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ABSTRACT During the last decade, the number of applications for land transportation that depend on
systems for accurate positioning has significantly increased. Unfortunately, systems based on low-cost global
navigation satellite system (GNSS) components harshly suffer signal impairments due to the environment
surrounding the antenna, but new designs based on deeper data fusion and on the combination of different
signal processing techniques can overcome limitations without the introduction of expensive components.
Supported by a completemathematicalmodel, this paper presents the design of a real-time positioning system
that is based on the tight integration of extremely low-cost sensors and a consumer-grade global positioning
system receiver. The design has been validated experimentally through a series of tests carried out in real
scenarios. The performance of the new system is compared against a standalone GNSS receiver and survey-
grade professional equipment. The results show that a carefully designed and constrained integration of
low-cost sensors can have performance comparable to that of an expensive professional equipment.

INDEX TERMS Global positioning system (GPS), inertial navigation system (INS), position accuracy, tight
architecture.

I. INTRODUCTION
The accurate and reliable estimate of vehicles position is at
the basis of many applications for land transportation, but is
becoming an important requirement also in other domains,
such as in precision farming for the control of driverless
machineries. As many scientists have pointed out in the
recent years, there is an increasing demand for sub-meter
position accuracy in most of operational conditions. Devel-
opers keep seeking innovative strategies and reliable systems
at affordable costs [1]–[3]. Although the Global Positioning
System (GPS) - in general terms, theGlobal Navigation Satel-
lite System (GNSS) - remains the main mean for absolute
positioning and outdoor navigation, the urban environment
and specific conditions often pose severe challenges to the
receivers. In fact, the presence of buildings and trees might
induce signal reflections and attenuations that, in turn, cause
corrupted GNSS measurements. Even worse, in severe cases,
the number of visible satellites can be not sufficient, and
receivers might be unable to provide Position Velocity and
Time (PVT) data.

Apart from the GNSS-evolution (new constellations help
to increase the satellites visibility and offer signals at

different frequencies), today is already a common practice
the integration of satellite navigation receivers with terres-
trial sensors, namely wheel odometers [4], Inertial Nav-
igation Systems (INSs) [5]–[7] and Light Detection and
Ranging (LIDAR) [8]. Several types of integration
approaches can be adopted [9], but from a general perspective
they can be grouped in three main categories: the loosely
coupled [10], the tightly coupled [11] and the ultra-tight
integration [12], [13]. In a nutshell, the basic difference
between them is the type of data shared by the GNSS
receiver and the sensors. For instance, in INS/GPS loosely
coupled architectures, positions and velocities estimated by
the GNSS receiver are blended with the INS navigation
solution. Tightly coupled architectures perform a deeper data
fusion, as the estimated GNSS pseudoranges and Doppler
shifts are processed through a Kalman Filter (KF) along with
the INS measurements. Compared to the loosely coupled,
tight integrations allow for providing PVT data even in
scenarios with poor signal quality and limited satellites cov-
erage, thanks to the prediction of pseudoranges and Doppler
trends. Ultra-tight integrations, which enhance performance
of less complex methods in high dynamic or weak signal
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conditions [14]–[16], involve the baseband signal processing
of GNSS receivers, which is typically not accessible when
using commercial low-cost modules.

The performance achievable with the aforementioned
kinds of integration is limited by the approximations of
the linearization process of the KF and the difficult char-
acterization of the sensors errors, which is especially crit-
ical for low-cost MEMS-based IMUs [17]. In literature
many solutions have been proposed to overcome such prob-
lems. KF can be replaced by Unscented Kalman Filters
(UKF)[18], Particle Filtering (PF) [17], [19], [20] or sev-
eral kinds of Artificial Neural Networks (ANN) [21]–[23],
whereas the introduction of an H∞ filter can keep the KF sta-
ble regardless of the complexity of the IMU measurements
noise [24], [25]. All these solutions are characterized by a
high complexity in the design of the system, which makes
them unsuitable when the use of low-cost components is
addressed.

This paper starts from a conventional tightly coupled
architecture and presents the design of add-on algorithms,
necessary to achieve a real-time implementation based on
a low-cost Inertial Measurement Unit (IMU), a consumer-
grade GPS receiver and odometer data available on the
car Controller Area Network (CAN)-bus. The paper shows
the results obtained from a set of tests performed in a
real environment and compares the performance of the
positioning system under test with commercial products.
Although many papers describe integrated INS/GPS schemes
for automotive applications (see for example [26]–[28]), very
few works [29], [30] focus on the performance achievable
by a tightly coupled architecture fusing measurements of
extremely low-cost sensors.

Section II recalls the theory behind conventional tightly
coupled architectures, while Section III accurately describes
the logical controls and constraints designed for the proposed
real-time implementation. These make the system robust to
GNSS signal impairments and lead to performance compa-
rable to that of a professional, dual frequency GPS receiver,
combined with a tactical-grade IMU. Section IV includes a
detailed description of the experimental setup, presents the
methodology followed during the data post-processing and
comments the results of the tests.

II. BASICS ON INS/GPS TIGHT INTEGRATION
The INS/GPS data fusion is commonly performed through a
KF [31]–[33], that can be considered the reference method to
perform multiple sensors data fusion [3], [11], and [34]. In a
tight integration, the KF is fed by the measure of pseudor-
anges and pseudorange rates to assist the INS in the estimate
of the user’s position and velocity. The tight integration is able
to aid the inertial sensors even during limited GPS satellite
availability [19]. Many works related to Kalman-based tight
integrations have been published in the course of the last
decade, such as [3], [11], [35]–[40].

A simple diagram showing the main operations of a tight
INS/GPS integration is depicted in Fig. 1.

FIGURE 1. Block diagram of a conventional INS/GPS tightly coupled
architecture.

The block labeled as INS algorithm calculates the position,
velocity and attitude (i.e.: the INS navigation solution) by
exploiting the accelerometers and gyroscopes measures pro-
vided by the Inertial Measurement Unit (IMU). See [5], [11]
for details.

In parallel, the GPS receiver provides raw measurements
(i.e. code-based pseudorange, Doppler and carrier-phase
measures), ephemeris and Position, Velocity and Time (PVT)
data. The algorithm described hereafter uses GPS code-based
measurements only.

Similarly, to the GPS, it is also possible to compute pseu-
doranges and pseudorange rates from the user’s position and
velocity estimated by the INS algorithm. At time k, the mis-
closure vector z (k) can be written as:

z(k) =
[
ρINS (k)− ρGPS (k)
ρ̇INS (k)− ρ̇GPS (k)

]
(1)

where:

ρINS , ρGPS are the vectors of pseudoranges related to the
INS and the GPS receiver, respectively;

ρ̇INS , ρ̇GPS are the vectors of pseudoranges rates related
to the INS and the GPS receiver, respectively.

The centralized KF uses as input the misclosure vector,
when available, otherwise it provides an estimate of its
states x(k) by prediction only.
For the sake of simplicity, from this moment on, the

k-th discrete time instant is indicated by the subscript k .
As far as the discrete time states vector of a central-
ized KF is concerned, the non-linear state transition model
(system or motion model) is given by (2):

xk = f (xk−1,uk−1,wk−1) (2)

where u is the control input and w is the process noise.
The state measurement model is:

zk = h(xk , νk ) (3)

where νk is the measurement noise, which is independent
of the past and current states and accounts for errors on
GPS measurements. Eqs (2) and (3) can be rewritten as:

δẋk = F · δxk +G ·Wk (4)
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where F is the whole matrix of the system model andG is the
matrix that relates the states with noise sources.

zk = H · δxk + νk (5)

where H is the matrix that relates the states with the mea-
surements. Eqs (4) and (5) can be tailored for the INS/GPS
integration and their mathematical expression can be found
in Appendix I and Appendix II, respectively.

In integrated INS/GPS systems, the required states to
be estimated include the navigation parameters (i.e., posi-
tions, velocities, and attitudes) and the sensor parameters
(i.e., biases and scale factors) [41]. In particular, the cen-
tralized KF is in charge of estimating the error (i.e. δx)
of the navigation solution, rather than the states themselves
(i.e. x) [17]. Due to the non-linear relationship between the
states and the measurements the centralized KF is replaced
by an Extended Kalman Filter (EKF). A typical error states
vector used in case of an INS/GPS tightly coupled architec-
tures is indicated in (6):

δx=
[
δre3×1 δve3×1 δAe

3×1 δfb3×1 δωb3×1 δbr δdr
]T

(6)

where

δre3×1 is the position error vector;
δve3×1 is the velocity error vector;
δAe

3×1 is the attitude error vector;
δfb3×1 is the error vector related to the specific forces

measured by the IMU in the body frame ‘b’;
δωb3×1 is the error vector related to the angular rates

measured by the IMU in the body frame ‘b’;
δbr is the receiver’s clock bias;
δdr is the receiver’s clock drift.

By applying the perturbation analysis [5], an INS error
model can be derived to represent the dynamics of the nav-
igation error states (i.e. f (), according to (2)). For ease of
comprehension, the calculation of such matrix, both in con-
tinuous and discrete-time, is reported in Appendix I, while
Appendix II describes the mathematical relationship between
measurements and states in case of an INS/GPS tightly cou-
pled integration.

III. ADVANCED INS/GPS TIGHT INTEGRATION FOR
PRACTICAL IMPLEMENTATION
In the proposed system, the performance of the traditional
INS/GPS tight integration has been improved through the
exploitation of additional constraints and ad-hoc strategies,
inspired by the knowledge of the final application of the
positioning system. This improvement has been obtained by
focusing on four main aspects:
A. reduction of the tightly coupled EKF divergence during

long GPS signal outages;
B. countermeasures to the initial large heading error that

can lead to filter instability;
C. limitation of the INS errors drift within the navigation

solution;

FIGURE 2. Block diagram of a GPS/INS tightly coupled architecture
enhanced by NHC constraints and odometer measurements.

D. monitoring of the measurements quality and validity of
the code-based GPS measurements.

Each aspect is discussed in the following subsections.

A. REDUCTION OF THE TIGHTLY COUPLED EKF
DIVERGENCE DURING LONG GPS SIGNAL OUTAGES
During GPS signal outages, the tight integration calculates
the position with the IMU data and skips the update phase
due to the absence of GPS measurements. In such condi-
tions, low-cost MEMS-based IMUs can lead to a remarkable
degradation in terms of positioning accuracy even after a
short amount of time. In order to overcome this problem,
the output of an odometer and two Non-Holonomic Con-
straints (NHC) [3] are added to the system. Exploiting this
information, the update phase of the EKF can be performed
also during GPS signal outages. The block diagram of this
enhancement is depicted in Fig. 2 with bold lines.

The measurements misclosure equation is expressed
in (7):

Zk,OUTAGE =

 S · vODOM
0
0

− (Re
b,3×3

)T
· veINS,3×1


(7)

where:

S is the odometer scale factor;
vODOM is the velocity of the odometer computed with

respect to the vehicle’s frame;
Re
b,3×3 is the direction cosine matrix from the body

frame ‘b′ to ECEF frame ‘e’;
veINS,3×1 is the velocity vector of the vehicle computed

through the INS algorithm in the ECEF frame.

Since the scale factor S of the odometer is taken into
account, an additional error state needs to be included in the
vector δx as expressed in (6). Thus, leveraging on (2), the
INS/GPS system model as described in (4) is augmented as:
where δxINS/GPS , FINS/GPS ,GINS/GPS , andWINS/GPS are the
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error states vector, the system model matrix, the matrix that
relates the dynamic model to its noise sources, and the noise
process vector as expressed in (6) and (4), respectively. The
discrete-time version of (8), as shown at the bottom of this
page, can be obtained by following the procedure reported
in Appendix I.

Eventually, the new discrete-time designmatrixHk,OUTAGE
that relates the measurements with the error states of
the EKF in case of GPS signal outage is obtained

through perturbations of (7), both for δ

 S · vODOM
0
0

 and

δ

[(
Re
b,3×3

)T
· veINS,3×1

]
, according to [42]. The solution

can be summarized as: S ·vODOM
0− vby,INS
0− vbz,INS


︸ ︷︷ ︸

Zk
OUTAGE

=

 01×3
01×3
01×3

NHC,3×6

01×8
01×8
01×8

−vWSS
0
0


︸ ︷︷ ︸

Hk
OUTAGE

·δxk,18×1 + υk,3×1 (9)

where

vby,INS , v
b
z,INS are the INS velocities estimation along the

Y and Z axes, expressed in the body frame.

They are obtained from
(
Re
b,3×3

)T
·veINS,3×1

product;
NHC,3×6 is the non-holonomic matrix, whose

definition is omitted for sake of simplicity
and can be found in [3] and [42];

υk,3×1 is the noise vector associated to the
constraints. Its covariance matrix can be
described as a 3 × 3 diagonal matrix
whose elements on the diagonal can be
assumed to have a Gaussian distribution as
υk,3×1 ∼ N (0, γ 3×3,υk ).

B. COUNTERMEASURES TO THE INITIAL LARGE
HEADING ERROR
As correctly explained in [43], in low-cost INS/GPS naviga-
tion systems, the poor performance of the gyros makes an
accurate initialization of the heading angle difficult. Differ-
ent approaches have been proposed to overcome such issue,

FIGURE 3. Block diagram of a GPS/INS tightly coupled architecture
enhanced by Course Over Ground (COG) constraint.

e.g. in [43], [44], and [45], but they imply strong modifica-
tions of the INS/GPS-integration architecture and an incre-
ment in the system complexity.

In order to implement minimum changes in the conven-
tional tightly coupled algorithm, we introduced an additional
constraint based on the Course Over Ground (COG) that can
be calculated from the GPS receiver estimated velocities as:

ψGPS = tan−1
(
Vn
East,GPS

Vn
North,GPS

)
(10)

whereψGPS is the heading angle derived from the GPS veloc-
ity and the superscript ‘n’ indicates that such GPS velocities
are measured with respect to the local frame. The transforma-
tion of the GPS velocity vector from the ECEF frame to the
local frame can be obtained as in the following:

Vn
GPS = Rn

e · V
e
GPS (11)

where Rn
e is the rotation matrix from the ECEF to the

local frame whose mathematical expression can be found
in [5].

The use of the COG constraints is limited by the quality of
the ψGPS estimation, which is reliable only when the vehicle
is moving. The detection of the vehicle’s dynamic condition
is obtained by checking the condition

∥∥Vn
GPS

∥∥ ≥ `, where
` is the minimum acceptable velocity. A block diagram that

[
δẋINS/GPS

δṠ

]
=

 FINS/GPS,17×17
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

01×3 01×3 01×3 01×3 01×3 0 0

|
|
|
|
|
|

017×1
- - - - -

0


︸ ︷︷ ︸

F
INS/GPS/ODOM ,18×18

·

[
δxINS/GPS

δS

]
︸ ︷︷ ︸

δx
INS/GPS/ODOM ,18×1

+

[
GINS/GPS,17×14

01×3 01×3 0 0

]
︸ ︷︷ ︸

G
INS/GPS/ODOM ,18×14

·WINS/GPS (8)
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shows the COG constraint is illustrated in Fig. 3, with bold
lines.

Such constraint does not modify the system model of the
EKF tightly coupled architecture, described in (8), but only
the measurements misclosure and the design matrix. The
general relationship between the measurement and the error
states as in (3) can be expanded and tailored to the GPS/INS
integration as in (5) and further augmented to include the
COG constraints:[

Zk,INS/GPS
ψk,GPS − ψk,INS

]
︸ ︷︷ ︸

Zk
INS/GPS/COG

=


Hk,INS/GPS

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

01 ×3 01 ×3
δψ̂

δAx

δψ̂

δAy

δψ̂

δAz
01 ×9


︸ ︷︷ ︸

Hk
INS/GPS/COG

·δxk,18×1 + νk (12)

where

Zk,INS/GPS , Hk,INS/GPS are the measurements vector and
the design matrix of the reference
EKF tightly coupled algorithm at
the k-th time instant as stated
in (5);

ψk,GPS is the heading angle computed
through (10);

ψk,INS is the heading angle computed
from the INS algorithm;

δψ̂
δAx

, δψ̂
δAy

, δψ̂
δAz

are the partial derivatives of
the heading error computed with
respect to the attitude along the
X, Y, Z axes of the ECEF frame.
Details on the calculation of these
derivatives can be found in [3].

C. LIMITATION OF THE INS ERRORS DRIFT
The general IMU error model reported in [11] loses validity
when extremely inexpensive IMUs are used [49]. According
to [50], a more comprehensive error model includes four error
components: a fixed contribution, a temperature-dependent
variation, a run-to-run variation, and an in-run variation. The
following subsections present the strategies adopted to mit-
igate the effects of in-run and run-to-run variations, as well
as the temperature compensation. The fixed contribution
(e.g. bias) can easily be evaluated and corrected though
a proper calibration process and it is omitted in this
paper.

1) IN-RUN COMPENSATION
The in-run variation is the component that mostly affects
the performance of an MEMS IMU and includes the IMU
errors variation over time: consequently, this kind of errors

FIGURE 4. Block diagram of a GPS/INS tightly coupled architecture
enhanced with ZUPT/ZIHR constraints and gyros recalibration during
static condition.

cannot be corrected during the initial calibration or the system
alignment.

Since the presented tightly coupled system is targeted to
land applications, a recalibration can be performed every
time the vehicle is still and the deterministic gyros bias
vector d can be updated. The static condition of the user
can be precisely detected by checking the velocity from
the odometer or the velocity evaluated by the GPS receiver,∥∥Vn

GPS

∥∥ ∼ 0.
The recalibration of gyroscopes reduces the effects of the

in-run variations of IMU errors. A further reduction can
be accomplished by adding two additional constraints dur-
ing the static conditions. The Zero Velocity Update (ZUPT)
measurements [51] limits the effects of the accelerometers
errors on the velocity estimates and, consequently, on the
position, while a Zero Integrated Heading Rate (ZIHR)
approach [52] is adopted tomitigate the growth of the heading
error due to residual gyroscopes errors. A block diagram
that depicts the strategies adopted in case of static conditions
of the vehicle is shown in Fig. 4 and highlighted by bold
lines.

In details, the ZUPT constraint can be included within
the INS/GPS measurements misclosure vector (reported
in 5 according to (3)) as:

[
Zk,INS/GPS
Ve
k,INS − 0

]
︸ ︷︷ ︸

Zk
ZUPT

=

 Hk,INS/GPS
- - - - - - - - - - - - - - - - - - - - - - - -
03 ×3 I3 ×3 01 ×12


︸ ︷︷ ︸

Hk
ZUPT

·δxk,18×1 + νk (13)

where Ve
k,INS is the velocity estimated through the INS algo-

rithm and expressed in the ECEF frame.
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The ZIHR can be written as:[
Zk,INS/GPS

ψk,INS − ψk−1,INS

]
︸ ︷︷ ︸

Zk
ZIHR

=

 Hk,INS/GPS
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
01 ×3 01 ×3 01 ×3 01 ×3 MZIHR,1×3 01 ×3


︸ ︷︷ ︸

Hk
ZIHR

· δxk,18×1 + νk (14)

where, (15), as shown at the bottom of this page,
ψk,INS ,ψk−1,INS are the heading angle computed through the
INS algorithm as in (1) at the k-th and k-1-th time instants,
from the INS algorithm;

MZIHR,1×3 is equal to
[
0 sec θ sinϕ sec θ cosϕ

]
where ϕ, θ , are the roll and pitch angles, respectively. They
are assumed to be constant during the time interval 1tk .

2) RUN-TO-RUN COMPENSATION
The run-to-run bias (also called turn-on bias) is the bias in the
inertial sensor output when the sensor is turned on. In most
of the high-end, navigation-grade, IMUs, the turn-on biases
do not change in a significant way among different missions
and it can be considered negligible [3]. However, for low cost
sensors these errors are quite large, and their repeatability is
typically poor, asking for frequent calibrations.

The recalibration procedure, introduced in Section III.C.1,
is feasible for the gyroscopes but is impractical for the
accelerometers. The method we used to overcome such
issue includes extra states in the EKF, which are in charge
of estimating the turn-on bias components for both the
gyroscopes and the accelerometers. Therefore, the error
states vector described in (8) can be further expanded to
a 24-element vector and the new transition matrix can be
written in continuous-time as:

where δτ f ,3×1 and δτω,3×1 are the error states associated
to the turn-on biases of the accelerometers and gyroscopes,
respectively. They are expressed as constant terms over time
and thus their derivatives are equal to zero. A graphical view

FIGURE 5. Block diagram of a GPS/INS tightly coupled architecture
enhanced by additional error states to comprise INS turn-on biases.

of these changes is reported in Fig. 5 over the block diagram
of the GPS/INS tightly coupled architecture.

3) TEMPERATURE COMPENSATION
In an IMU where the gyros and accelerometers are not tem-
perature compensated (as most of the low-cost consumer-
gradeMEMS IMUs), the effects of the temperature variations
have a remarkable impact on the accuracy of the INS nav-
igation solution because such temperature variations make
the biases of the INS sensors changing over time. Thus,
we calibrated the INS sensors in a temperature-controlled
chamber, rotating the IMU in different positions according to
the characterization tests proposed in [47]. We repeated the
same procedure for different temperatures in the range from
−20 to 60 Celsius. A similar procedure has been also adopted
for the gyroscopes and the accelerometers. The collected
values were included into a look-up table that was used to
correct the IMU measurements in real-time. The additional
module in charge of correcting the IMU biases according
to the current temperature measured by the IMU is shown
in Fig. 6.

4) MONITORING OF THE MEASUREMENTS QUALITY AND
VALIDITY OF CODE-BASED GPS MEASUREMENTS
In case of harsh environments (e.g. urban, mountain areas),
signal impairments can affect the quality of GNSS measure-
ments and, consequently, the accuracy of the final system

 δẋINS/GPS/ODOM ,18×1δτ̇ f ,3×1
δτ̇ω,3×1

 =


FINS/GPS/ODOM ,18×18
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
03×3 · · ·

03×3 · · ·

|
|
|
|
|
|
|
|

03×3 03×3
- - - - - - - - - - - -
03×3 03×3
03×3 03×3


︸ ︷︷ ︸

F
TURN−ON BIASES,24×24

·

 δxINS/GPS/ODOM ,18×1δτ f ,3×1
δτω,3×1


︸ ︷︷ ︸

δx
TURN−ON BIASES,24×1

+

 GINS/GPS/ODOM ,18×14
03×3 03×3 03×1 03×1
03×3 03×3 03×1 03×1


︸ ︷︷ ︸

G
TURN−ON BIASES,24×14

·WINS/GPS (15)
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FIGURE 6. Block diagram of a GPS/INS tightly coupled architecture
enhanced with an additional module for IMU temperature compensation.

positioning. The Carrier to Noise density ratio (C/N0) [53]
and the elevation of satellite allow for assessing the quality
of the received signal. Indeed, the exclusion of satellites with
lowC/N0 (e.g. C/N0 lower than 30 dB-Hz) and thosewith low
elevations (e.g. elevation less than 10◦) can reduce the impact
of signal degradation on the position accuracy. In addition,
the selectedmeasurements can be further weighted. In details,
each element of the diagonal covariancematrixRνk that refers
to a code-based GPS measurements, is computed as in (16),
by following the model proposed in [53] and [54]:

σ 2
ρ =

(
a+ b · 10

−
C
N0
10

)
sin (Elev)

(16)

where Elev is the satellite elevation and a, b are empiri-
cal parameters that change according to the environmental
scenario [54]. A method to select the scenario can be imple-
mented by using an embedded map, or, more easily, by eval-
uating the estimated velocity of the receiver [1].

Another problem that sometimes plagues the accuracy of
the tightly coupled navigation solution is the validity of the
GPS data. In order to limit such issue, we implemented a
method to reject the corrupted measurements, similarly to
that proposed in [55]. The absolute value of a code-based
pseudorange is compared with the predicted geometrical
distance. Leveraging on (5), the validity check of the GPS
measurements at the k-th time instant can be expressed as:∣∣∣(ρik,GPS −Hi

ρ,1×3 · δx
−

k,3×1)
∣∣∣ < λMAX (17)

where:

i is the index related to the satellite under
investigation;

ρik,GPS represents the GPS code-based pseudorange
associated to the i-th satellite;

Hi
ρ,1×3 is the design matrix related to the i-th satellite;

δx−k,3×1 is the vector of the vehicle position obtained
through the EKF prediction stage [31];

FIGURE 7. Block diagram of a GPS/INS tightly coupled architecture
enhanced by an additional module for GPS data validity and quality
monitoring.

FIGURE 8. View of the embedded system running the tightly coupled
algorithm. The main sensors and the microcontroller are highlighted.

λMAX is the maximum acceptable pseudorange error.
The value of the threshold has been set
empirically (e.g. twice the standard deviation of
the User Equivalent Range Errors (UERE) [3]).

When invalid pseudoranges are encountered, all the
measurements related to the corresponding satellites are
not included in the computation of states and covariance
updates.

Fig. 7 shows how the conventional architecture changes
with this additional strategy to check the quality and validity
of the received GPS data.

IV. EXPERIMENTAL VALIDATION
A. EMBEDDED BOARD USED FOR THE IMPLEMENTATION
The designed architecture was implemented on the embedded
system reported in Fig. 8 that provided real time PVT data.

In summary, the board is composed of the following major
components:
• a consumer-grade MEMS IMU (i.e. the InvenSense
MPU-9250);

• a GPS mass-market module (i.e. the NVS
NV08C-CSM);
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FIGURE 9. Scheme of the experimental setup used to assess the
performance of the developed system.

• a 200MHz ARM micro-controller manufactured by
ST-MicroElectronics (i.e. the STM32F745IET6), run-
ning FreeRTOS as the operating system;

• vehicle odometric readings in form of pulses.
The performance of the system was assessed through several
tests carried out in real scenarios, following the methodology
and the set up described in the next sections.

B. EXPERIMENTAL TEST SETUP
The developed system was mounted on board of a vehi-
cle. For the sake of comparison, during the tests, additional
positioning sensors were used in parallel to have benchmark
measurements. In details, the following commercial modules
were installed along with the system under test:
• a standalone, multi-constellations GNSS receiver
(i.e.: NVS NV08C-CSM), not augmented by INS and
odometry data. Such a GNSS receiver is commonly used
in consumer-grade devices for road navigation. It was
taken as a benchmark to quantify the benefits introduced
by the INS and the odometer to cope with poor GNSS
performance (i.e.: few satellites in view, degraded GNSS
measurements due to the local environment).

• a dual-frequency, survey-grade GNSS receiver, com-
bined with a tactical-grade inertial sensor (i.e.: Novatel
SPAN-CPT). This is able to provide sub-decimeter posi-
tion accuracy and is generally employed in professional
applications. It was included in the experimental set up
because it provided the reference trajectory that served
to estimate the position errors of the developed system.

Fig. 9 sketches the block diagram of the whole experimen-
tal setup, where the RF signal from the antenna was split
and sent to the developed system and the standalone NVS
NV08C-CSM and the Novatel SPAN-CPT.

The data sets collected during the tests were logged
and carefully analyzed in post-processing. The results are
described in the next subsections where the acronym RPU
(Robust Positioning Unit) is used to indicate the developed
system running the tightly coupled algorithms. The data sets
were divided in two main groups:

1. in the first, the odometer was not used and the
RPU was configured to use the GNSS receiver and the
IMU only. All the constraints described in Section III

FIGURE 10. Map view of the path driven during one test of the first series.

were enabled. In such tests, the positions and attitudes
estimated by the Novatel SPAN-CPT were considered
the reference both for the trajectory and for the system
orientation. The results of the first group of tests are
commented in Section IV.C.

2. in the second, the odometer was enabled to have an
additional source of data to further increase the posi-
tioning performance. The second group of tests was
characterized by long GNSS signal outages due to
the presence of tunnels. Therefore, rather than the
Novatel SPAN-CPT (that also showed not negligi-
ble position errors), a digital map was used as refer-
ence for the assessment of the RPU performance. The
results of the second group of tests are commented in
Section IV.D.

C. RPU PERFORMANCE IN URBAN AND OPEN-SKY
SCENARIOS
In the first group of tests, the vehicle was driven along areas
with the following environmental features:
• urban areas, characterized by narrow streets surrounded
by buildings and trees, limiting the visibility of the
satellites and increasing the probability of GNSS signal
degradation due to multipath and shadowing;

• open-sky areas, where few obstacles rarely impaired the
visibility of the satellites;

• short signal outages (caused by underpasses or urban
bridges) that blocked the reception of the GNSS signals.

An example of a driven path is reported in Fig. 10,
where the different environmental conditions are highlighted.
In details, the cyan indicates the urban environment, the blue
is the open-sky, while the red color indicates an outage.
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FIGURE 11. Horizontal position error of the RPU (top) and of the
standalone GNSS NVS receiver (bottom). Data referred to a trajectory
selected as example from the first group of tests.

TABLE 1. Statistical analysis of the horizontal positioning errors for the
navigation systems under investigation.

As far as the performance results are concerned, the nav-
igation solutions obtained through the RPU were compared
with those provided by the benchmark standalone GNSS
receiver. Fig. 11 reports the horizontal position errors over
time, computed against the Novatel SPAN-CPT, where the
different colors indicate again the type of environmental
scenario.

A thorough statistical analysis of such horizontal posi-
tion errors was performed in terms of mean value, standard
deviation and 95th percentile. These metrics are calculated
according to the method described in [56]. The results are
reported in Table 1.

From Table 1, we can appreciate the benefits of the
INS/GPS tightly coupled integration, in particular when the
satellites visibility is poor. In urban environment, even with
low cost sensors, the RPU shows a remarkable reduced error
with respect to the standalone GNSS receiver, as underlined
by the 95th percentile value (i.e.: it passes approximately
from 17 m to 6 m). Moreover, when a signal outage occurs,
the robustness of the designed architecture is further evident,
as the stand-alone receiver is not able to provide any valid
position during that time interval. This induces a higher
availability of positioning data. As expected, only when
the number of satellites in view is high, like in open-sky

FIGURE 12. Histogram of the RPU horizontal position errors. Data
referred to a trajectory selected as example from the first group of tests.

FIGURE 13. Histogram of the horizontal position errors of the standalone
GNSS receiver. Data referred to a trajectory selected as example from the
first group of tests.

condition, the RPU and the standalone GNSS receiver pro-
vide similar performance (i.e.: the 95th percentile is slightly
less than 2.5 m in both cases).

Fig. 12 and Fig. 13 show the two-dimensional distribution
of the horizontal position error, along the East-North (EN)
coordinates, for the RPU and the standalone GNSS NVS
receiver, respectively.

From these figures it is possible to appreciate the clustering
of the estimated positions errors provided by the two systems
under investigation (i.e. RPU and NVS).

The black spots reveal the maximum density of the errors.
Comparing the two figures, only a slight improvement of the
RPU with respect to the standalone GNSS receiver can be
observed. However, it must be noticed that the figures report
the horizontal position errors computed over the whole path,
which was characterized by long sections of open-sky condi-
tions, where the two systems had similar performance.
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FIGURE 14. Yaw angle errors over time as estimated by the RPU and the
standalone GNSS receiver. Data referred to a trajectory selected as
example from the first group of tests.

TABLE 2. Statistical analysis of the error of the estimated yaw angle for
the rpu and the standalone GNSS receiver.

For the sake of completeness, also the errors of the yaw
estimate were calculated against the Novatel SPAN-CPT,
for the RPU and the standalone GNSS receiver. These are
reported in Fig. 14.

From Fig. 14, it is possible to observe that with the RPU
most of the time the error on the yaw angle is lower than 5◦.
Only in the initial part of the data collection the error is high.
This is due to the time required by the EKF to recover the
initial large heading angle error that is related to the intrinsic
features of a consumer-grade MEMS IMU. The developed
system recovers such a large initial error completely, as soon
as the vehicle moves, with an estimated transient shorter than
2 minutes.

The standalone GNSS receiver shows a degraded accuracy
of the estimated yaw angles that resulted strongly dependent
on the speed of the vehicle, as stated in Section III.B. The
higher the vehicle velocity, the more reliable the yaw angle
estimate. Fig. 14 clearly shows that the trend of the yaw
angles estimated by the standalone GNSS receiver is much
noisier with respect to that obtained by the RPU. As done
for the horizontal position errors, we computed the mean,
standard deviation and 95th percentile of the errors of the
estimated yaw angles, in different environmental conditions.
Table 2 reports the results.

As expected, in an open-sky scenario, the yaw error is
lower using the RPU, where the heading information com-
ing from the IMU can be frequently constrained with that

obtained by the GPS COG data. In such a scenario, the error
of the heading angle is further characterized by a low stan-
dard deviation (i.e.: approximately 1.2◦ against 5.5◦) and low
95th percentile (i.e.: approximately 3◦ against 14◦). On the
contrary, in an urban environment frequent car stops and low
vehicle speeds are often experienced. In these cases, the GPS
is not able to provide reliable COG values. Consequently,
the IMU cannot leverage on the external COG and the head-
ing angle accuracy becomes lower than that achieved in open-
sky (i.e.: 2.2◦ on average and 4.3◦ as standard deviation).
As far as the yaw angle estimated by the benchmark

receiver is concerned, higher values of the standard deviation
and 95th percentile can be observed, either in open-sky and
urban scenarios. In fact, the standalone GNSS receiver pro-
vides attitude estimates with a standard deviation that ranges
from 5.5◦ in case of good satellites visibility to more than 11◦

in an urban environment. This is almost three times bigger
than the standard deviation provided by the RPU. Similarly,
when the standalone GNSS receiver is used, a 95th percentile
that varies from 14◦ to more than 16◦ is obtained in case of
open-sky and urban scenarios, respectively. If such values are
compared with those measured by the RPU in the same sce-
narios, an increment of almost 12◦ and 10◦ can be observed.
Moreover, in case of GPS signal outage, the standaloneGNSS
receiver cannot provide any attitude information.

D. RPU PERFORMANCE IN CASE OF LONG GPS OUTAGES
In order to assess the improvements of the tightly coupled
architecture adding data from an odometer, several tests have
been carried out in a mountain environment, where the RPU
had to cope with frequent long outages due to the presence
of tunnels. This section reports the results obtained from
two representative paths, which are depicted on the map
in Fig. 15.a and in Fig. 15.b, respectively.

In these figures, the part of the path colored in blue indi-
cates open-sky conditions, while the part colored in red is
used to underline the presence of a tunnel. Close mountains
around the road sometimes limit the visibility of the satellites
and cause multipath effects on the GNSS signal. Moreover,
in the figures, the encountered GNSS signal outages have
been numbered from 1 to 12 and this index is used to refer
to a specific tunnel.

The results reported in this section refer to a test performed
with the experimental set up commented in Section IV.B,
where we substituted the GNSS standalone receiver with an
additional RPU. Indeed, two RPUs ran in parallel during the
tests and their navigation solutions were stored and compared
in post-processing. In details, the first RPU was equipped
only with the INS and the GNSS receiver, while the sec-
ond RPU was set to receive data also from the odometer,
as described in Section III.A. In this way, it was possible
to assess the advantages brought by the odometer (and the
related digital processing) within the developed system.

A zoomed view of the positions stored by the two RPUs
and the Novatel SPAN-CPT is reported over a map in the
following figures.
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FIGURE 15. Map of two paths in mountain areas. The parts of the path
where GPS signals are not available due to tunnels are numbered and
colored in red.

FIGURE 16. Comparison of the estimated positions for the tunnel #5.

Fig. 16 reports the positions along the tunnel #5, which is
approximately 1 km long. The red line indicates the positions
computed by the Novatel SPAN-CPT, the green is used for the

FIGURE 17. Comparison of the estimated positions for the tunnel #2.

first RPU and the blue is for the second RPU processing also
data from the odometer. Arrows indicate the driving direction.

It can be noticed that the estimated paths are almost coinci-
dent until half of the tunnel for all the three devices, whereas
at the end of the tunnel it is possible to observe a cross-track
horizontal position error of approximately 40 m with the first
RPU, featuring INS/GPS tight integration only.

Fig. 17 and Fig. 18 show the positions evaluated during
longer outages, in bending road tunnels 2.55 km and 5.32 km
long. At an average speed of 70 km/h, these obscured the
GNSS signals for more than 2 and 4.5 minutes, respectively.
In both cases, we can clearly observe how the positions
provided by both the RPUs and the Novatel SPAN-CPT are
affected by relevant cross-track errors, when compared with
the reference map, especially at the end of the tunnel. Indeed,
out of the tunnel #2 (Fig. 17) themaximumdistance estimated
between the reference point on the map and the position pro-
vided by the Novatel SPAN-CPT is approximately 40 m. The
first RPU showed also along track errors, with a maximum
cross-track error equal to 85 m. The data from the odometer
helped to have a smoother estimate of the trajectory, with
negligible along-track errors and a lower maximum cross-
track error (i.e.: 75 m) with respect to the first RPU.

During the test performed in the tunnel #4, the second
RPU showed a maximum cross-track error of 35 m. When
the odometer is disabled, the tight integration error increases
up to 100 m, and reaches 130 m even with the Novatel
SPAN-CPT. Despite it is a ‘‘survey-grade’’ receiver, com-
bined with a tactical-grade inertial sensor, it experiences
significant position errors, caused by some minutes of GPS
signal outages due to the tunnel. In this harsh environment,
the RPU outperforms the Novatel SPAN-CPT, especially
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FIGURE 18. Comparison of the estimated positions for tunnel #4.

if odometer data is integrated. Such results confirm that
tightly coupled architectures can provide significant advan-
tages, even using low cost sensors and consumer-grade GNSS
receivers. This provided that additional constraints, logical
controls and countermeasures to the in-run variations of the
IMU noises are implemented. Indeed, it is possible to design
hybrid positioning systems suitable for land navigation at
moderated cost, with performance comparable to that of pro-
fessional equipment.

For the sake of completeness, in order to compare the
performance of the two RPUs, the maximum cross-track
error with respect to the reference map has been mea-
sured, with a resolution of 5 m, for each tunnel highlighted
in Fig. 15.a and in Fig. 15.b, respectively. Results are reported
in Table 3 where the length of each tunnel is also indicated.

Values in Table 3 further motivate the use of the odometer,
when this can be integrated in the positioning system of
the vehicle. The advantage is quite evident in tunnels #4
and #11 where the error is of only 35 m and 20 m
when the odometer is used, compared to the 100 m and
200 m when the speed sensor is disabled. As a figure of
merit, the cross-track position error is reduced, on average,
of 46% when the odometer is enabled in the tight integration
algorithm.

The highest error with the second RPU is of about 75m and
was measured at the end of the tunnel #2, even if such tunnel
was not the longest one in our test campaign. We probed
the reason of such large position error and we identified the
origin. It was because the tunnel #2 was encountered only
a few seconds later the car drive test started, and such short
amount of time prevented the tight algorithm to fully recover
the initial heading error of the IMU.

TABLE 3. Maximum cross-track error in case of long GPS outage.

V. CONCLUSION
This paper presented the design of a positioning system based
on tightly coupled sensors, namely a consumer-grade GPS
receiver, a low-cost IMU and a car odometer. After recalling
the mathematical model at the basis of the tight integration,
the paper described add-on algorithms necessary to achieve
a real-time implementation on an embedded system. These
additional algorithms remarkably improve the performance
of the integrated system with respect to a traditional tightly-
coupled method. From a computational load point of view,
these additions do not require high demanding computing
resources since they only involve the low-rate part of the
INS tight integration. The paper reported the performance
of the developed system, which was stressed in different
environmental conditions and characterized through the sta-
tistical analysis of the horizontal position errors before map-
matching. Whereas in open sky conditions, standalone multi-
constellation GNSS receivers already provide position accu-
racy within the lane width, in urban contexts a multiple
sensors tightly coupled solution is needed to significantly
reduce the position errors. According to the analysis reported
in the paper, mainly the 95th percentile is reduced. In real
systems, such a reduction allows the map-matching algo-
rithm to recover almost completely the final positioning
error. Furthermore, we observed improved performance in
a mountain region, with frequent GNSS signal outages due
to consecutive tunnels. In such a scenario, the positioning
system under test had performance comparable to the one
provided by a professional equipment, composed by a survey-
grade GPS receiver and combined with a tactical-grade IMU.
This result paves the ways to further developments, as it
shows that even extremely low-cost sensors can match the
requirements of new demanding road applications, when they
are tightly coupled together. Examples include pay-as-you-
drive insurances, tracking of fleet for winter road mainte-
nance, automated systems for advanced driver assistance and
autonomous vehicles. In the years ahead, the improvement
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of Micro Electrical Mechanical Sensors (MEMS) technology
and the further evolution of GNSS, with enhanced signal for-
mats, different frequency bands and more satellites in view,
are expected to further increase the positioning performance
ofmass-market devices, enabling a variety of new services for
road users. The combination of low cost positioning sensors
will have a key-role also in applications requiring centimeter
levels accuracy, but where the use of digital maps is not
possible. Examples include precision farming and systems for
autonomous machine guidance in agriculture.

APPENDIX I
INS ERROR MODEL AND INS/GPS STATE
TRANSITION MATRIX
A theoretically rigorous error model for an accelerometer
and gyroscope can be found in [46]. In order to reduce the
complexity of such model and guarantee the stability and
observability of each state in the KF, both sensors’ errors are
considered composed of a bias term and noise, with some
temporal variability given to the bias states. The temporal
variability is used to account for time-varying effects in the
theoretical models described above, such as temperature sen-
sitivity, scale factors, etc. [11]. As a consequence, δfb and δωb

can be expressed as in (II.1):

δfb = δk+ wf

δωb = δd+ wω (II.1)

where δk, δd are the bias drifts of the accelerometers and
gyroscopes sensors, andwf ,wω are the noise components that
affect the two types of INS sensors, respectively. The KF is
only in charge of estimating the drift components of the biases
since their deterministic part is typically estimated offline in
case of accelerometers (one common technique suitable for
low-cost IMU is described in [47]) or is evaluated in real-
time for the gyroscopes by keeping the IMU in static for a
predefined amount of time.

Thus, equation (2) can be rewritten to comprise a
continuous-time expression of a system error model suit-
able for an INS/GPS tight integration. According to [11],
we have:

where

I3×3 is the unit matrix;
Ne
3×3 is the tensor of gravity gradients expressed in

ECEF frame according to [11];
�e
ie,3×3 is the skew-symmetric matrix of the rotation

rate ωe of the Earth expressed in ECEF frame;
Fe3×3 is the skew-symmetric matrix of the

accelerometers forces in ECEF frame;
Re
b,3×3 is direction cosine matrix from the body frame

‘b′ to ECEF frame ‘e’;
α1×3 represents the vector of time constants related to

the Gauss-Markov noises of the triaxial
accelerometers;

β1×3 represents the diagonal matrix of time constants
related to the Gauss-Markov noises of the
triaxial gyroscopes;

wf ,3×1 is the noise component that affects the
accelerometers as stated in (II.1);

wω,3×1 is the noise component that affects the
gyroscopes as stated in (II.1);

wδk,3×1 is the Gauss-Markov process driving noise used
to model the accelerometers bias drift;

wδd,3×1 is the Gauss-Markov process driving noise used
to model the gyroscopes bias drift;

wbr is the noise of the receiver’s clock bias;
wḃr is the noise of the receiver’s clock drift;
F is the whole matrix of the system model;
G is the matrix that relates the states with noise

sources.

For most system models the dynamics matrix F can be
considered time invariant for the time interval over which the



δṙe3×1
δv̇e3×1
δȦe

3×1
δḟb3×1
δω̇b3×1
δḃr
δḋr


=



03×3 I3×3 03×3 03×3 03×3 03×1 03×1
Ne
3×3 −2�e

ie,3×3 −Fe3×3 Re
b,3×3 03×3 03×1 03×1

03×3 03×3 −�e
ie3×3 03×3 Re

b,3×3 03×1 03×1
03×3 03×3 03×3 −diag(α1×3) 03×3 03×1 03×1
03×3 03×3 03×3 03×3 −diag(β1×3) 03×1 03×1
01×3 01×3 01×3 01×3 01×3 0 1
01×3 01×3 01×3 01×3 01×3 0 0


︸ ︷︷ ︸

F

·



δre3×1
δve3×1
δAe

3×1
δfb3×1
δωb3×1
δbr
δdr


︸ ︷︷ ︸

δx

+



03×3 03×3 03×3 03×3 03×1 03×1
Re
b,3×3 03×3 03×3 03×3 03×1 03×1
03×3 Re

b,3×3 03×3 03×3 03×1 03×1
03×3 03×3 I3×3 03×3 03×1 03×1
03×3 03×3 03×3 I3×3 03×1 03×1
01×3 01×3 01×3 01×3 1 0
01×3 01×3 01×3 01×3 0 1


︸ ︷︷ ︸

G

·


wf ,3×1
wω,3×1
wδk,3×1
wδd,3×1
wbr
wḃr


︸ ︷︷ ︸

W

(II.2)
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KF prediction is performed [11]. The benefit is that, under
this assumption, the transition matrix 8k|k−1 of a discrete-
time Kalman filter can be obtained as the solution of the
system model in the absence of forcing functions, given
by (II.3) according to [48]:

8k|k−1 = eF·dt (II.3)

where dt is the time interval over which the prediction is
performed.

The exponential function of (II.3) can be linearized in case
of Extended Kalman Filter (EKF) by using the first order
terms in the Taylor series:

eF·dt = I+ F · dt +
(F · dt)2

2
+O(3) (II.4)

where O(3) denotes terms of order 3. The process noise
matrix of a discrete-time KF, that we indicate with Qk , can
be calculated through numerical integrations. In [48] one
possible solution is described, and this method is typically
adopted for multi sensors fusion applications, as in case of
INS/GPS integration. According to [48], Qk can be written
as:

Qk =

(
8k|k−1GkQcGT

k 8
T
k|k−1 +GkQcGT

k

) dt
2

(II.5)

where Qc is the continuous-time spectral density matrix of
the forcing functions and superscript T is used to specify the
matrix transpose.

APPENDIX II
INS/GPS TIGHTLY COUPLED DESIGN MATRIX
COMPUTATION
As far as the measurements update of the KF is concerned,
the function of (3) can be tailored for the tightly coupled
INS/GPS integration as in (III.1):[
ρk,INS − ρk,GPS
ρ̇k,INS − ρ̇k,GPS

]
︸ ︷︷ ︸

Zk

=

[
Hρ,N ×3 0N ×3 0N ×9 1N ×1 0N ×1
0N ×3 Hρ,N ×3 0N ×3 0N ×1 1N ×1

]
︸ ︷︷ ︸

Hk

·δxk,17×1 + νk (III.1)

where Hρ,N ×3 is the matrix that relates the measurements
to the error states and with the subscript N we indicate the
number of satellites in view at the k-th time instant. Since the
relationship between Zk and δx vectors is non-linear, a first
order Taylor expansion is used in case of EKF and (3) can be
rewritten as:

zk = h(xk )+ νk

≈ h(xk )+
δh(xk )
δxk

δxk + νk (III.2)

Thus, the Jacobian matrix ofHρ,N ×3 can be computed as:

Hρ,N×3 =



x̆ − x1
d1

y̆− y1
d1

z̆− z1
d1

x̆ − x2
d2

y̆− y2
d2

z̆− z2
d2

...
...

...
x̆ − xN
dN

y̆− yN
dN

z̆− zN
dN


(III.3)

where [x̆, y̆, z̆] is the vector of the estimated user’s position
coordinates, [x1···N , y1···N , z1···N ] represents the N satellites
positions in ECEF frame, and d1,...,N is the norm of the geo-
metric distance between the GPS receiver and N -th satellite.
In case of a standalone, single frequency GPS receiver,

the noise vector νk has a Gaussian distribution as stated
in (III.4):

νk ∼ N (0,Rνk ) (III.4)

where the covariance matrix Rνk is a diagonal one, since the
noise related to each satellite can be considered statistically
independent
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