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ABSTRACT Conventional sensing methodologies for smart home are known to be labor-intensive and
complicated for practical deployment. Thus, researchers are resorting to alternative sensing mechanisms.
Wi-Fi is one of the key technologies that enable connectivity for smart home services. Apart from its primary
use for communication, Wi-Fi signal has now been widely leveraged for various sensing tasks, such as gesture
recognition and fall detection, due to its sensitivity to environmental dynamics. Building smart home based
on Wi-Fi sensing is cost-effective, non-invasive, and enjoys convenient deployment. In this paper, we survey
the recent advances in the smart home systems based on the Wi-Fi sensing, mainly in such areas as health

monitoring, gesture recognition, contextual information acquisition, and authentication.

INDEX TERMS IoT, smart home, WiFi sensing.

I. INTRODUCTION

Smart home enables the interconnections of ubiquitous
devices planted in home appliance with sensors and actuators
for automation [1]. The thrust for smart home is an aggre-
gation of different kinds of technologies which normally
involve three layers [1], [2]: application layer, network layer,
and perception layer. The perception layer is responsible for
gathering information from the surroundings and serves as the
interface for humans to interact with the connected objects.
The desire for more comfortable and friendly to use interface
has led to the development of ubiquitous and novel sensing
methodologies.

Conventional sensing methodologies for smart home have
several shortcomings. First, it usually involves different kinds
of sensors [1]. But different sensors have to be activated by
different drives for data acquisition. Thus device drive devel-
opment for the numerous sensors would be a great burden.
Second, the installation of various sensors for smart home is
costly. We have to deploy dedicated devices and sensors at
geographically dispersed locations [1], [3], [4], which may
require special technicians to set up. Finally, popular inter-
action solutions with everyday objects require explicit user
input which is still not convenient. For instance, the popular
smart home products such as Amazon Echo [5] and Google
Home [6] require audio input. A smart home system that

can non-invasively anticipate our needs and act in advance
without much intervention would be much more desirable.
Therefore, researchers have been searching for new possible
solutions.

Recent advances in wireless technology have found that the
WiFi signals are sensitive enough to capture environmental
dynamics thus can be used for the sensing purpose. Building
a smart home based on WiFi sensing can outweigh conven-
tional solutions. The main benefits are threefold. 1) Cost-
effective. WiFi sensing makes it possible to deploy sensing
tasks on existing infrastructures, namely WiFi transceivers
which are already ubiquitous in typical indoor settings.
2) Convenient deployment. Building supported hardware for
smart home is simple and easy. We just need to place a
pair or several pairs of WiFi transceivers in the place of inter-
est. Literary works [7], [8] even claim that random placement
is also feasible. And the software to expose sensor read-
ings has been released in the community [9], [10]. No extra
efforts for device drive development are needed. Therefore,
we can have a convenient deployment. 3) Non-invasive sens-
ing. WiFi sensing, either active or passive, uses the invisible
radios to sense the surroundings, thus eliminates the reliance
on the direct contact. It can accomplish the sensing tasks
without user awareness thus introduces no discomfort. Such
non-invasive sensing also enables continuously over-the-air
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monitoring, making it feasible for the radios to “recognize”
the users and ““understand” their behaviors.

WiFi sensing has been used in many fields. For instance,
Virmani and Shahzad [7], Wang et al. [8], and Wang et al. [11]
proposed to use WiFi signal to identify human activities,
providing us opportunities to design new human computer
interfaces for smart home automation. Works that proposed
to leverage WiFi signal for respiration monitoring and heart-
beat detection were presented in [12], [13], and [14]. Such
works make non-invasive healthcare monitoring available.
Utilizing the WiFi signal to extract contextual information
such as location, direction, or range information had been
demonstrated in [15]-[17]. Combined with Augmented Real-
ity (AR) or Virtual Reality (VR), these works may offer us a
brand new experience for smart home entertainment. These
insightful works open up doors to enhance functionalities for
smart home on existing infrastructures with little efforts.

In this paper, we survey state-of-the-art processing algo-
rithms, applications, and systems based on WiFi sensing.
We present these works into the following four categories:
health monitoring, gesture recognition, contextual informa-
tion acquisition, and authentication. We have summarized the
literary works corresponding to each category in Table 1.
In later sections, we will divide into the principles behind
each category. In the end, we also highlight the challenges
and envision future research trends.

TABLE 1. Summary of WiFi-based applications.

Category Applications

Hearbeat detection [14], [18]

Respiration rate monitoring [12], [13]

Sleep apnea detection [12]

Fall detection [19], [20]

Human activity recognition [7], [8], [11], [21]
Keystroke detection [22]

Sign language recognition [23]

Lips motion recognition [24]

Health monitoring

Gesture recognition

Contextual Location [16], [25]-[27]
information Direction finding [15], [28]-[30]
acquisition Range estimation [17]

Access control [31]
Intrusion detection [32], [33]
Abnormality detection [32], [33]

Authentication

Il. A PRIMER ON WiFi SIGNAL
WiFi sensing is an emerging concept that uses WiFi radios as
sensors [34]. In this section, we present preliminary knowl-
edge on WiFi signal. Specifically, we introduce two numer-
ical “sensor” readings, namely Received Signal Strength
Indicator (RSSI) and Channel State Information (CSI).
Received Signal Strength Indicator (RSSI) defines the
relative power strength of the received signal. In IEEE
802.11 standard, RSSI is internally used to reflect a link
quality [35]. RSSI follows the Log-normal Distance Path
Loss (LDPL) model [36]:

P(d) = P(do) + 10nlg(5—0) + X5, ey
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where P(d) is the power strength at distance d, P(dp) denotes
the power strength at a reference location dp, n is the power
loss coefficient, and X; is a random noise. Based on Eq. 1,
we can roughly get the relationship between distance and the
power strength. However, in a complex indoor environment,
the multipath effect [36] will greatly distort the model, mak-
ing it almost impossible to infer location from Eq. 1. Fig. 1
depicts the RSSI measurements corresponding to different
WiFi APs in a fix location. We can see that RSSI can fluctuant
heavily, making it an unreliable indicator.

WiFi signal

— RSSI,
— RSSL ||
-50} — RSSI; |
— RSSI,

_65 L

WiFi signal strength (dB)

_75 L

0 5 10 15 20 25
Consecutive WiFi measurement index

FIGURE 1. RSSI measurements corresponding to different WiFi Access
Point in a fix location.

Channel State Information (CSI) is a much finer grain
metric than RSSI. CSI has been widely adopted in
wireless communication especially in modern Orthogonal
Frequency Division Multiplexing (OFDM) systems. The
primary function of CSI is to estimate the properties of prop-
agation channel characterized by the environment dynam-
ics, thus adopting better strategies to improve throughput
performance [37]-[39]. Assume we transmit a known
matrix X, after experiencing some propagation delay, reflec-
tion, or other distortions, we get another matrix Y at the
receiver end. If we use H denote the CSI, then Y = H x X.
The CSI in OFDM systems can be parameterized by a
vector H S

H=H{),H), ..., H({v)), )

where H (f;) denotes the Channel Frequency Response (CFR)
on each subcarrier. The vector H in its complex form
characterizes the propagation channels on each transceiver
pair, equalizing the channel distortions and contributing to
improve the communication performance. The CSI has finer
granularity and flexible sampling rate than its well-known
counterpart, RSSI, which is a summation of CSI across all
the subcarriers and only reflect amplitude information.

The CSI data contains amplitude and phase informa-
tion. The summation of CSI amplitudes across each sub-
carrier becomes RSSI [36]. So CSI amplitude obtains
the same properties with RSSI. Due to its inherent short
wavelength, the CSI phase is much more sensitive to
environment dynamics. Say the CSI signal experience
d= % = 6.25 cm displacement (the oscillating frequency of
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the WiFi signal is 2.4 GHz). Such a displacement would
not make the CSI amplitude suffer from great distortion.
However, it would cause the phase a 180° significant change.
The above intuition serves as the basis for many CSI-based
applications.

Context Retrieving:
Localization
Direction Finding
Range Estimation

Gesture Recognition
Gait Recognition
Fall Detection

Intrusion Detection

Healthcare Monitoring

FIGURE 2. An overview of applications based on WiFi sensing.

Ill. APPLICATIONS BASED ON WiFi SENSING

In this section, we will present state-of-the-art applications
driven by WiFi sensing, which can be divided into four
categories: health monitoring, gesture recognition, contex-
tual information acquisition, and authentication, as shown
in Fig. 2.

The physical layer configurations for these applications
normally involve one pair or several pairs of WiFi-enabled
transceivers to be deployed in different places. The process-
ing layer for these applications can be generalized into model-
based or learning method based. Some works may combine
the two models together.

Model-based methods build the systems in a divide-and-
conquer manner, consisting of a pipeline of signal processing
blocks. Some works [19], [20] may simply regard WiFi as a
one-dimensional signal, and naively extract features from the
mean, average, deviation, abrupt changes, or even the spectra
for use. Others [40] may adopt more advance signal inter-
ference models, such as Fresnel zone model, to parameterize
the signal properties and trace the model parameters for event
detection. Some other works [28], [30] exploit more informa-
tion from the WiFi architectures, for example, Multiple Input
Multiple Output (MIMO) and multiple subcarriers to enhance
the reliability.

Pre-processing Offline

FIGURE 3. Typical workflow of learning-based method.

Instead of explicitly finding a perfect model, some
researchers resort to machine learning techniques. The
typical workflow has been depicted in Fig. 3. Machine
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learning based methods typically involve two steps: the
offline training and the online predicting. The offline training
step is supposed to produce a model, which correlates certain
events to the specific features of WiFi signal. When the
system is online, the WiFi signal, after some pre-processing
procedures, namely de-noising and feature extraction, will be
fed into the model to predict certain events.

A. HEALTH MONITORING WITH WiFi SENSING

Health monitoring systems with anomaly detection tech-
niques can trigger an alarm in emergencies, which is quite
useful to help take care of patients, babies, and elders.

Currently, most of the health monitoring systems depend
on dedicated devices. Many are limited to clinic use and
require a well-trained technician to set up [41]. Even though
there are some portable devices developed for household use,
they are still far from user-friendly and require specialists to
instrument the sensors [42], [43]. To make matters worse,
some medical disorders, such as sleep apnea, when breathing
becomes abnormal during sleep, need constant monitoring.
In the clinic, doctors often use polysomnography test to diag-
nose sleep apnea, which is expensive and laborious [41]. So a
non-invasive method is more desirable.

Fall detection is a typical health monitoring system. Falls
are the major cause of fatal injuries and death to the
elders [44]. It is reported [44] that in the United States,
an older adult falls every second of every day, making falls
the number one killer of the older Americans. Fall detec-
tion has already been discussed in the community. Liter-
ary works [45], [46] apply wearable technology to detect
fall. Others [3], [4] deploy dedicated sensors in the home.
Computer vision [47], [48] based methods are also available.
Wearable technology requires users constantly wear a spe-
cial device, which may cause discomfort. Planting dedicated
sensors in the home requires special technicians to do the
setup, which is costly and labor-intensive. Computer vision
technology seems to be perfect, however, raises privacy issues
and can not work in Non-Line-Of-Sight (NLOS) scenarios.

Health monitoring systems with WiFi sensing are
promising alternatives to overcome the above limitations.
By leveraging the invisible WiFi radios, the sensing tasks
can be completed without user awareness, which causes
minimum discomfort. The WiFi radios can traverse through
walls, making it feasible to perform sensing tasks even under
challenging NLOS scenarios. The multipath effect, which
is normally detrimental for data communication, can have a
beneficial effect on WiFi sensing as it extends the spatial sens-
ing dimensions. We now introduce WiFi-enabled systems
capable of detecting biomedical information, for example,
respiration rate, heartbeat, and abnormal behaviors.

WiFi-enabled fall detection systems [19], [20] harness the
fact that a sudden fall can cause abrupt changes in CSI values.
Wang et al. [20] applied the magnitude of CSI for fall detec-
tion, reporting 87% detection accuracy. The phase difference
across multiple antennas is incorporated to detect fall [19],
which proves to be more reliable and robust and achieves
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over 90% accuracy. Both [19], [20] adopt the learning-based
techniques.

To detect the respiration rate or heartbeat is much more
difficult, as such activities do not introduce noticeable dif-
ference on the numerical sensing results. Hence, such sys-
tems often require the transceivers placed near the human
body. The rational for respiration rate detection is that the
miniature chest displacement can modulate the radio signal,
as depicted in Figure 4. When the person inhales, the air the
person breathes in will inflate the chest, making the radio
signal traverse a much shorter distance. When the person
exhales, the radio signal will undergo a much longer distance
and experience a relatively stronger path loss. Therefore,
the breathing cycle is captured by the WiFi signal. Heart beat
can be also detected in the same way.

D' Chest displacement

FIGURE 4. The chest displacement can modulate the reflected WiFi signal.
So by checking the periodic features of the WiFi signal, we can determine
the respiration rate.

Abdelnasser et al. [12] and Kaltiokallio et al. [13] proposed
to use the periodic variances of the signal strength for respi-
ration detection, reporting less than 1 and 0.12 breaths per
minute error, respectively. A system that is capable to per-
form sleep apnea detection based on the estimated respiration
rate was presented in [12]. This approach also utilizes the
signal strength for estimation, reporting an accuracy of 96%.
Liu et al. [14] demonstrated that CSI amplitude can be
used for vital sign detection. This work can simultaneously
estimate heart rate and breathing cycle. The reported mean
estimation error for heart beat and respiration rate are within
1 bpm and 0.5 bpm, respectively. The system can work under
a single transceiver pair with distances up to 10 m.

The signal strength or amplitude is not so sensitive than the
phase information as we have already stated in the previous
section. So some scholars resort to phase-based detection
method. The researchers from [40] introduced the Fresnel
model, the principal of which is the Phase Cancellation
effect [49], to estimate the respiration rate. The Fresnel model
exploits the fact that the presence of an obstacle in different
Fresnel zones, causing multipath effect, can enhance or atten-
uate the signal strength on the receiver side. Fig. 5 depicts
the geometric model of the Fresnel zone for breathing signal
extraction. The positions of the transceiver pair are regarded
as two focal points of all the ellipses. If the signal propagates
and reflected by the boundary of these ellipses, the travel
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FIGURE 5. Geometric model of the Fresnel zone for breathing signal
extraction.

distance subtracted by the LOS signal will be an integer
multiple of half wavelength. The inner areas of these ellipses
are called the Fresnel zone as depicted in Figure 5. If we place
an object in one Fresnel zone, enhancing the signal strength,
then in the adjacent zones, it will weaken the signal strength.
Thus Wang et al. [40] utilized this Fresnel model to convert
the chest displacement to phase change for a more robust
respiration estimation. It is reported [40] that the system is
robust to normal activities and can even detect two different
breathing patterns.

B. WiFi-ENABLED GESTURE RECOGNITION

Gestures refer to expressive and meaningful body motions
including physical movements of different body parts such
as fingers, hands, arms, heads, and faces, aiming to inter-
act with the surroundings [52]. Gesture recognition systems
aim to recognize conveyed messages behind performed ges-
tures. Applications of gesture recognition range from rec-
ognizing sign language through home automation to virtual
reality [52]. It is the key enabler for designing a highly
efficient and intelligent Human Computer Interface (HCI).
Two well-known commercial gesture recognition systems
are Xbox Kinect [53] which is based on vision technol-
ogy and Wii [54], a wearable device based on the Inertial
Measurement Unit (IMU). Vision technology requires the
camera directly “see” the gesture performers with a good
light condition. And some people may be unwilling to wear
specific devices. Wifi-enabled gesture recognition can largely
overcome the above limitations since it can achieve device-
free. A comparison of related works are depicted in Table 2.

Most of the WiFi-based gesture recognition applications
adopt machine learning techniques for pattern recognition.
The intuition behind gesture recognition systems is twofold:
WiFi signal is sensitive to capture environment dynamics
even lip motions [24], and different gestures can produce
distinctive signal patterns. If enough data about different ges-
tures and the corresponding signals are collected, a predictive
model can be easily trained.

CARM [8] employs only a pair of transceivers for human
activity recognition. This approach assumes that the CSI sig-
nals across different subcarriers are correlated and employs
Principal Component Analysis (PCA) for feature extraction.
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TABLE 2. Comparison of the gesture recognition system based on WiFi signal.

Reference work | WiFisignal | Recognizable Gestures | Average accuracy | Number of transceivers
CARM [8] CSI Daily activities 96% 1
E-eyes [11] CSI In-place activities 92% 1
WiAG [7] CSI Activity Recognition 91.4% 1
WiHear [24] CSI Lip motion 91% 1
WiFinger [23] CSI Hand gestures 90% 1
WiKey [22] CSI Keystrokes 77.43% 1
WiGest [50] RSSI Hand gestures 96% 1
WiDance [21] CSI Motion direction 92% 2
WiDraw [51] CSI Hand writing 91% 20

After that, a routine of learning based method is applied: pre-
filtering, offline training, and online prediction. The activities
considered involve running, walking, sitting down, opening
a refrigerator, falling, boxing, pushing one hand, and brush-
ing teeth. CARM reports an average accuracy of greater
than 96% and is resilient to different environment settings.
Similar works include E-eyes [11] that recognizes nine in-
place activities, WiHear [24] that recognizes several preset
spoken words, WiFinger [23] that understands the American
sign language, WiKey [22] that non-invasively tracks the
keystrokes, and WiDance [21] that infers motion direction
from the WiFi signal.

WiGest [50] is RSSI-based gesture recognition system,
which requires at least one pair of transceivers. Since RSSI
is less sensitive and less responsive and CSI, the gestures
are required to perform near the receiver. The authors first
introduce the concept of primitive gesture sketches including
moving the hand from different directions and moving with
different speed. Then they employ the primitive gestures as
preambles to encode messages. For instance, moving the hand
up can be decoded as ‘“volume up,” and moving the hands
up and down can be encoded as ‘“‘play next track.” WiGest
reports over 96% accuracy in LOS case and is feasible even
in through-wall scenarios.

WiAG [7] borrows the concept of transfer learning to
reduce the efforts on training. Conventionally, to improve the
recognition accuracy for a specific gesture, many samples
need to be collected with different orientations at different
locations, which requires heavy workload. WiAG decom-
poses the gestures into linear and non-linear models and
then transfers these models as features. WiAG reports an
average accuracy of 91.4% for gesture recognition and an
average absolute error of less than 23° for estimating user
orientation.

WiDraw [51] represents another line of works that enables
gesture tracking based on close-formed solutions. WiDraw
requires densely deployed transceivers. It uses the Angle-
of-Arrival (AoA) information for hand trajectory tracking.
The intuition is that hand occlusion will greatly distort
the AoA spectra for a specific link. And if we have
a dense deployment of multiple transceivers with known
coordinators, the hand traces can be inferred by checking
which links are affected. WiDraw enables over-the-air hand
writing and reports an average word recognition accuracy
of 91%.
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C. CONTEXTUAL INFORMATION ACQUISITION

WITH WiFi SENSING

Contextual information is the basis for context-awareness
applications. Contextual information such as location can
enable our computer system to anticipate our needs and
act in advance, freeing ourselves from the manually com-
plex configurations and boring instructions. More specif-
ically, the location information can enable a myriad of
Location Based Services (LBS). For example, when you
enter the sitting room, the light is automatically turned on.
After you sit on the couch, the TV is turned on and the
luminance of the light dimmers. Such applications would
bring great convenience for our daily lives. The contex-
tual information, including location and orientation, open up
doors for emerging Virtual Reality or Augmented Reality
(VR/AR), providing possible alternatives for us to interact
with the world. To retrieve contextual information, three use-
ful signatures can be utilized: WiFi fingerprints, AoA, and
Time-of-Flight (ToF).

Fingerprint-based strategies utilize the fact that the features
extracted from WiFi signal are context dependent. To be
more specific, the waveform or the numerical readings are
location and orientation dependent. The fingerprinting strate-
gies typically involve two phases: the off-line phase and the
on-line phase. In the off-line phase, a war-drive survey is
conducted to collect WiFi signal from different locations
in the place of interest. Then the measurements will be
labeled by the corresponding locations. During the on-line
phase, a matching metric will be applied to rank the off-line
labeled measurements according to their distances to the on-
line collected ones in an ascending order. The average of
the top k labeled locations will be the estimated result. The
fingerprinting approaches usually need multiple WiFi Access
Points (APs) in the place of interest. The WiFi signal here can
be either CSI [16], [26] or RSSI [25], [27]. The online match-
ing method can be either probabilistic [27] or determinis-
tic [25]. The fingerprint-based method eliminates the reliance
on the complex models, which however involves cumber-
some survey and is sensitive to environmental changes. The
localization result is also not satisfactory, which can be
up to 10 m [55].

Fig. 6 depicts a typical architecture for AoA and ToF-based
method. It usually involves three pairs of transceivers (for 2D
localization, 3D localization is feasible if more transceiver
pairs are available).
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AP1

FIGURE 6. Architecture for AoA and ToF-based localization method.

The AoA-based method normally requires either receiver
or transmitter to be equipped with Uniform Linear
Array (ULA) or Uniform Circular Array (UCA) [56]. With
some sophisticated eigenvalue decomposition method such
as Multiple Signal Classification (MUSIC) [28]-[30], Esti-
mation of Signal Parameters via Rotational Invariance Tech-
nique (ESPRIT), or other signal inference models such as
Synthetic Aperture Radar (SAR) [15], the AoA information
can be accurately obtained. If three AoAs are available,
the location of the target can be pinned down.

ArrayTrack [30] applies MUSIC on ULA with eight anten-
nas to obtain AoAs and uses multiple AoAs to locate the
targets. The system achieves 23 centimeter median localiza-
tion accuracy on an advanced hardware platform. This system
may not be directly applicable on most commodity WiFi
devices that normally have only up to four antennas, as the
MUSIC algorithm works only when the number of antennas
is larger than the number of significant reflections.

SpotFi [28] pushes the frontier and makes it possible to
deploy MUSIC on commercial-off-the-shelf (COTS) devices
with only three antennas. It finds that ToF profiles across
different subcarriers on OFDM architecture can be exploited
as virtual antennas. Specifically, the Intel 5300 WiFi NIC
reports 30 subcarriers information on each antenna and
AR93XX/AR95XX serials report 56 subcarriers information.
Thus, the number of sensors is larger than the number of
significant reflections, making it feasible to apply MUSIC
on commodity WiFi devices. SpotFi achieves decimeter-level
localization accuracy.

MaTrack [29] is an AoA-based device-free localization
system which is built on SpotFi. MaTrack leverages the
fact that the presence of an object will introduce another
significant reflection, resulting in another peak in the AoA
spectrum. And if the object moves, the corresponding AoA
shifts simultaneously while the AoAs produced by other
static objects or the direct path do not. The object then can
be located when multiple AoA spectra are available. Matrack
achieves a median localization accuracy below 0.6 m. Ubi-
carse [15] is another AoA-based localization system. It is
device-based and requires the mobile device to rotate and
emulate a UCA. Synthetic Aperture Radar (SAR) is applied
to estimate the angle of arrival. Ubicarse reports centimeter-
level localization accuracy and can even work under NLOS
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scenarios. Chronos [17] directly measures the ToFs between
the transceivers based on multi-tone ranging [57] that utilizes
the phase divergence among different subcarriers. Chronos
enables single-AP based localization and achieves 4.17 cm
ranging accuracy.

D. WiFi-DRIVEN SENSORLESS AUTHENTICATION

User authentication is a vital issue across different indus-
tries due to the ever-increasing privacy concern. Systems
that leverage biometric signatures [58] or user-owned RFID
tag [59] are well-known technologies. Biometric signatures
such as fingerprints, face, voices are well-exploited for
authentication on smart devices. RFID-based systems are
common for companies or government departments to deploy
access control. Password-based mechanism which requires
user to input the correct characters may be the most com-
monly used one. These conventional authentication sys-
tems are popular and have proven performance. However,
they either require dedicated devices or require user input.
WiFi-driven authentication is sensorless and does not require
explicit user input. It uses the invisible radio to extract
the highly personalized features such as gait patterns for
authentication.

WiFi-driven sensorless authentication systems are built
on top of gesture recognition systems. Different users will
produce different WiFi signal patterns albeit they per-
form identical gestures. The above intuition serves as the
basic principal for WiFi-enabled authentication systems.
WifiU [31] leverages the unique gait patterns to identify
different users, reporting top-3 recognition accuracy up
to 93.5%. And Liu et al. [32] and Shi et al. [33] proposed
a deep learning approach that can distinguish different users
from daily activities, both static and mobile, reporting an
accuracy of 94% and 91%, respectively. While these authenti-
cation systems explore the possibility of authentication using
WiFi signal, currently they are feasible only on restricted
setups. For instance, WifiU requires the user walks through
the same path, and the walk distance is also limited.

IV. RESEARCH CHALLENGES AND FUTURE WORK

A. CHALLENGES

In the previous sections, we have talked about the capabilities
of WiFi sensing, which show great potential in smart home
automation. However, most of these findings are limited to
scientific research. To put them into practical use, several
challenges need to be addressed.

1) AVAILABILITY OF FINER GRAIN METRIC

There are two metrics to quantify the signal properties,
namely RSSI and CSI. It is easy to access RSSI on most OS
platforms. However, RSSI is not so sensitive which limits its
application. In contrast, CSI is a much finer grain metric and
most of the systems are built on it. Currently, it is feasible
to extract CSI only on limited hardware, e.g., Intel 5300 and
AR93xx/AR95xx [60]. To make matter worse, the device
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drive to expose CSI can only work on certain kernel! versions
of Linux platform [9], [61], which occupy only 0.8% OS
market share [60]. Though Android OS is built on Linux,
the APIs to extract CSI is not available right now. This limited
availability of finer grain metric prevents a widespread adop-
tion of WiFi sensing based applications. We envision that chip
vendors can provide APIs to obtain CSI on various platforms
in the future.

2) CONFIGURATION-FREE

Assuming that CSI can be easily obtained on different plat-
forms, any applications that leverage CSI signal should be
configuration-free which means the systems are irrespec-
tive of deployment and are training-free. However, seldom
do the literary works satisfy this requirement. The CSI is
vulnerable to interferences such as multipath, medium con-
tention, and other electromagnetic noise [50]. These interfer-
ences are closely related to the environment settings and the
deployment, making the systems configuration-dependent.
Some applications may even require strict setup. For instance,
keystroke recognition [22] and respiration estimation [40].
In such applications, the transmitter and the receiver are
placed quite close so as to achieve high SNR, limiting its
practical adoption. The models of training-based methods are
not readily applicable across different settings, and additional
training would be needed in new locations. So how to make
WiFi sensing based systems configuration-free is both chal-
lenging and demanding.

3) MULTIPLE PERSON SCENARIOS

Applications that can track, detect or monitor multiple per-
sons are more efficient. However, state-of-the-art gesture
recognition and health monitoring systems, mostly are fea-
sible in the case where there is only one person. They
fail to work under multiple person scenarios. For instance,
the approach [31] to recognize gait patterns can only work
when a single user walks through the same paths, limiting
its application only to a corridor or narrow entrance sce-
narios. Respiration estimation in [40] can only work under
the presence of two people and can not be generalized to
multiple person scenarios. We foresee that applications that
can work under multiple person scenarios will emerge in the
near future.

4) RESOLUTION LIMIT

WiFi sensing has shown great potential for a myriad of appli-
cations. Yet few works have addressed the resolution limits,
i.e., the minimal detectable changes or the minimal detectable
objects. Some works that leverage customized hardware show
the capability of through-wall motion detection [62] and
through-wall life sign detection [18], [63], and can even
extract gait cycle, stride length, or emotion states [64], [65].
Multiple targets based gesture recognition systems have also

ISome researchers have successfully obtained the CSI on other Linux
kernel versions such as 3.5.7, or 2.6.36 [32].
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been developed on advanced hardware [66]. Huang ef al. [67]
use the reflections from the objects illuminated by the WiFi
signal to detect the raw shape. However, using COST devices
to achieve comparable performance have yet to be explored.

B. FUTURE RESEARCH TRENDS

There are many research directions can be further investi-
gated, and we envision that the following two are of great
importance.

1) SECURITY ISSUE

In previous sections, we have presented that WiFi sensing
is capable of mining a lot of information, such as loca-
tions or even user identity. This may also raise critical security
issues as hackers may utilize this information for harmful
attack. So anti-attack mechanisms, handling security issue,
may arise the interest of researchers in the future.

2) WHEN WiFi SIGNAL MEETS DEEP LEARNING

As we have mentioned before in Section I and Section I1I-B,
CSI, manifesting itself as a matrix, is a measurement record
with data stream from different subcarriers and different sub-
carriers can be regarded as different sensors. This is some-
what like using a sensor array to capture information with
a matrix output, which is highly similar to computer vision
technology [68]. Therefore, computer vision favored algo-
rithms especially deep learning [69] may be helpful. Deep
learning may bring more opportunities for WiFi-enabled sys-
tems, which simplifies the deployment and makes the systems
configuration-free.

V. CONCLUSION

In this paper, we surveyed state-of-the-art smart home sys-
tems and applications based on WiFi sensing. We discussed
the principles, capabilities, and limitations of these works.
Overall, WiFi sensing is a promising technology for a broad
spectrum of smart home applications, which however has
yet to be a perfect replacement for conventional sensing
mechanism due to various practical concerns. The recent
advances in deep learning may offer great help for developing
configuration-free systems.
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