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ABSTRACT The problem of state estimation for discrete-time stochastic time-varying systems in the
presence of unknown process inputs or disturbances is addressed in this paper. A Kalman-type filter is
proposed, and the optimal oracle filter gain in the sense of minimizing the mean squared error of the state
estimate is obtained. To tackle the unknown quantities in the gain matrix, a nonlinear equation is introduced
and its solution is taken as the estimate of unknown inputs, and then, a novel nonlinear equation-based
unknown input filtering (NEUIF) is proposed. A scalar-based iterative algorithm for related fixed point
problem is developed so that the dichotomy method is employed to solve the above nonlinear equation
very efficiently. Adopting the same strategy for the dynamic systems with unknown inputs or disturbances,
we provide two applications of the proposed state estimation algorithm. One is for a class of nonlinear
dynamic systems with linear observations by taking the residual term in linearizing the transition function
as an unknown input in the derived linear system. The other is for tracking maneuvering targets in which the
bias between the real motion and modeled motions is regarded as an unknown input in the state transition
equation. Some numerical simulations demonstrate the effectiveness of the proposed NEUIF method for
tackling various uncertainties in complicated dynamic systems.

INDEX TERMS Dynamic systems, state estimation or filtering, unknown inputs and disturbances, nonlinear
estimator, nonlinear equation, iterative algorithm.

I. INTRODUCTION
The dynamic systems with various uncertainties are ubiqui-
tous. The state estimation or filtering for dynamic systems
with unknown inputs has received a great deal of attentions by
researchers in past decades because of their widespread appli-
cations in many fields such as maneuvering target tracking,
unmanned systems, environmental monitoring, fault detec-
tion, and tracking and navigation. Many approaches are
developed to deal with such problems in the literatures. One
can refer to [1]–[8] and references therein. To the best of our
knowledge, the existing methods can be broadly divided into
two categories.

1) SOME PRIOR INFORMATION ABOUT UNKNOWN
INPUTS IS ASSUMED TO BE KNOWN
If the unknown inputs are time-invariant or can be formulated
as an autoregressive model, by augmenting the state to be
estimated with the unknown inputs, under certain conditions,

some dynamic systems can be converted equivalently to ones
that can be solved using the existing state estimation or fil-
tering approaches. This method can result in the estimates of
state and unknown inputs simultaneously. In [9], a two-stage
Kalman filter is developed by using the state augmentation
technique to ensure the optimality under the assumption of
constant unknown input. The two-stage strategy is adopted to
reduce the computation cost while the augmented state vector
has a substantially larger dimension than the original state.
Recently, the variational Bayesian filter (VBF) is investigated
in many literatures (see, e.g., [10]–[12]). In [11], the posterior
joint distribution of state variable and unknown inputs is
approximated by variational Bayesian method under some
prior distribution information of unknown inputs. In [13],
the unknown inputs are assumed to be lied on a linear
manifold, the state estimate minimizing the mean squared
error (MSE) under some conditions is derived within
Bayesian framework. In addition, the asymptotic stability
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condition of filtering algorithm proposed in [13] is estab-
lished in [14].

2) NO PRIOR INFORMATION ABOUT UNKNOWN
INPUTS IS AVAILABLE
In [3], an unbiased linear minimum variance filter (ULMVF)
is proposed and its stability is proved. In the ULMVF
approach, a constrained optimization problemmust be solved
to obtain the gain matrix and the state estimate, but two
necessary conditions to ensure the uniqueness of solution of
the above optimization problem are often hard to be verified.
A parameterizing technique is suggested in [15] to solve such
optimization problem. The global optimality of the above
filter is verified in [16]. An algorithm proposed in [17], which
simultaneously estimates the unknown inputs and the state
for linear discrete-time systems, can yield the same state
update as the ones in [3] and [15] and the same input estimate
as the one in [18]. In [19], the problem of state estimation
for linear systems with unknown inputs in both the process
and observation equations is discussed, and a recursive fil-
ter with global optimality in the sense of unbiased linear
minimum variance is developed. In [20], a globally optimal
filtering framework is constructed for the dynamic systems in
which both the state and observation are affected by unknown
inputs, and all filters proposed in [19] and [21]–[24] are
proved to be optimal in the sense of unbiased minimum
variance. The unbiased information filter is redesigned in [25]
on basis of information filter and shares the same estimation
accuracy with the ones in [3] and [15] under the same initial
conditions.

In this paper, we address the state estimation for dynamic
systems in which the state transition equation involves some
unknown inputs without any prior information. Unlike many
methods in the existing literatures, the novel state estimation
algorithm is developed without the unbiasedness assumption
so as to reduce the MSE of state estimate. The main work and
contributions of this paper are as follows.

Firstly, we propose a Kalman-type recursive estimate with-
out the unbiasedness assumption. In the minimum MSE
sense, we derive the optimal oracle gain matrix which
involves some unknown terms related to unknown inputs.
By introducing a vector-valued equation, we take the fixed
point of this nonlinear equation as a nonlinear estimate of
the unknown inputs, and then provide an available filtering
gain matrix. In theory, we prove that the proposed nonlin-
ear equation-based unknown input filtering (NEUIF) method
outperforms than the ULMVF method in the minimum MSE
sense in the absence of unknown inputs.

Secondly, to solve the fixed point of the above nonlinear
equation, we design a scalar-based iterative method to ensure
that the iteration converges to the fixed point. Consequently,
the developed iteration can be executed by the dichotomy
method, and then the NEUIF can be implemented more
efficiently.

Thirdly, we deal with nonlinear filtering and maneuver-
ing target tracking based on the provided NEUIF method.

For a nonlinear system with nonlinear process equation and
linear observation equation, by taking the residual term in
linearizing the nonlinear state transition function as unknown
inputs or disturbances of the derived linear systems, we pro-
pose a novel nonlinear filtering algorithm. For the multiple
model (MM) method for maneuvering target, by treating the
bias between the real motion and the modeled motions in
the mode set as unknown input in state transition equation,
we integrate the NEUIF estimator into the interacting mul-
tiple model (IMM) framework and propose an IMM-NEUIF
algorithm.

Finally, we evaluate the proposed state estimation approach
via some simulation experiments. The results show the com-
parable performance of the proposed algorithmwith the exist-
ing filtering algorithms.

This paper is organized as follows. Section II formu-
lates the state estimation problem for stochastic time-varying
linear systems with unknown process inputs, and gives
the optimal filter gain matrix in the MSE sense. More-
over, an efficient iterative algorithm for estimating unknown
inputs is proposed. A theoretical comparison of performance
between the proposed filter and the existing ULMVF is also
provided. Based on the proposed NEUIF, Section III dis-
cusses filtering for nonlinear dynamic systems and tracking
for maneuvering targets. In Section IV, the performance of
the proposed estimator and filtering is illustrated via some
numerical simulations. Section V gives some conclusions.
Proofs of some mathematical results are provided in the
appendix.

A. NOTATIONS
The notations Rm and Rm×n denote the set of all
m-dimensional real column vectors and the set of all m × n
real matrices respectively. The notation N is the set of natural
numbers and N+ = N \ {0}. For a matrix A, AT , A†, ρ(A)
andR(A) represent its transpose,Moore–Penrose generalized
inverse, spectral radius and column space respectively. For
two matrices A and B, A � B (or A � B) means that A − B
is symmetric and positive semidefinite (or positive definite).
The symbol I stands for the identity matrix with appropri-
ate dimension. The operation E[·] denotes the mathematical
expectation of random variable.

II. PROBLEM FORMULATION AND NOVEL
NEUIF APPROACH
In this paper, a class of linear discrete-time stochastic time-
varying systems is considered as follows:

xk+1 = Fkxk + Gkdk + wk ,

yk = Hkxk + vk , (1)

where k ≥ 0 is time index, xk ∈ Rn is the state vector,
dk ∈ Rm is an unknown and deterministic input vector, and
yk ∈ Rp is the measurement, wk ∈ Rn and vk ∈ Rp are
mutually independent white noise processes with mean zeros
and known covariance matrices Qk = E[wkwT

k ] � 0 and
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Rk = E[vkvTk ] � 0 respectively. The matrices Fk ∈ Rn×n,
Gk ∈ Rn×m and Hk+1 ∈ Rp×n are deterministic and known.
Without loss of generality, we assume that Gk is full column
rank andHk+1 is full row rank. The mean x̄0 and the variance
P0 of the initial state x0 are assumed to be known.
The state estimator is selected from the set of Kalman-type

filters as follows:

x̂k+1 = Fk x̂k + Kk+1(yk+1 − Hk+1Fk x̂k ),

where the gain matrix Kk+1 ∈ Rn×p will be determined in the
sense of minimizing the MSE of state estimate.

A. OPTIMAL ORACLE FILTER GAIN
Let ek+1 = x̂k+1 − xk+1 and Pk+1 = E[ek+1eTk+1], then

ek+1 = (I − Kk+1Hk+1)Fkek + (Kk+1Hk+1 − I )Gkdk
+ (Kk+1Hk+1 − I )wk + Kk+1vk+1,

and

Pk+1 = (I − Kk+1Hk+1)

·

(
FkPkFTk + (Gkdk )(Gkdk )T + Qk − Ek

)
· (I − Kk+1Hk+1)T + Kk+1Rk+1KT

k+1,

where

Ek = (Fkbk )(Gkdk )T + (Gkdk )(Fkbk )T ,

bk = E[x̂k − xk ]. (2)

Theorem 1: If bk and dk are known, then in the sense of
minimizing the MSE of x̂k+1, i.e., trPk+1, the optimal gain
matrix is give as

Kk+1 =
(
FkPkFTk + (Gkdk )(Gkdk )T + Qk − Ek

)
HT
k+1

·
(
Hk+1(FkPkFTk + (Gkdk )(Gkdk )T

+Qk − Ek )HT
k+1 + Rk+1

)−1
. (3)

Proof: See Appendix A. �
Note that the gain Kk+1 given by (3) cannot be

applied directly because it involves the unknown quantities
Gkdk and Fkbk in Ek .

B. ESTIMATING UNKNOWN INPUT AND GAIN MATRIX
Because it is unable to determine the quantity of Fkbk in (2),
we assume that Ek = 0, which is strictly weaker than the
unbiasedness assumption on state estimation, then we have
an estimate of Kk+1 as(
Fk P̂kFTk + (Gkdk )(Gkdk )T + Qk

)
HT
k+1

·
(
Hk+1(Fk P̂kFTk + (Gkdk )(Gkdk )T+Qk )HT

k+1 + Rk+1
)−1

,

where

P̂k = (I − KkHk )(Fk−1P̂k−1FTk−1 + ẑk−1ẑTk−1 + Qk−1)

· (I − KkHk )T + KkRkKT
k

with the initial value P̂0 = P0 and an estimate ẑk−1 of
Gk−1dk−1. Furthermore, to deal with the unknown quantity

Gkdk in the above, we introduce a matrix-valued function
0k+1 : Rn

→ Rn×p as follows:

0k+1(z) = (Fk P̂kFTk + zzT + Qk )HT
k+1

·
(
Hk+1(Fk P̂kFTk + zzT + Qk )HT

k+1

+Rk+1
)−1

, z ∈ Rn. (4)

Next, using the function 0k+1(·), we construct an estimate ẑk
of Gkdk such that

ẑk = GkG
†
k0k+1(ẑk )(yk+1 − Hk+1Fk x̂k ), (5)

and then obtain the filter gain matrix Kk+1 = 0k+1(ẑk ).
Remark 1: From

x̂k+1 = Fk x̂k + Kk+1(yk+1 − Hk+1Fk x̂k )

= Fk (xk + ek )+ Kk+1(yk+1 − Hk+1Fk x̂k )

= xk+1 − (Gkdk + wk − Fkek )

+Kk+1(yk+1 − Hk+1Fk x̂k ),

it is very natural to take Kk+1(yk+1 − Hk+1Fk x̂k ) as an
estimate of Gkdk + wk − Fkek . Moreover, noticing that the
vector Gkdk to be estimated locates in the column space
of Gk , we project Kk+1(yk+1 − Hk+1Fk x̂k ) ontoR(Gk ) geo-
metrically by the orthogonal projector GkG

†
k .

In summary, we propose the filtering algorithm for the
system (1) with unknown inputs as follows:
Algorithm 1 (NEUIF for the System (1) With Unknown

Inputs): Let x̂0 = x̄0 and P̂0 = P0. For k = 0, 1, . . . do

x̂k+1 = Fk x̂k + Kk+1(yk+1 − Hk+1Fk x̂k ),

Kk+1 = (Fk P̂kFTk + ẑk ẑTk + Qk )H
T
k+1

·
(
Hk+1(Fk P̂kFTk + ẑk ẑTk + Qk )H

T
k+1 + Rk+1

)−1
,

P̂k+1 = (I − Kk+1Hk+1)(Fk P̂kFTk + ẑk ẑTk + Qk )

· (I − Kk+1Hk+1)T + Kk+1Rk+1KT
k+1,

where ẑk is the solution of the fixed point problem (5).
Notice that, if ẑk = 0 at each time instant, then the recur-

sive terms x̂k , P̂k and Kk in Algorithm 1 coincide perfectly
with the standard Kalman filtering.

It is clear that if ẑk 6= 0, then, as the solution of fixed point
problem (5), it nonlinearly depends on the obversion yk+1 in
general. Therefore, the gain matrix Kk+1 = 0k+1(ẑk ) given
by (4) is nonlinear with respect to the observation yk+1 and
so does the state estimate x̂k+1.
To solve the fixed point problem (5), the Picard iteration is

adopted as Algorithm 2, which can always converge quickly
in all our numerical simulations with a variety of situations.
And the related theoretical analysis is described in the follow-
ing section.
Algorithm 2: The pseudocode for solving equation (5).

Input: A tolerance ε
Output: The estimate ẑk and the filter gain Kk+1
1: s← 1, z(s)← 0
2: repeat
3: s← s+ 1
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4: z(s)← GkG
†
k0k+1(z

(s−1))(yk+1 − Hk+1Fk x̂k )
5: until |z(s) − z(s−1)| < ε

6: ẑk ← z(s)

7: Kk+1← 0k+1(ẑk )

C. ITERATIVE ALGORITHM FOR UNKNOWN INPUTS
Considering that the iteration variable in Algorithm 2 is
n-dimensional vector, we further pursue a more efficient
algorithm in this subsection. Suppose Gk is nonsingular. For
simplicity of notations, the subscripts k , representing the
time instant, of all matrices and vectors aforementioned are
omitted here.

To find a solution of the nonlinear equation

z = 0(z)y, (6)

for any given y ∈ Rp, we construct an iterative formula

z0 = 0n×1 and zs+1 = 0(zs)y, s ∈ N. (7)

Notice that

0(z) =
(
(FPFT + Q+ zzT )HT

)
·

(
H (FPFT + Q+ zzT )HT

+ R
)−1

= (B+ zzTHT )(A−1 − t(z)A−1HzzTHTA−1)

= BA−1 + t(z)(In − BA−1H )zzTHTA−1, (8)

where

A = HCHT
+ R,

B = CHT ,

C = FPFT + Q,

t(z) =
1

1+ zTHTA−1Hz
.

Define a function φ : Rn×n
→ R as follows:

φ(M ) =
yTA−1BTMTHTA−1y

1+ yTA−1BTMTHTA−1HMBA−1y
. (9)

Let

Ms+1 = In + φ(Ms)(In − BA−1H )Ms, s ∈ N+

with the initial value M1 = In. Then, it is easy to verify

Ms+1 = In +
s∑

t=1

 s∏
i=s−t+1

φ(Mi)

 (In − BA−1H )t . (10)

Theorem 2: The iteration (7) can be formulated as

zs+1 = Ms+1BA−1y, s ∈ N.
Proof: See Appendix B. �

Theorem 2 gives a characterization of the iterative
sequence in (7) through a matrix sequence. Next, we fur-
thermore prove that the limit of the matrix sequence can be
represented by a univariate matrix-valued function so as to be
determined easily.

Notice that if the iteration (7) converges then φ(Mk ) must
converge to a constant in the interval (−1, 1), we furthermore

improve the iteration (10) so as to exactly andmore efficiently
find the fixed point of equation (6). Because φ(Mk ) is nonneg-
ative (see Lemma 2 in Appendix B), the following matrix-
valued function

8 : [0, 1) → Rn×n

a 7→ In +
∞∑
t=1

at (In − BA−1H )t

is well-defined. It is clear that

8(a) =
(
In − a(In − BA−1H )

)−1
. (11)

Theorem 3: There exists an a0 ∈ [0, 1) such that
φ(8(a0)) = a0 and

ẑ = 8(a0)BA−1y

is the solution of (6).
Proof: See Appendix C. �

It can be seen from the proof of Lemma 4 in Appendix C
that a0 can be obtained by dichotomy, which results in a more
efficient computation method as follows.
Algorithm 3: The pseudocode for solving equation (6).

Input: A tolerance ε
Output: The solution ẑ of (6)
1: l ← 0, r ← 1
2: repeat
3: m = (l + r)/2
4: if m < φ(8(m)) then l = m
5: else r = m
6: end if
7: until |l − r| < ε

8: ẑ← 8(m)BA−1y
Note that Algorithm 3 has a linear convergence rate,

i.e., only O(− log ε) iterative steps can ensure that the itera-
tive algorithm produces a solution around the real fixed point
of nonlinear equation (6) within a given deviation ε.

D. PERFORMANCE COMPARISON
In this subsection, we theoretically compare the performance
of the NEUIF and ULMVF methods for some dynamic sys-
tems that have no unknown inputs and disturbances during
some period but no one knows it. Such scenarios are practical
and the standard Kalman filtering should not be invoked
simply owing to the possible inputs or disturbances.
Theorem 4: Let PNk and PUk be the mean squared error

matrices at the time instant k of the NEUIF and ULMVF
methods respectively. For any instant k , if d0 = · · · =
dk = 0, then PNk+1 � P

U
k+1.

Proof: See Appendix D. �
Theorem 4 shows that if there are no disturbances during

the beginning period, then the NEUIF will not be worse
than the ULMVF. In fact, the NEUIF is also superior than
the ULMVF in many situations with disturbances. It will be
presented in Section IV-A by numerical simulations. Con-
sequently, the proposed NEUIF approach performs well no
matter whether or not the inputs/disturbances are present.
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III. APPLICATIONS BASED ON NEUIF APPROACH
Note that the unknown inputs considered in Section II
might be the errors due to the approximation in algorithms
or misspecification in model. Based on the proposed NEUIF
strategy for state estimation, we suggest new approaches for
nonlinear filtering and maneuvering target tracking, which
are important and challenging, and have received tremendous
attentions.

A. NONLINEAR FILTERING
Consider the following nonlinear filtering problem

xk+1 = fk (xk )+ wk ,

yk = Hkxk + vk . (12)

By linearizing the state transition function at x̂k and taking
all high-order terms as unknown inputs, the nonlinear filter
problem (12) is transformed to the following linear system
with unknown inputs:

xk+1 = Fkxk + uk + dk + wk ,

yk = Hkxk + vk , (13)

where

Fk =
∂fk (xk )
∂xk

∣∣∣
x̂k
,

uk = fk (x̂k )− Fk x̂k ,

dk = fk (xk )− fk (x̂k )− Fk (xk − x̂k ).

Applying the state estimation procedure in Section II,
we present a novel nonlinear filtering algorithm as follows.
Algorithm 4 (Nonlinear Filtering for the System (12)): Let

x̂0 = x̄0 and P̂0 = P0. For k = 0, 1, . . . do
1) Estimate higher order terms. Solve the fixed point

problem

d̂k = 0k+1(d̂k )ỹk+1,

where

ỹk+1 = yk+1 − Hk+1xk+1|k .

2) Prediction.

xk+1|k = fk (x̂k ),

Pk+1|k = Fk P̂kFTk + Qk + d̂k d̂Tk .

3) Update.

x̂k+1 = xk+1|k + Kk+1ỹk+1,

P̂k+1 = (I − 0k+1Hk+1)Pk+1|k (I − 0k+1Hk+1)T

+0k+1Rk+10Tk+1,

Kk+1 = Pk+1|kHT
k+1S

−1
k+1,

Sk+1 = Hk+1Pk+1|kHT
k+1 + Rk+1.

Note that, in Algorithm 4, the term uk in (13) no longer
appears because the original nonlinear function fk is invoked
in the prediction step, i.e., xk+1|k = Fk x̂k + uk = fk (x̂k ).

In addition, the nonlinear equation in the first step of
Algorithm 4 can be solved exactly and efficiently using
dichotomy given in Algorithm 3.
It is clear that the extended Kalman filter (EKF) is obtained

by linearizing state transition function and ignoring higher
order terms, whereas Algorithm 4 takes the existence of
higher order terms into account. Obviously, the two algo-
rithms coincide if d̂k = 0 at each time instant.

B. MANEUVERING TARGET TRACKING
The IMM filter method is widely adopted in maneuvering
target tracking [26]. The standard IMM method has some
weaknesses. On the one hand, the real motion modes of a
target cannot be obtained completely and exactly in many
applications. Therefore, the transition equation cannot always
characterize exactly the actual motion rule of the target.
On the other hand, the real motion modes of a target might
be also various, therefore, it is impossible to construct a
large set of modes because of huge computational burden.
Conversely, if the set of modes is too small to portray real
motion of target properly, the IMM filter may performed
poorly. Therefore, a balanced approach is to choose a relative
small mode set, and introduce a minor disturbance on each
mode which tolerates a proper deviation between the real
motion of target and the selected modes.
Consider the following dynamic system with r motion

modes

xjk+1 = F jkx
j
k + djk + wj

k , j = 1, 2, . . . , r,

yk = Hkxk + vk ,

where the process noise wj
k ∈ Rn and observation noise vk

are mutually independent white noises with mean zero and
known covariance matrices Qjk = E[wj

k (w
j
k )
T ] � 0, j =

1, 2, . . . , r and Rk = E[vkvTk ] � 0 respectively.
We treat the bias between the real motion and modeled

motions in the predetermined mode set as an unknown input
in process equation, and integrate the NEUIF method into the
IMM framework by replacingKalman filtering in the latter by
the NEUIF.
Denote P = (pij) as the transition probability matrix and

µk = (µik ) the mode probability, i, j = 1, . . . , r . Let x̂jk , K
j
k

and Pjk be the state estimate, gain matrix and state estimate
covariance of the j-th mode-matched filter respectively, and
x̂k and P̂k be the combined state estimate and its covariance.
We present an IMM-NEUIF algorithm as follows.
Algorithm 5 (IMM-NEUIF): For k = 0, 1, . . . do
1) Interaction: For all j = 1, . . . , r , compute

a) The mixing probability from mode i to mode j

µ
i|j
k = pijµik/c̄j, i = 1, . . . , r,

where

c̄j =
r∑
i=1

pijµik ;
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b) The mixing state estimate of mode j

x̂0jk =
r∑
i=1

x̂ikµ
i|j
k ;

c) The mixing covariance of state estimate of
mode j

P0jk =
r∑
i=1

µ
i|j
k

(
Pik + (x̂ik − x̂0jk )(x̂

i
k − x̂0jk )

T ).
2) NEUIF filtering: For all j = 1, . . . , r do

a) Compute d̂k by solving the fixed point problem

d̂jk = 0k+1(d̂
j
k )(yk+1 − Hk+1F

j
k x̂

0j
k );

b) Filtering

x̂jk+1 = F jk x̂
j
k + K

j
k+1(yk+1 − Hk+1F

j
k x̂

0j
k ),

K j
k+1 =

(
F jkP

0j
k (F

j
k )
T
+ d̂jk (d̂

j
k )
T
+ Qjk

)
·HT

k+1
(
Hk+1(F

j
kP

0j
k (F

j
k )
T
+ d̂jk (d̂

j
k )
T

+Qjk )H
T
k+1 + Rk+1

)−1
,

Pjk+1 = (I − K j
k+1Hk+1)

(
F jkP

0j
k (F

j
k )
T ,

+ d̂jk (d̂
j
k )
T
+ Qjk

)
(I − K j

k+1Hk+1)
T

+K j
k+1Rk+1(K

j
k+1)

T .

3) Mode probability update: For all j = 1, . . . , r do

µ
j
k+1 = 3

j
k+1c̄j/c,

where

c =
r∑
j=1

3
j
k+1c̄j,

3
j
k+1 =

1

(2π )n/2 det(S jk+1)
exp

(
−

1
2
vTj (S

j
k+1)

−1vj
)
,

vjk+1 = yk+1 − Hk+1F
j
k x̂

0j
k ,

S jk+1 = Hk+1
(
F jkP

0j
k (F

j
k )
T
+ Qjk

)
HT
k+1 + Rk+1.

4) Combination:

x̂k+1 =
r∑
j=1

x̂jk+1µ
j
k+1,

P̂k+1 =
r∑
j=1

µ
j
k+1

(
Pjk+1 + (x̂jk+1 − x̂k+1)

× (x̂jk+1 − x̂k+1)T
)
.

IV. EXAMPLES
In this section, simulation experiments are provided to
demonstrate the efficiency of the proposed filtering strategy
for some complicated dynamic systems.

A. FILTERING FOR LINEAR SYSTEMS WITH
UNKNOWN PROCESS INPUTS
Consider the motion and observation models of an object in
three-dimensional space as [27]:

xk+1 = Fkxk + Gkdk + wk ,

yk = Hkxk + vk ,

where xk = [xk , ẋk , ẍk , yk , ẏk , ÿk , zk , żk , z̈k ]T with
[xk , ẋk , ẍk ]T , [yk , ẏk , ÿk ]T and [zk , żk , z̈k ]T being the vectors
of the positions, velocities and accelerations at the time
instant k along with x, y and z axes respectively, and

Fk = diag(T ,T ,T ),

T =


1

sinωt
ω

1− cosωt
ω2

0 cosωt
sinωt
ω

0 −ω sinωt cosωt

,

Hk =

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

,
which means only the position of object can be observed
at each time instant. The covariance of noise wk is Qk =
βdiag(Q̃, Q̃, Q̃) in which the (i, j)-th entry of Q̃ is given by{

Ui,j, i 6= j,
α(|Ui,1| + |Ui,2| + |Ui,3|), i = j,

and Ui,j is the (i, j)-th entry of the following matrix U as
shown at the bottom of this page. Note that Q̃ is a positive
definite matrix with appropriate parameter α. The covariance
of noise vk is

Rk =

σ 2
x σxy σxz
σxy σ 2

y σyz

σxz σyz σ 2
z

,
where

σ 2
x = σ

2
r sin

2 γ cos2 η + σ 2
γ r

2 cos2 γ cos2 η

+ σ 2
η r

2 sin2 γ sin2 η,

σ 2
y = σ

2
r sin

2 γ sin2 η + σ 2
γ r

2 cos2 γ sin2 η

+ σ 2
η r

2 sin2 γ cos2 η,

U =


6ωt − 8 sinωt + sin 2ωt

4ω5

2 sin4(ωt/2)
ω4

−2ωt + 4 sinωt − sin 2ωt
4ω3

2 sin4(ωt/2)
ω4

2ωt − sin 2ωt
4ω3

sin2 ωt
2ω2

−2ωt + 4 sinωt − sin 2ωt
4ω3

sin2 ωt
2ω2

2ωt + sin 2ωt
4ω

.
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σ 2
z = σ

2
r cos

2 γ + σ 2
γ r

2 sin2 γ,

σxy = σ
2
r sin

2 γ sin η cos η + σ 2
γ r

2 cos2 γ sin η cos η

− σ 2
η r

2 sin2 γ sin η cos η,

σxz = (σ 2
r − σ

2
γ r

2) sin γ cos γ cos η,

σyz = (σ 2
r − σ

2
γ r

2) sin γ cos γ sin η,

(r, γ, η) ∈ [0,∞) × [0, π] × [0, 2π ) gives a triple of the
range, elevation angle, and azimuth angle of object, and
σr , σγ and ση are the measurement noise standard deviations
of r , γ and η respectively.

Let d ik denote the i-th component of unknown input dk
at the k time instant, i = 1, . . . ,m. Suppose there are N
change points for each component of unknown input vector.
Given the tuning parametersN and σ 2, for each i = 1, . . . ,m,
the sequence {d ik} is specified as follows:
1) Set d i0 = 0;
2) Generate N time points t1, t2, . . . , tN ;
3) For k = 1, 2, . . . , d ik is generated from the distribu-

tion N (0, σ 2) if k = tj (j = 1, . . . ,N ); otherwise,
d ik = d ik−1.

In the next simulations, we set ω = 0.5, t = 1, α = 1.5,
σr = 15, σγ = 0.002, ση = 0.002,N = 4, and take the initial
values

x̄0 = [0, 1, 1, 0, 1, 1, 0, 1, 1]T

and

P0 = diag(1, 0.2, 0.2, 1, 0.2, 0.2, 1, 0.2, 0.2).

As mentioned in the introduction section, the exist-
ing methods can be roughly divided into two categories.
We select the ULMVF and VBF methods to compare with
the NEUIF in the root mean squared error (RMSE) sense
through 100 Monte Carlo trials. The reason for choosing the
ULMVF is that the filters given in [3], [15], [17], and [25] are
equivalent on the same initial conditions.

1) CASE 1
Suppose

GTk =

1 0.5 0 0 0 0 0 0 0
0 0 0 1 0.5 0 0 0 0
0 0 0 0 0 0 1 0.5 0

.
Note rank(Hk+1Gk ) = rank(Gk ) = 3, which implies that

there exists an unbiased state estimator [3] and the ULMVF
has a global optimality of unbiased linear minimum-variance
estimate [16]. Figure 1 gives the components and magnitude
of the disturbance vector Gkdk , and Figure 2 provides a
comparison of the RMSEs of the ULMVF, NEUIF and VBF
methods. Both are with β = 2 and σ = 6. As depicted
in Figure 2, the NEUIF has a smaller RMSE than the ULMVF
at every time instant. This phenomenon can be explained by
the well-known bias–variance tradeoff, i.e., a lower bias may
lead to a higher variance [28]. In addition, the NEUIF has a
superior stability to the VBF whose performance is probably
affected by the norm of disturbance.

FIGURE 1. The components and magnitude of disturbance vector in
Case 1.

FIGURE 2. Comparison of RMSEs of ULMVF, NEUIF and VBF in Case 1.

TABLE 1. RMSEs of NEUIF with different parameter settings in Case 1.

Table 1 reports the RMSEs, which are averaged by the
simulation time 100, of the NEUIF with different β and σ set-
tings, which relate to the process noise level andmagnitude of
disturbance vector respectively. It can be seen that the RMSE
of NEUIF grows gradually with the increasing of β or σ , but
the amount of change is small.

2) CASE 2
Let

Gk = I9.

Note that there is no longer a linear unbiased estimator.
The ULMVF and relevant methods perform poorly in this
situation because some invertible matrices may degenerate.
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FIGURE 3. The components and magnitude of disturbance vector in
Case 2.

FIGURE 4. Comparison of RMSEs of ULMVF, NEUIF and VBF in Case 2.

TABLE 2. RMSEs of NEUIF with different parameter settings in Case 2.

The Moore–Penrose generalized inverse instead of the
inverse is thus invoked for the singular matrices in our simula-
tions. In contrast, some filtering algorithms such as the VBF,
by adding some assumptions on unknown inputs, are rel-
atively capable to overcome this problem. Figure 3 gives
the components and magnitude of the disturbance vector.
Figure 4 provides a comparison of the RMSEs of theULMVF,
NEUIF and VBF methods. Both are with β = 5 and σ = 5.
This simulation shows that the NEUIF outperforms the VBF
at most time instants.

Table 2 reports the RMSEs of NEUIF with different
β and σ settings. The variation trend of RMSE is the same as
that in Case 1 with the varyings of β and σ . And the change
range of RMSE is also acceptable.

In summary, from the simulation results in the above two
scenarios, we can conclude that the NEUIF shares the stabil-
ity of the ULMVF and the applicability of the VBF.

B. NONLINEAR FILTERING
In this subsection, we provide a comparison of the novel non-
linear filtering based on the proposed NEUIF strategy with
the EKF [24], [29] and unscented Kalman filter (UKF) [30].

As [11], consider a one-dimensional dynamic system with
the nonlinear motion model

xk+1 =
xk
2
+

25xk
1+ x2k

+ 8 cos(1.2k)+ wk , (14)

and the linear observation model

yk+1 = Hk+1xk+1 + vk+1, (15)

where Hk = 1, Qk = 2.52, Rk = 1 and the initial values are
taken as x0 = 10, P0 = 2.52.
Figure 5 illustrates the comparison of MSEs of the EKF,

UKF and NEUIF approaches. It can be seen that the NEUIF
performs quite well.

FIGURE 5. Comparison of MSEs of EKF, NEUIF and UKF.

C. TRACKING OF MANEUVERING TARGET
In this subsection, we consider the tracking problem of
a maneuvering target in two-dimensional space considered
in [31] and [32].

As depicted in Figure 6, the target starts from
(29320m, 34820m) at the time instant t = 0s with velocity
of 330m/s, and implements a variable accelerated motion
along direction v = (−1/

√
2,−1/

√
2) for 10s with accel-

eration of 330×0.8π
10 cos(π t10 )m/s

2. Then it makes a counter-
clockwise turning with acceleration of 3g for 12s, before 4s
constant velocity moves. Subsequently, a clockwise turning
with acceleration of 3g for 12s is taken. Finally, it moves
with acceleration of 330×0.5π

12 cos(π t12 )m/s
2 for 12s. The radar

is located at the original point with range and bearing
measurement noise standard deviations of σr = 15m and
σε = 0.002rad respectively. Suppose the measurements are
available at a sampling interval of T = 1s.
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FIGURE 6. Trajectory of target and snapshots at every 1 second.

To show the performance of the proposed filter, as [32],
we assume that the target maneuvers with two motion modes.
Here, the unknown inputs in the transition equation are
employed. It is noteworthy that the unknown inputs may be
the actual disturbances or the errors owing to themotionmode
misspecification.

1) MOTION MODE I
The first motion mode is

x(1)k+1 = F (1)
k x(1)k + d(1)k + w(1)

k ,

where

x(1)k = [xk , ẋk , yk , ẏk ]T ,

F (1)
k =

[
F (1) 0
0 F (1)

]
with F (1)

=

[
1 T
0 1

]
,

andw(1)
k is white noise process withmean zero and covariance

Q(1)
k = σ

2
1

[
Q(1) 0
0 Q(1)

]
with

Q(1)
=

1
3
T 3 1

2
T 2

1
2
T 2 T

 and σ 2
1 = 0.25m2/s3.

2) MOTION MODE II
The second motion mode is

x(2)k+1 = F (2)
k x(2)k + d(2)k + w(2)

k ,

where

x(2)k = [xk , ẋk , ẍk , yk , ẏk , ÿk ]T ,

F (2)
k =

[
F (2) 0
0 F (2)

]
with F (2)

=

1 T
1
2
T 2

0 1 T
0 0 1

,

FIGURE 7. Comparison of RMSEs of target position estimates.

andw(2)
k is white noise process withmean zero and covariance

Q(2)
k = σ

2
2

[
Q(2) 0
0 Q(2)

]
with

Q(2)
=


1
20
T 5 1

8
T 4 1

6
T 3

1
8
T 4 1

3
T 3 1

2
T 2

1
6
T 3 1

2
T 2 T

 and σ 2
2 = 9m2/s5.

The transition probability matrix and the initial mode prob-
ability for IMM filter and IMM-NEUIF are set respectively
as

P =
[
0.95 0.05
0.1 0.9

]
and µ1 = (0.8, 0.2).

For the aforementioned motion modes of maneuvering
target, we consider the following two measurement models
as [33]:

y(i)k = H (i)
k x(i)k + vk , i = 1, 2,

where

H (1)
k =

[
1 0 0 0
0 0 1 0

]
,

H (2)
k =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
,

vk is white noise process with mean zero and covariance

Rk =
[
σ 2
x σxy
σxy σ 2

y

]
,

where

σ 2
x = σ

2
r cos

2 γ + r2σ 2
γ sin

2 γ,

σ 2
y = σ

2
r sin

2 γ + r2σ 2
γ cos

2 γ,

σxy = (σ 2
r − r

2σ 2
γ ) sin γ cos γ,

and r and γ denote the range and elevation angle respectively.
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The RMSEs of NEUIF, IMM filter and IMM-NEUIF
through 100 Monte Carlo trials are depicted in Figure 7.
Here, the IMM filter is invoked by taking no misspecified
motion mode and completely ignoring the unknown inputs,
and the NEUIF is evaluated only for the first motion mode
for simplicity.

It is well known that the IMM filter is effective in maneu-
vering target tracking if the motion modes are suitably spec-
ified. However, while the actual motion of target cannot be
matched precisely or approximated properly by combining
the modes in the predetermined mode set, the IMM filter
may perform somewhat poorly. This phenomenon can be seen
clearly by the RMSE of IMM filter during the time interval
[12s, 22s] in which the selected mode differs greatly from
the real motion mode. Meanwhile, Figure 7 shows that the
proposed NEUIF and IMM-NEUIF can improve the perfor-
mance to some extent, and the IMM-NEUIF outperforms the
NEUIF in most situations.

V. CONCLUSIONS
This paper addresses the state estimation for discrete-time
stochastic time-varying linear systems in the presence of
unknown process inputs or disturbances. Without the unbi-
asedness assumption on the state estimate as in the existing
literatures, the proposed estimator has general applicability
and good performance.

The key technique in this paper is that we introduce a non-
linear equation to estimate the unknown inputs and develop an
efficient iterative algorithm for solving the fixed point of this
nonlinear equation. A theoretical analysis on the performance
of the proposed filter is presented. Using the proposed state
estimation algorithm, we propose the novel approaches for
filtering of nonlinear systems and tracking of maneuvering
targets.

Numerical simulations, including the state estimation for
linear system with unknown process inputs, nonlinear filter-
ing and maneuvering target tracking, demonstrate the effec-
tiveness of the proposed filtering method for uncertainties in
complicated dynamic systems.

The proposed state estimation approach can be further
applied to more complicated dynamic systems such as envi-
ronmental monitoring and fault-tolerant control.

APPENDIX
A. PROOF OF THEOREM 1
It is clear that minimizing trPk is equivalent to minimizing
the MSE of the state estimate x̂k+1.

By simple deduction, we have

∂trPk+1
∂Kk+1

= −2
(
FkPkFTk + (Gkdk )(Gkdk )T

+Qk − Ek
)
HT
k+1

+ 2Kk+1Hk+1
(
FkPkFTk + (Gkdk )(Gkdk )T

+Qk − Ek
)
HT
k+1

+ 2Kk+1Rk+1. (16)

The fact that

FkPkFTk + (Gkdk )(Gkdk )T − Ek
= E[(Fkek − Gkdk )(Fkek − Gkdk )T ]

is positive semi-definite and Rk+1 is positive definite implies

Hk+1
(
FkPkFTk + (Gkdk )(Gkdk )T + Qk − Ek

)
HT
k+1 + Rk+1

is non-singular. Letting the right hand side of (16) be equal to
zero and solving such equation, we obtain (3).

B. PROOF OF THEOREM 2
The proof of this theorem needs the following two lemmas.
Lemma 1: If H is nonsingular, then ρ(In − BA−1H ) < 1;

and if H is singular but full row rank, then
ρ(In − BA−1H ) = 1.

Proof: Notice that BA−1H = CHT (HCHT
+ R)−1H

has the same characteristic roots as the positive semi-definite
matrix D = C

1
2 HT (HCHT

+ R)−1HC
1
2 . Furthermore,

D = D2
+ C

1
2 HT (HCHT

+ R)−1R(HCHT
+ R)−1HC

1
2

� D2.

It is easy to verify, from the Rayleigh–Ritz theorem [34], that
ρ(D) ≥ ρ(D2), and then ρ(BA−1H ) = ρ(D) ∈ (0, 1]. This
lemma thus follows. �
Lemma 2: For any s ∈ N,HMsB is positive definite. Thus,

φ(Ms) ≥ 0.
Proof: It is clear that HM1 B = HCHT is positive

definite.
For any t = 1, . . . , s, let Jt = (In − BA−1H )tC , then from

(In − CHTA−1H )t−1C
1
2 = C

1
2 (In − C

1
2 HTA−1HC

1
2 )t−1,

we have

Jt = (In − CHTA−1H )tC

= (In − CHTA−1H )t−1C
1
2 (In − C

1
2 HTA−1HC

1
2 )C

1
2

= C
1
2 (In − C

1
2 HTA−1HC

1
2 )tC

1
2

= C
1
2 (In − C

1
2 HT (HCHT

+ R)−1HC
1
2 )tC

1
2

= C
1
2 (In + C

1
2 HTR−1HC

1
2 )−tC

1
2 .

Therefore, from (10), we conclude that

HMs+1B = HCHT
+

s∑
t=1

 s∏
i=s−t+1

φ(Mi)

HJtHT

is positive definite, and then φ(Ms+1) ≥ 0 from the definition
of the function φ(·) given by (9). �

Now, we provide the proof of Theorem 2. Obviously,

z1 = 0(z0)y = 0(0)y = M1 BA−1y.

Suppose that for any given s ∈ N+, zs = MsBA−1y, then

zs+1 = 0(zs)y
= BA−1y+ t(zs)(In − BA−1H )zszTs H

TA−1y
= BA−1y+ t(zs)(In − BA−1H )

·MsBA−1yyTA−1BTMT
s H

TA−1y
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=
(
In + t(zs)yTA−1BTMT

s H
TA−1y

· (In − BA−1H )Ms
)
BA−1y

= Ms+1BA−1y.

This theorem thus follows using mathematical induction.

C. PROOF OF THEOREM 3
Firstly, we provide two lemmas.
Lemma 3: For any a ∈ [0, 1), we have

lim
a→1−

H8(a)B = A. (17)

Proof: From (11), we can derive

H8(a)B = HC
1
2
(
In − a(In − C

1
2 HTA−1HC

1
2 )
)−1C 1

2 HT

= HC
1
2
(
In − a(In + C

1
2 HTR−1HC

1
2 )−1

)−1
·C

1
2 HT

= HC
1
2
(
In + a

(
In + C

1
2 HTR−1HC

1
2 − aIn

)−1)
·C

1
2 HT

= HCHT
+ aHC

1
2
(
(1− a)In

+C
1
2 HTR−1HC

1
2
)−1C 1

2 HT

= HCHT
+

a
1− a

(
HCHT

−HCHT ((1− a)R+ HCHT )−1HCHT )
= HCHT

+
a

1− a

(
(HCHT )−1 +

1
1− a

R−1
)−1

= HCHT
+ a

(
(1− a)(HCHT )−1 + R−1

)−1
.

The continuousness of the above with respect to a implies
lima→1− H8(a)B = HCHT

+ R = A. �
Lemma 4: There exists an a0 ∈ [0, 1) such that

φ(8(a0)) = a0.
Proof: If y = 0p×1, then the result is obvious. Assume

that y 6= 0p×1, from the definition of φ give by (9), the
function

φ(8(a)) =
yTA−1BT8(a)THTA−1y

1+ yTA−1BT8(a)THTA−1H8(a)BA−1y

is continuous with respect to a.
It is clear that

φ(8(0)) =
yTA−1HCHTA−1y

1+ yTA−1HCHTA−1HCHTA−1y
> 0.

From equation (17) and the positive definiteness of A,
we have

lim
a→1−

φ(8(a)) =
yTA−1y

1+ yTA−1y
< 1.

Therefore, the equation (φ ◦ 8)(a) = φ(8(a)) = a has a
fixed point a0 ∈ (0, 1). �

Secondly, we give the proof of this theorem.
Taking a0 in Lemma 4 such that

φ(8(a0)) = a0 and 8(a0)−1ẑ = BA−1y.

From the definition of function φ(·) given by (9), we have

φ(8(a0)) =
ẑTHTA−1y

1+ ẑTHTA−1H ẑ
= t(ẑ)ẑTHTA−1y,

and then from (8) and (11),

0(ẑ)y = 8(a0)−1ẑ+ t(ẑ)(In − BA−1H )ẑ · ẑTHTA−1y

= 8(a0)−1ẑ+ φ(8(a0))(In − BA−1H )ẑ

= 8(a0)−1ẑ+ a0(In − BA−1H )ẑ

= ẑ.

D. PROOF OF THEOREM 4
Lemma 5: Suppose the matrices A ∈ Rn×n and B ∈ Rp×p

are positive semi-definite and positive definite respectively,
and H ∈ Rp×n. Let

g(X ) = (I − XH )A(I − XH )T + XBXT , X ∈ Rn×p,

then the following two optimization problems

min
X∈Rn×p

tr(g(X )) and min
X∈Rn×p

g(X )

are equivalent and share the same optimal solution.
Proof: Note HAHT

+ B is positive definite. From

g(X ) = X (HAHT
+ B)XT − XHA− AHTXT + A

=

(
X (HAHT

+ B)− AHT
)
(HAHT

+ B)−1

·

(
X (HAHT

+ B)− AHT
)T

+A− AHT (HAHT
+ B)−1HA,

we immediately know that X = AHT (HAHT
+ B)−1 mini-

mizes g(X ). The existence of optimal solution of optimization
problem with matrix-valued objective function implies the
equivalence of two problems min tr(g(X )) and min g(X ). �
Next, we give the proof of this theorem.
Obviously, P̂N0 = PN0 = PU0 = P0. For the time instant k ,

assume that

PNk � P̂
N
k � P

U
k ,

where P̂Nk is an estimate of PNk in Algorithm 1. It is to see

PNk+1 = (I − Kk+1Hk+1)
(
FkPNk F

T
k + Qk

)
· (I − Kk+1Hk+1)T + Kk+1Rk+1KT

k+1

� (I − Kk+1Hk+1)(Fk P̂Nk F
T
k + ẑk ẑTk + Qk )

· (I − Kk+1Hk+1)T + Kk+1Rk+1KT
k+1

= P̂Nk+1.

Furthermore, denote Kk+1 = {Kk+1 ∈ Rn×p
:

Kk+1Hk+1Gk = Gk}. The fact that the estimate ẑk given
by (5) is a vector in the column space of Gk implies (I −
Kk+1Hk+1)T ẑk = 0 for any Kk+1 ∈ Kk+1. Therefore,

trPUk+1
= min

Kk+1∈Kk+1
tr
(
(I − Kk+1Hk+1)(FkPUk F

T
k + Qk )

· (I − Kk+1Hk+1)T + Kk+1Rk+1KT
k+1

)
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= min
Kk+1∈Kk+1

tr
(
(I − Kk+1Hk+1)(FkPUk F

T
k + ẑk ẑTk + Qk )

· (I − Kk+1Hk+1)T + Kk+1Rk+1KT
k+1

)
≥ min

Kk+1∈Rn×p
tr
(
(I − Kk+1Hk+1)(FkPUk F

T
k + ẑk ẑTk + Qk )

· (I − Kk+1Hk+1)T + Kk+1Rk+1KT
k+1

)
≥ min

Kk+1∈Rn×p
tr
(
(I − Kk+1Hk+1)(FkPNk F

T
k + ẑk ẑTk + Qk )

· (I − Kk+1Hk+1)T + Kk+1Rk+1KT
k+1

)
= trP̂Nk+1.

Applying Lemma 5 twice, we have P̂Nk+1 � P
U
k+1. In result,

PNk+1 � P̂
N
k+1 � P

U
k+1.

By mathematical induction, we complete the proof.
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