction is a signed data package that stores
amessage from an EOA to another account on the blockchain.
A transaction contains the Ethereum address of the recipient,
a signature that identifies the sender, the amount of ether
being transferred, an optional data field, and startGas and
gasPrice values. The startGas limits the maximum amount of
gas the code execution triggered by the message can incur
and the gasPrice is the amount in ether to be paid for one
unit of gas consumed (see the next subsection for detailed
explanation on gas). When users send transactions, they pay a
small transaction fee in ether to the network. This fee protects
the blockchain from malicious computational tasks, such
as distributed denial-of-service (DDoS) attacks and infinite
loops.

A message is a virtual object that can only be sent by a
contract to another contract. A message contains the identity
of the sender, the identity of the recipient, the amount of ether
being transferred, input data, and a startGas value. Similar
to a transaction, a message leads to the recipient account
running its code. Therefore, contracts can have relationships
with other contracts in exactly the same way an EOA can.

E. ETHER AND GAS
Ether (ETH) is Ethereum’s native value token and is the
currency of the network. The sender of a transaction needs to
pay for the code it wants to execute, including computation
and data storage. When a code in a contract is executed as a
result of being triggered by a message or transaction, every
node in the network executes this code. The cost of this
execution is expressed in gas. Gas is purchased for ether from
the miners that execute the code (miners are the nodes in the
Ethereum network that receive, propagate, verify, and execute
transactions). Gas and ether are decoupled because gas is
supposed to be constant cost of network utilization, whereas
ether, and currencies in general, is volatile. Therefore, even if
the price of ether increases, the gas price in terms of ether of
executing a function in a contract remains constant.

Every computational step that is executed in a con-
tract or transaction requires gas, and each transaction includes
a gas limit and a fee that it is willing to pay per gas. The
price of the gas is decided by the miners, and miners have
the choice of including the transaction and collecting the
fee or not (similar to the transaction fee in Bitcoin, wherein
miners can decide to get the fee or not). Ethereum clients
automatically purchase gas for the ether specified by the
sender as maximum expenditure for a transaction, and the
excess gas not used by the transaction execution is returned
to the sender in ether. Therefore, overspending on the gas is
not an issue because the user will only be charged for the gas
consumed by a transaction. Readers can refer to [17] to read
more about gas.

VOLUME 6, 2018 12243



J. P. Cruz et al.: RBAC-SC

F. MINING AND PROOF-OF-WORK
Transactions are grouped together in blocks, which are then
added to the blockchain through the process called mining.
The mining process uses a proof-of-work (PoW) system
wherein miners all around the world use special software
to solve mathematical problems. Blocks are connected and
linked together to form a blockchain, where a new block is
added to the block that came before it. Every block contains
the hash of the previous block, and thus, creating a chain
that connects the first block (genesis block) to the current
block. The miner who solves a block is rewarded with ether
(currently at 5 ETH), the cost of the gas used in the transac-
tions that are mined, and an extra reward of 1/32 per uncle.
Uncles are stale blocks with parents that are ancestors of the
including block. Valid uncles are rewarded to increase the
security of the network by neutralizing the effect of network
lag on the dispersion of mining rewards.

The PoW algorithm used in Ethereum is called Ethash (a
modified version of the Dagger-Hashimoto algorithm) and
requires a ‘‘brute force’’ solution; that is, miners scan and
test for a nonce to find a solution that is below a certain
difficulty threshold. The difficulty is adjusted accordingly
so that it takes approximately 15 seconds to find a valid
nonce. The Ethash PoW is a memory-hard computational
problem, that is, it is application-specific integrated circuit
(ASIC) resistant and allows a more decentralized distribution
of security (as compared to specialized hardware used by
many mining pools that dominate the mining in Bitcoin).

The security of the blockchain relies on this PoW system,
which inherently means that a block cannot be modified
without redoing the work spent on it, including the work
spent on blocks chained after it. Therefore, an attacker will
be outpaced by honest miners as long as majority of the
overall computation power participating in the Ethereum
network are controlled by honest miners. In this case,
a block recorded in the blockchain is almost impossible to
modify.

IV. ROLE-BASED ACCESS CONTROL USING SMART
CONTRACT (RBAC-SC)
A. OVERVIEW
In this paper, we investigate how to effectively realize an
RBAC mechanism in a trans-organizational manner and ver-
ify the user-role assignments of organizations in a secure
manner. To achieve these goals, we present RBAC-SC,
a smart contract-based authentication mechanism that is suit-
able for the trans-organizational utilization of roles. Fig. 1
shows the overall structure of the proposed system. The
RBAC-SC is composed of two main parts, a smart contract
and a challenge-response protocol.
The smart contract (SC) is used for the creation of the user-

role assignments, which are then published on the blockchain.
The SC provides different functions for the effective, effi-
cient, and secure creation of user-role assignments. The use
of the blockchain allows for transparency in the created roles,

while maintaining the anonymity of the users, and serves as
the synchronization point for service-providing organizations
to check the asserted roles. The SC is an efficient and secure
programmable asset that runs exactly as programmed. All
actions (executed functions) performed using the SC are
published on the blockchain aswell. The SC has the following
features: 1) allow role-issuing organizations to issue roles
(and other related information) to users, 2) allow role-issuing
organizations to manage and modify information as needed
in a transparent manner, 3) allow role-issuing organizations
to revoke the roles issued to users if needed, and 4) allow
users to endorse other users (and remove the endorsement as
well).

The challenge-response protocol is used for the authentica-
tion of the ownership of roles and the verification of the user-
role assignment. The protocol is composed of the following
steps: 1) declaration of a user owning a role, 2) checking
of the information related to the declaration, 3) challenging
of the user, 4) response of the user to the challenge, and
5) verification of the response of the user. The challenge-
response protocol is designed in such a way that different
organizations do not need to interact with each other and/or
create a partnership for it to function, and it can be performed
offline as well.

B. EXAMPLE SCENARIO
Consider that a role-issuing organization, a university (A-
university), would like to manage a ‘‘student’’ role for its
students. First, it would create the RBAC-SC’s smart contract
and publish it on the Ethereum blockchain. Using the smart
contract, it can execute a function to add a user (student)
into the system. A-university would include the student’s
externally owned address (EOA), the role to be issued to the
student, and some related information, such as expiration date
of the role and personalizations. Then, the user requests a
service from a service-providing organization, for example
a restaurant, by asserting that he/she possesses the student
role from A-university. Based on the assertion, the restaurant
checks the smart contract created by A-university and verify
all the information it needs from there. After checking all
the details, the restaurant can verify through the challenge-
response protocol if the unknown user has access to the cor-
responding EOA that received the role, which finally proves
that the unknown user was indeed issued a student role by
A-university. Note that the restaurant does not have to know
anything about the role beforehand, and it does not have to
make any contract or inquiry to A-university that issued the
role to the student because the details it needs are published
publicly and/or possessed by the user (details below).

C. INITIALIZATION
In the RBAC-SC, we assume that the role-issuing organi-
zations and the endorsers (users who will endorse other
users) are Ethereum users, whereas the users who will not
endorse other users and the service-providing organizations
may or may not be Ethereum users. An Ethereum user means

12244 VOLUME 6, 2018



J. P. Cruz et al.: RBAC-SC

FIGURE 1. Overview of the RBAC-SC framework, which is composed of a smart contract and a challenge-response protocol.

that the entity knows how to create and publish smart con-
tracts, execute the functions of smart contracts, and perform
transactions.

To initialize the RBAC-SC, a role-issuing organization (o1)
generates a keypair of private key and the corresponding
EOA (public key). This keypair will be used to create the

VOLUME 6, 2018 12245



J. P. Cruz et al.: RBAC-SC

smart contract (SC) and execute the functions of the SC .
The creation of the keypair can be accomplished using sev-
eral options, including Ethereum wallets and online/offline
Ethereum address generators. We write o1.EPK and o1.EOA
for the private key and the EOA of o1, respectively.
Then, o1 creates the SC that will handle all of the functions

and serve as the decentralized database and synchronization
system. After creating the SC , o1 deploys the SC on the
Ethereum blockchain under a corresponding smart contract
address (SC .EA). Details about the SC can be accessed by
checking the SC .EA in the blockchain, and its interface
(SC .Interface) can be generated from the Contract JavaScript
Object Notation (JSON) Interface.

Then, o1 publishes o1.EOA, SC .EA, and SC .Interface on
media (e.g., website or public database) of its choice to
make them available to the public. The publication of these
information will serve as proof that o1 owns and manages
o1.EOA and SC .EA (it should be noted that o1 will not gain
any benefit from publishing EOAs and smart contracts that
it does not own, and thus, will only publish the EOA/s and
smart contract/s it owns).

Similarly, a user (u) generates a keypair of a private key
and EOA as u.EPK and u.EOA, respectively. Alternatively,
o1 can generate the (u.EPK, u.EOA) keypair and send it to
u through a secure communication channel. Note, however,
that it is recommended by the Ethereum community that only
the one who created the keypair should be in possession of
the keypair because the private key is used for accessing the
ether stored in the corresponding EOA.

D. RBAC-SC’s SMART CONTRACT
The code inside the SC offers the following functions:
addUser(u.EOA, u.role, u.notes): This function can only

be executed by the SC owner or creator to add users in the
SC and issue the corresponding roles and related information
(Note: The restrictions on which entity can execute the func-
tion/s are realized by modifiers in the code, which will be
explained in Section V-G). It takes as input the public key of
the user (u.EOA), the role to be issued to u (u.role), and notes
(u.notes), which could contain any other relevant information
such as expiration date and personalizations. This function
outputs the inputs, as well as timestamp of when the function
was executed, and writes the outputs to the SC . Consequently,
the SC is updated.

removeUser(u.EOA): This function can only be executed
by the SC owner or creator to remove users from the SC and
revoke their roles. It takes as input the pubic key of the user
(u.EOA) and removes the user from the SC upon successful
execution. Consequently, the SC is updated.

addEndorsee(eu.EOA, eu.notes): This function can only
be executed by a user that has already been added in the
SC to endorse another user (eu). It takes as input the public
key of the endorsee (eu.EOA) and some notes (eu.notes),
which could contain any other relevant information such as
expiration date and personalizations. This function outputs
the inputs, as well as the public key of the endorser (u.EOA)

and the timestamp of when the function was executed,
and writes the outputs to the SC . Consequently, the SC is
updated.

removeEndorsee(eu.EOA): This function can only be
executed by a user to remove an endorsee from the SC .
An endorsee can only be removed by the user who endorsed
him/her. It takes as input the public key of the endorsee
(eu.EOA) and removes the endorsee from SC upon successful
execution. Consequently, the SC is updated.

changeStatus(): This function can only be executed by
the SC owner or creator to deactivate the SC . The SC will
remain on the blockchain forever once it is deployed, and
thus, the status is important to indicate if the SC is inactive
and not supposed to be used anymore.

E. CHALLENGE-RESPONSE PROTOCOL
The challenge-response protocol is performed when a user u
visits a service-providing organization (o2) to request for
a certain service corresponding to a role. The protocol is
composed of the following steps:

Declaration: User u asserts that he/she owns an EOA that
was issued a role by the role-issuing organization o1. The
asserted role corresponds to a service provided by o2.

Information Check: Given the assertion of u, o2 inquires
for the EOA, say u.EOA, that was issued a role by o1.
To determine the information/details related to u.EOA, o2
checks a medium where o1 published the o1.EOA, SC .EA,
and SC .Interface it owns. Using these data, o2 will be able to
access the SC and check the information related to u.EOA,
including u.role and u.notes. Given the data on the SC , o2
is assured that the role u.role and other related information
associated with u.EOA are assigned by o1 to the owner of
u.EOA. Now, o2 can challenge u to verify if he/she is the
genuine owner of u.EOA.
Challenge: Organization o2 chooses an arbitrary data m

and requests u to sign it.
Response: User u signsm together with u.EOA and the pri-

vate key u.EPK. The signature is defined by S = Sign(u.EPK,
u.EOA, m), and thus a correct S can only be created if u has
u.EPK. User u then sends S back to o2.
Response Verification: After receiving the signa-

ture S from u, o2 will verify using the function
ResponseVerify(u.EOA, m, S). If the verification is success-
ful, then o2 can offer the service to u.
Remark that o2 can confirm if u has access to the role

u.role without querying o1, and that u has little chance to
disguise his/her role. The challenge-response protocol can be
performed offline, and the signing and verification functions
of the Ethereum source code can be used as well. Using the
Ethereum source code, a signature can be created by using the
eth.sign(address, web3.sha3(message)) function. This allows
the user to create a signature for a message without revealing
the private key. Examples of the signing and verifying of a
message to prove ownership of an EOA are shown in Fig. 2
and Fig. 3, respectively.

12246 VOLUME 6, 2018



J. P. Cruz et al.: RBAC-SC

FIGURE 2. Example of signing a message.

FIGURE 3. Example of verifying a signature.

V. ANALYSIS AND EVALUATION
In this section, we analyze the framework and different fea-
tures of the RBAC-SC, which provides an efficient and secure
RBACmechanism that can represent the trans-organizational
usage of roles. Moreover, the use of blockchain technology
offers additional features that are not common in traditional
RBAC systems but can be useful.

A. ISSUANCE
In the RBAC-SC, the issuance of roles and other related
information to users is performed efficiently and effectively
by using the smart contract SC .

1) PERSONALIZATION
The relation between users and roles is represented by the
ownership of the private keys that correspond to the EOAs
(public keys) that received a role. This approach opens the
possibility for security risks; the leakage and loss of keys

(Note that these risks also exist for physical certificates
used in face-to-face communication). The RBAC-SC has a
personalization feature that deters the leakage of keys. The
personalization can be directly attached to the user via the
‘notes’ part of the addUser() function. For example, a role-
issuing organization can write in the notes ‘‘The role is given
to student with ID# 123’’. This personalization will make
users more careful about leaking their private keys because
a consequent investigation of a maliciously used role can
be performed. Remember that blockchain technology allows
for verifiability and thus presents a natural ‘‘traitor tracing’’
capability that can link accounts to users.

2) ROLE RE-ISSUANCE
If the private keys are lost or forgotten, or if access to the
digital wallet is lost or forgotten, then control over the corre-
sponding EOAs is also lost. The ownership of an EOA cannot
be verified or proven without the corresponding unique pri-
vate key. The RBAC-SC has a revocation feature to mitigate
the loss of keys, wherein a role-issuing organization can
simply delete the compromised EOA (via the removeUser()
function) and re-issue the role to the new EOA of the user.

3) EXPIRATION DATES
The timestamp server of Ethereum provides a natural solution
to the inclusion of expiration dates or validity of the roles in
the proposed system. Role-issuing organizations can include
an expiration date to the roles it will issue in the ‘notes’ part
of the addUser() function. The service-providing organization
can then check the validity of the asserted role according to
the timestamp of when the role was issued to the user.

4) ACCOUNTS HANDLED
A role-issuing organization only needs to generate and handle
one account/EOA, which is used for creating the smart con-
tract and executing its functions. Similarly, a user only needs
to generate and handle one account/EOA, which is used for
receiving roles and for endorsing another user (and therefore,
an endorsee only needs to generate and handle one account).
The service-providing organization do not need to generate
and handle an account/EOA.

B. MANAGEMENT
A role-issuing organization can easily update the information
related to a user issued a role by using the addUser() function.
Similarly, a user can easily update the information related to
a user it endorsed using the addEndorsee() function. Even
though the information can easily be updated, all the updates
can be verified by anyone (see Transparency below) and will
therefore be done in a responsible manner.

C. REVOCATION
Revocation can be achieved by executing the removeUser()
function that will delete the user from the RBAC-SC. This
feature is important in cases when the role of the user is
expired. This will prevent the misuse of expired roles.

VOLUME 6, 2018 12247



J. P. Cruz et al.: RBAC-SC

D. ENDORSEMENT
Endorsement among individuals is useful, and sometimes
necessary, in certain scenarios. Semi-closed organizations,
such as academic societies and golf clubs, have the tradi-
tion or policy that a newmembermust be referred or endorsed
by a current member. Consider for example that Alice (u) is
an authorized member of a golf club (o1). This relationship is
realized by the addition of Alice as a user in the SC created
by o1. If Alice would like to endorse Bob (eu) to o1, then
she can use the addEndorsee() function in the SC to endorse
Bob. Then, Bob can go to o1 and declare eu.EOA. Finally,
o1 can perform the challenge-response protocol to verify the
assertion. Note that o1 did not have to inquire Alice for the
verification of the endorsement.

E. VERIFICATION
The RBAC-SC achieves the verification property effectively
and efficiently. The challenge-response protocol is designed
to securely verify user-role assignments and a user’s owner-
ship of roles. The challenge and response verification steps
can be performed offline, and the transferring of the message
and signature can be done efficiently using current technolo-
gies used in mobile devices, such as Quick Response (QR)
codes [20] and Near Field Communication (NFC) [21].

F. TRANSPARENCY
The RBAC-SC achieves the transparency property because
all functions that are executed in the SC are reflected on
the events log of the SC and on the Ethereum blockchain.
Therefore, an entity will not be able to perform a ‘‘secret’’
action without the other entities knowing. Moreover, entities
will not be able to deny any action committed (as it is assumed
that only the respective entities have control over their own
private keys).

G. RESTRICTION
The RBAC-SC achieves the restriction property because the
SC includes modifiers in its source code that will restrict the
different entities to specific functions. For example, the SC
has the ‘‘onlyOwner’’ modifier that allows only the creator of
the contract (i.e., the role-issuing organization) to execute the
addUser(), removeUser(), and changeStatus() functions. If a
non-owner tries to execute these functions, the execution will
fail and the action will not be recorded on the RBAC-SC and
on the blockchain. The same restriction rule applies for the
‘‘onlyUser’’ modifier for the execution of the addEndorsee()
and removeEndorsee() functions.

H. COSTS AND PRACTICALITY
A prototype of the smart contract of RBAC-SC was com-
piled and deployed on the Testnet of the Ethereum network.
The costs of creation of the smart contract and the execu-
tion of the functions were analyzed. During the analysis,
on October 2017, 1 ether ≈ 325 USD, and 1 gas ≈ 1 wei
(0.000000001 eth) were used. 1 wei is the minimum gas value

TABLE 1. Costs of the Different Functions in the SC Based on 1 Ether ≈

325 USD and 1 gas ≈ 0.000000001 eth Rates

that can be used for a transaction. At the time of analysis,
the average gas value was approximately 0.000000021 ETH.
The lower the gas value, the longer the transaction will be
validated by miners as miners can choose to ignore transac-
tions with low gas value. However, for our purposes, the val-
idation time is not vital and thus the minimum value is
sufficient. Moreover, the difference in the time of confirma-
tion (from 15 secs on average using the average gas value)
was insignificant.

The costs of the execution of the different functions in the
SC are shown in Table 1. As can be seen in the table, the high-
est cost corresponds to the creation and deployment of the SC
on the blockchain at 0.590 USD. This cost, however, is only
a one-time cost to setup and initialize the system. All the
other functions have relatively low costs, with the costs of the
addUser() and addEndorsee() at 0.05 USD on average. The
costs of these functions will vary because of the variable input
lengths (roles and notes). Based on the AddUser() function,
each byte will cost 64 gas (0.00002 USD). The removeUser()
and removeEndorsee() will be constant at 0.033 USD and
0.013 USD, respectively, as their inputs have constant size.
It should be noted that the costs are based on the prototype
deployed on the blockchain, and the costs can be lower with
an optimized code. The costs can also be lowered further if the
sizes of the inputs of the functions are minimal. Nevertheless,
it can be argued that these costs will be significantly lower
compared to buying/setting up and maintaining a private
database.

I. FLEXIBILITY
The RBAC-SC provides role-issuing organizations with the
flexibility to join or leave the system easily. Role-issuing
organizations only need to follow the Ethereum protocol of
the proposed system (create a smart contract and execute the
functions) to participate in the system, and they can leave
the system simply by retracting or disabling the media where
they published the data related to their smart contract. Alter-
natively, the role-issuing organizations can deactivate their
smart contract by updating the status field to ‘‘disabled’’ via
the changeStatus() function.

J. ADDITIONAL SECURITY MEASURES
Ethereum users typically create many accounts and use dig-
ital wallets to store their public keys and the corresponding
private keys. These wallets are the most common target of

12248 VOLUME 6, 2018



J. P. Cruz et al.: RBAC-SC

attacks, but of course, security measures have been imple-
mented and are recommended to minimize such cases. The
EOAs serve as the connection of the users to their corre-
sponding roles. Therefore, the users are recommended to
only use the EOAs for this purpose. Ultimately, a user only
needs to store and secure the private key, which can also
be kept offline for added security. An attacker with no prior
knowledge of the RBAC-SC and the EOAs involved in the
user-role assignments will have no motives or incentives to
steal the private keys because the EOAs will not contain large
amounts of ether.

VI. RELATED WORK
In this section, we discuss different systems related to RBAC.
A couple of related works that make use of blockchain tech-
nology are limited, and the system in [18] is the only directly
comparable system to RBAC-SC .

A. PKI-BASED SCHEMES
PKI-based and server-based systems are well-recognized
frameworks utilized in many applications, such as OpenPGP
(based on Pretty Good Privacy) and eXtended Markup Lan-
guage (XML) [22]–[24]. However, it is often pointed out
that, in these frameworks, the setup and service/labor costs
become more expensive as the number of users increases.
Even though implementation costs vary with the installa-
tion, common expenses, such as hardware for servers and
backup devices, and personnel expenses for the design, setup,
and maintenance of the PKI environment are necessary. For
example, a 5,000-user PKI infrastructure can cost approx-
imately 200,000 USD annually, with the initial setup cost
amounting to 10,000 USD [25], [26]. These costs also apply
for other systems that rely on a central authority, including
Identity Providers (IdPs) which authenticate users on the
Internet by using security tokens.

In addition to the complexity and costs of PKI-based
systems, they are vulnerable to some security problems.
In PKI-based systems, a Certificate Authority (CA) typically
acts a trusted third party responsible for the distribution of
management of digital certificates. The use of a CA cre-
ates a single point for failure and is therefore vulnerable to
attacks. An example of an attack on CA is the DigiNotar
incident [3], wherein the DigiNotar CA issued a rogue cer-
tificate for Google. Other attacks are caused by misconfigu-
rations or unpatched software and the eventual attacks using
quantum computers.

B. DECENTRALIZED ATTRIBUTE-BASED SCHEMES
To mitigate the risks of PKI-based systems, decentralized
systems have been studied. Some of these systems are
the decentralized multi-authority systems for attribute-
based encryption (MA-ABE) and attribute-based signatures
(MA-ABS) [27], [28]. The MA-ABE in [27] is decentralized
but requires a trusted setup of common reference parame-
ters. The MA-ABS in [28] is also decentralized and does
not require a trusted setup, but it requires the setting of

a public parameter for a prime order bilinear group and
hash functions. Given these requirements, implementation
and interoperability problems may arise if several groups of
entities use different parameters. Therefore, the initialization
and implementation of such systems require mutual agree-
ment and consensus among all entities that will be involved.
Consequently, a scheme for a role authentication mechanism
that is secure, practical, and easy to set up has yet to be
established. The MA-ABS and MA-ABE are relatively new
technologies, and they can possibly be widely accepted in the
future. However, as of writing this manuscript, the practical
contribution of these techniques to existing network systems
and the cost issues of their deployment are yet to be discussed.

C. SMART CONTRACT-BASED PKI
Recently, Al-Bassam created a smart contract-based PKI
and Identity System (SCPKI) [29] that aims to detect the
issuance of rogue certificates. Matsumoto and Reischuk pre-
sented IKP [30], which is a smart-contract based platform
that automates responses to unauthorized certificates. The
IKP prevents Certificate Authority (CA) misbehavior by
receiving reports of unauthorized certificates and by incen-
tivizing CAs for behaving correctly. The IKP was also
deployed on the Ethereum blockchain to improve the Trans-
port Layer Security (TLS) of PKI. The SCPKI and IKP
provide solutions to the centralization problem of PKI-based
system but are mainly aimed at preventing the issuance of
rogue/unauthorized certificates.

D. BLOCKCHAIN-BASED RBAC
The authors did a preliminary work on using the Bitcoin
network as an infrastructure to realize a trans-organizational
RBAC mechanism. As an overview, the previous system
in [18], [19] aims to provide an irrefutable proof of the role of
a user (issued by an organization) by verifying the connection
of the user to the organization through the Bitcoin blockchain.
The connection is realized through the payment in Bitcoin,
which is used to represent a relation of trust. The roles and
other related information are included in the Bitcoin trans-
actions, where the organization uses its own public Bitcoin
address/es as input/s and the corresponding users’ public
Bitcoin address/es as output/s. Upon request for a service
from an unknown user who asserts that he/she possesses a role
from the said organization, a service-providing organization
will verify the Bitcoin transaction containing the Bitcoin
addresses of the organization and the user. After establishing
the connection, the service-providing organization can verify
through a challenge-response protocol if the unknown user
has access to the output address in the transaction, which
finally connects the role issued by the role-issuing organi-
zation to the unknown user. Compared with the RBAC-SC,
this system is less efficient and has several disadvantages as
follows:

1. A role-issuing organization is required to generate n
Bitcoin addresses, where n is the number of roles that it wants
to manage.

VOLUME 6, 2018 12249



J. P. Cruz et al.: RBAC-SC

2. A role-issuing organization needs to create separate
Bitcoin transactions to update the data of a user and include
the overwritten data in a revocation list to ensure these will
not be used in a malicious manner. The same process is used
for the re-issuance of roles and deletion of users.

3. A role-issuing organization performs personalization
by including unique identifiers to the data it will publish
publicly, requiring it to generate a unique Bitcoin address for
each personalization.

4. To endorse another user, a user creates a Bitcoin transac-
tion to link their addresses. The service-providing organiza-
tion verifies this endorsement by checking such connection,
and then following the trail of connections back to the role-
issuing organization. This can be inefficient and confusing
to trace, especially if the addresses involved are included in
many transactions. In RBAC-SC, such ‘‘follow the trail’’ is
unnecessary.

5. A role-issuing organization can include expiration
dates or validity of the roles it manages in the information
it publishes publicly. In this way, a service-providing orga-
nization can verify the validity of a role by investigating the
timestamp of the block where the transaction was included in
the blockchain and comparing it with the details published by
the role-issuing organization. Similar to the personalization
of roles, multiple Bitcoin addresses are needed for different
expiration dates, particularly if the dates are specific.

6. A role-issuing organization needs to publish n Bitcoin
addresses, the corresponding roles, and other information
related to the roles. These data can easily increase with the
number of users, roles, expiration dates, and personalizations.
In RBAC-SC, a role-issuing organization only needs to pub-
lish one EOA, the address of the smart contract, and the
interface of the smart contract.

7. Performing functions via Bitcoin transactions is costly.
Currently, the minimum Bitcoin transaction typically costs
around 0.2 USD, and even this feemay not be accepted imme-
diately, if at all (based on the rate provided by blockchain.info
wallet for more than an hour of confirmation time). This
can be caused by the increasing number of transactions per
block, and therefore limited space. Consequently, miners are
choosing transactions with higher fees.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed the RBAC-SC, an RBAC mech-
anism that uses smart contract and blockchain technologies
to realize the trans-organizational utilization of roles. The
RBAC-SC provides a secure and efficient mechanism for the
creation of user-role assignments and for the verification of
a user’s ownership of a role. Moreover, many collaborative
rights management, such as personalization and endorse-
ment, are naturally included. We described the RBAC-SC
framework and presented a performance analysis. A pro-
totype of the smart contract was created and deployed on
the Testnet of Ethereum, and the source code was uploaded
on GitHub. As future work, we will investigate a formal
approach for the security analysis of RBAC-SC and create

an optimized prototype to make the functions more efficient
and minimize the costs.

APPENDIX
RBAC-SC’s SMART CONTRACT
The complete code and the JSON interface of RBAC-SC’s
smart contract SC can be found here:
https://github.com/jpmcruz/RBAC-SC.
The SC was deployed on the Ropsten Testnet of Ethereum

with the following address:
0xE8E6De0Fb1a3891BbDaB7554dc5076F407FeC0cc.
Using this address, the transactions can be seen at:
https://ropsten.etherscan.io/.

REFERENCES
[1] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, ‘‘Role-based

access control models,’’ Computer, vol. 29, no. 2, pp. 38–47, 1996.
[2] S. Farrell and R. Housley, An Internet Attribute Certificate Profile for

Authorization, document RFC 5755, 2002.
[3] R. Charette, ‘‘DigiNotar certificate authority breach

crashes e-government in The Netherlands,’’ IEEE Spectr.,
2011, accessed: Nov. 28, 2017. [Online]. Available:
https://spectrum.ieee.org/riskfactor/telecom/security/diginotar-certificate-
authority-breach-crashes-egovernment-in-the-netherlands

[4] Shibboleth. Internet2. Accessed: Nov. 28, 2017. [Online]. Available:
http://shibboleth.internet2.edu

[5] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic
Cash System. Accessed: Nov. 28, 2017. [Online]. Available:
https://bitcoin.org/bitcoin.pdf

[6] Ethereum. Blockchain App Platform. Accessed: Nov. 28, 2017. [Online].
Available: https://ethereum.org/

[7] Litecoin. Accessed: Nov. 28, 2017. [Online]. Available: https://litecoin.org/
[8] Dogecoin. Accessed: Nov. 28, 2017. [Online]. Available:

http://dogecoin.com/
[9] Solidity. Accessed: Nov. 28, 2017. [Online]. Available:

https://solidity.readthedocs.io/en/develop/
[10] Etherscan. The Ethereum Block Explorer: ROPSTEN (Revival) TESTNET.

Accessed: Nov. 28, 2017. [Online]. Available: https://ropsten.etherscan.io/
[11] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,

SPKI Certificate Theory, document RFC 2693, 1999.
[12] P. Gutmann, ‘‘Simplifying public key management,’’ Computer, vol. 37,

no. 2, pp. 101–103, Feb. 2004.
[13] G. O. Karame, E. Androulaki, and S. Capkun, ‘‘Double-spending fast

payments in bitcoin,’’ inProc. ACMConf. Comput. Commun. Secur. (CCS),
2012, pp. 906–917.

[14] 51% Attack, Majority Hash Rate Attack. Accessed: Nov. 28, 2017.
[Online]. Available: https://bitcoin.org/en/glossary/51-percent-attack

[15] G. Wood. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Yellow Paper. Accessed: Nov. 28, 2017. [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[16] Etherscan. Ethereum Charts & Statistics. Accessed: Nov. 28, 2017.
[Online]. Available: https://etherscan.io/charts

[17] Ethereum Homestead Documentation. Accessed: Nov. 28, 2017.
[Online]. Available: https://ethereum-homestead.readthedocs.io/en/
latest/index.html

[18] J. P. Cruz and Y. Kaji, ‘‘The bitcoin network as platform for trans-
organizational attribute authentication,’’ IPSJ Trans. Math. Model. Appl.,
vol. 9, no. 2, pp. 41–48, 2016.

[19] J. P. Cruz and Y. Kaji, ‘‘The bitcoin network as platform for trans-
organizational attribute authentication,’’ in Proc. 3rd Int. Conf. Building
Exploring Web Based Environ. (WEB), 2015, pp. 29–36.

[20] QRCode.Com. Accessed: Nov. 28, 2017. [Online]. Available:
http://www.qrcode.com/en/

[21] NFC. Near Field Communication. Accessed: Nov. 28, 2017. [Online].
Available: http://nearfieldcommunication.org/

[22] R. Perlman, ‘‘An overview of PKI trust models,’’ IEEENetw., vol. 13, no. 6,
pp. 38–43, Nov. 1999.

[23] OpenPGP. Accessed: Nov. 28, 2017. [Online]. Available:
http://www.openpgp.org/

12250 VOLUME 6, 2018



J. P. Cruz et al.: RBAC-SC

[24] W3C. XML Signature Syntax and Processing Version 1.1. Accessed:
Nov. 28, 2017. [Online]. Available: https://www.w3.org/TR/xmldsig-core/

[25] VeriSign. Total Cost of Ownership for Public Key Infrastructure.
Accessed: Nov. 28, 2017. [Online]. Available: http://www.imaginar.org/
sites/ecommerce/index_archivos/guias/G_tco.pdf

[26] A TC TrustCenter Whitepaper. The Costs of Managed PKI. Accessed:
Nov. 28, 2017. [Online]. Available: https://azslide.com/the-costs-of-
managed-pki_59892e9b1723dda4299be236.html

[27] A. Lewko and B. Waters, ‘‘Decentralizing attribute-based encryption,’’
in Proc. 30th Annu. Int. Conf. Theory Appl. Cryptograph. Techn., Adv.
Cryptol. (EUROCRYPT), 2011, pp. 568–588.

[28] T. Okamoto and K. Takashima, ‘‘Decentralized attribute-based signa-
tures,’’ in Public-Key Cryptography—PKC. Berlin, Germany: Springer,
2013, pp. 125–142.

[29] M.Al-Bassam, ‘‘SCPKI: A smart contract-based PKI and identity system,’’
in Proc. ACM Workshop Blockchain, Cryptocurrencies Contracts (BCC),
2017, pp. 35–40.

[30] S. Matsumoto and R. M. Reischuk, ‘‘IKP: Turning a PKI around with
decentralized automated incentives,’’ in Proc. IEEE Symp. Secur. Pri-
vacy (SP), May 2017, pp. 410–426.

JASON PAUL CRUZ (M’13) was born in Manila,
Philippines, in 1988. He received the B.S. degree
in electronics and communications engineering
and the M.S. degree in electronics engineering
from Ateneo de Manila University, Quezon City,
Philippines, in 2009 and 2011, respectively, and
the Ph.D. degree in engineering from the Graduate
School of Information Science, Nara Institute of
Science and Technology, Nara, Japan, in 2017.

He is currently a specially appointed Assistant
Professor at Osaka University, Suita, Japan. His current research inter-
ests include role-based access control, blockchain technology (Bitcoin and
Ethereum), hash functions and algorithms, and Android programming.

YUICHI KAJI (M’97) was born in Osaka, Japan,
in 1968. He received the B.E., M.E., and Ph.D.
degrees in information and computer sciences
from Osaka University, Suita, Japan, in 1991,
1992, and 1994, respectively.

In 1994, he joined the Graduate School of Infor-
mation Science, Nara Institute of Science and
Technology, Nara, Japan. In 2003 and 2004, he vis-
ited the University of California at Davis and
the University of Hawaii at Manoa as a Visiting

Researcher. He joined Nagoya University, Aichi, Japan, in 2016. His current
research interests include the theory of error correcting codes, fundamental
techniques for information security, and the theory of automata and rewriting
systems. He is a member of IPSJ.

NAOTO YANAI received the B.Eng. degree from
The National Institution of Academic Degrees and
University Evaluation, Japan, in 2009, and the
M.S.Eng. and Dr.Eng. degrees from the Graduate
School of Systems and Information and Engineer-
ing, University of Tsukuba, in 2011 and 2014,
respectively.

He is currently an Assistant Professor at Osaka
University, Suita, Japan. His research interests
are in the areas of cryptography and information
security.

VOLUME 6, 2018 12251


	INTRODUCTION
	MODELS FOR RBAC AND PROBLEM DEFINITION
	PROBLEM STATEMENT
	ADVERSARIAL MODEL

	BLOCKCHAIN TECHNOLOGY AND ETHEREUM
	ETHEREUM
	ETHEREUM VIRTUAL MACHINE
	ETHEREUM ACCOUNTS
	TRANSACTIONS AND MESSAGES
	ETHER AND GAS
	MINING AND PROOF-OF-WORK

	ROLE-BASED ACCESS CONTROL USING SMART CONTRACT (RBAC-SC)
	OVERVIEW
	EXAMPLE SCENARIO
	INITIALIZATION
	RBAC-SC's SMART CONTRACT
	CHALLENGE-RESPONSE PROTOCOL

	ANALYSIS AND EVALUATION
	ISSUANCE
	PERSONALIZATION
	ROLE RE-ISSUANCE
	EXPIRATION DATES
	ACCOUNTS HANDLED

	MANAGEMENT
	REVOCATION
	ENDORSEMENT
	VERIFICATION
	TRANSPARENCY
	RESTRICTION
	COSTS AND PRACTICALITY
	FLEXIBILITY
	ADDITIONAL SECURITY MEASURES

	RELATED WORK
	PKI-BASED SCHEMES
	DECENTRALIZED ATTRIBUTE-BASED SCHEMES
	SMART CONTRACT-BASED PKI
	BLOCKCHAIN-BASED RBAC

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	JASON PAUL CRUZ
	YUICHI KAJI
	NAOTO YANAI


