SPECIAL SECTION ON VISUAL SURVEILLANCE AND BIOMETRICS: PRACTICES,

CHALLENGES, AND POSSIBILITIES

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 13, 2017, accepted February 22, 2018, date of publication March 7, 2018, date of current version April 4, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2812880

M*CD: A Robust Change Detection Method for

Intelligent Visual Surveillance

KUNFENG WANG 2, (Member, IEEE), CHAO GOU', AND FEI-YUE WANG '3, (Fellow, IEEE)

I'The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2Innovation Center for Parallel Vision, Qingdao Academy of Intelligent Industries, Qingdao 266000, China
3Research Center for Computational Experiments and Parallel Systems Technology, National University of Defense Technology, Changsha 410073, China

Corresponding author: Kunfeng Wang (kunfeng.wang @ia.ac.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61533019, Grant 71232006,

and Grant 91720000.

ABSTRACT In this paper, we propose a robust change detection method for intelligent visual surveillance.
This method, named M*CD, includes three major steps. First, a sample-based background model that
integrates color and texture cues is built and updated over time. Second, multiple heterogeneous features
(including brightness variation, chromaticity variation, and texture variation) are extracted by comparing the
input frame with the background model, and a multi-view learning strategy is designed to online estimate
the probability distributions for both foreground and background. The three features are approximately
conditionally independent, making multi-view learning feasible. Pixel-wise foreground posteriors are then
estimated with Bayes rule. Finally, the Markov random field (MRF) optimization and heuristic post-
processing techniques are used sequentially to improve accuracy. In particular, a two-layer MRF model is
constructed to represent pixel-based and superpixel-based contextual constraints compactly. Experimental
results on the CDnet dataset indicate that M*CD is robust under complex environments and ranks among the

top methods.

INDEX TERMS Change detection, multimodal background, multi-view learning, conditional independence,

Markov random field.

I. INTRODUCTION

Recently, intelligent visual surveillance has been receiving
increased attention in many scientific fields, including
computer vision, transportation, healthcare, security and
military [1]-[3]. Change detection (also referred to as back-
ground subtraction in some works) is an important early task
in these fields. By virtue of change detection, many other
applications like object tracking [4], recognition [5], and
anomaly identification [6], can be fulfilled.

The basic principle of change detection is to compare
the current frame of a video scene with a reference back-
ground model, in order to identify zones that are signifi-
cantly different [7]. Due to environmental complexity in the
real world, change detection often encounters a variety of
challenges [7]-[10], e.g. dynamic background, camera jit-
ter, intermittent object motion, illumination changes, moving
shadows, noise, camouflage, bad weather, low frame rate,
camera automatic adjustments, etc.

In practice, it is possible that multiple challenges coexist in
a single scene. Unfortunately, very few works are dedicated
to addressing the whole set of challenges with a unified

framework. Most existing methods suffer from one or more
disadvantages:

1) Some methods rely on a single type of feature such
as color [11]-[22], edge [23] or texture [24], [25], ignoring
the complementary information among features of different
types.

2) Some methods [19]-[21], [26]-[28] build a unimodal
background model, with the assumption that the background
is completely static. However, many dynamic background
entities in natural scenes, such as swaying trees and water
ripples, violate this assumption.

3) Some methods [11], [13], [15]-[20], [22]-[27],
[29]-[32] build adaptive models regarding only the back-
ground and recognize foreground pixels purely as outliers.
Some other methods [12], [28], [33] assume a uniform distri-
bution for the foreground. As a result, the actual foreground
properties in video sequences are discarded, so that camou-
flaged objects or object-parts can be missed.

4) Some methods [11], [13], [15], [26], [29], [31], [34],
[39] improve pixel-wise change detection by using heuristic
post-processing techniques such as morphological closing
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FIGURE 1. Flowchart of M*CD. The computation modules of three major steps (corresponding to Sections 111-V) are shown

in blue, green, and orange respectively.

and area filtering. Of course, these techniques can improve
performance. On the other hand, as pointed out by [12], when
dealing with a probabilistic foreground/background assign-
ment probabilistic methods should be used, such as the use
of Markov random fields (MRF). This idea has been verified
by many works [18], [21], [32], [37], [38].

In this paper, we propose a robust change detection method
which includes three major steps. Firstly, a sample-based
multimodal background model that integrates color and
texture is maintained over time. Secondly, multiple heteroge-
neous features (including brightness, chromaticity, and tex-
ture variations) are extracted by comparing the current frame
with the background model, and a multi-view learning strat-
egy is designed to online estimate the conditional probabil-
ity distributions for both foreground and background. The
term ‘“‘multi-view” means multiple complementary feature
sources about a single physical entity. Multi-view learning
exploits the diversity of different feature sources to discover
useful knowledge. Pixel-wise foreground posteriors are then
estimated with Bayes rule. Finally, optimal image labeling
is achieved by combining MRF optimization and heuris-
tic post-processing. In particular, we propose a two-layer
MRF model to represent pixel-based and superpixel-based
contextual constraints compactly. Considering our method
has four important characteristics (i.e., multi-features, multi-
modal background, multi-view learning, and MRF optimiza-
tion), we name it as M 4CD. To the best of our knowledge,
M*CD is the unique method that integrates all four charac-
teristics. With our method, most challenges in the real world
are tackled properly.

This work builds upon our previous work [40]. In that
work, we proposed an effective multi-view learning approach
to foreground detection for traffic surveillance applications,
where multi-features were extracted by comparing the cur-
rent frame and a reference background image. The multi-
view learning strategy in this work is similar to our previous
multi-view learning approach [40]. However, in this work
we build and update a multimodal background model to
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facilitate extracting features reliably under dynamic back-
ground conditions, which commonly exist in the wild. More-
over, we propose a two-layer MRF model to optimize the
foreground/background labeling. Due to these improvements,
we are capable of testing the performance of M*CD on the
CDnet dataset [41], which is collected under complex and
challenging environmental conditions.

The calculation flowchart of M*CD is displayed in Fig. 1,
where the computation modules of three major steps (corre-
sponding to Sections III-V) are shown in blue, green, and
orange respectively. The remainder of this paper is organized
as follows. Section II reviews related works. Section III intro-
duces the multimodal background model that integrates color
and texture cues. Section IV presents feature extraction and
multi-view learning. Section V details the combination of
two-layer MRF optimization and heuristic post-processing
for image labeling. Experimental results are reported in
Section VI, and the conclusion is drawn in Section VII.

Il. RELATED WORKS

The domain of change detection is huge, and a large number
of papers have been published in the past decades. So far,
there is not a widely approved taxonomy for existent methods.
Here, we explore the related works from four aspects.

A. FEATURES

Features used for change detection include color, edge,
texture, motion, etc. The color feature is the most often
used [11]-[22], as they are directly available and rea-
sonably discriminative. However, color is susceptible to
illumination changes, moving shadows and camouflage.
Heikkilda and Pietikdinen [24], Liao et al [25], and
Yang et al. [42] used texture features, which are more
effective in handling inter-frame illumination changes and
shadows. However, the use of texture features can fail to
discriminate untextured objects from untextured background.
Realizing that a single type of feature has insurmountable
limitations, some researchers attempt to integrate multiple
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complementary features, in order for a stronger robustness in
complex environments. For example, Li et al. [29] proposed
a Bayesian framework that incorporates spectral, spatial, and
temporal features to characterize the background appearance.
Under that framework, the background is represented by
the most significant and frequent features (called principal
features) at each pixel. Han and Davis [30] proposed a pixel-
wise background modeling and subtraction algorithm using
multiple features, where color, gradient, and Harr-like fea-
tures are integrated to handle spatiotemporal variations for
each pixel. Recently, St-Charles et al. [31] proposed a change
detection method that relies on spatiotemporal binary features
as well as color information. This method can ignore most
illumination variations and detect camouflaged objects more
easily.

B. BACKGROUND MODEL

Basic background models [19]-[21], [26]-[28] assume
that feature values of each pixel can be modeled with a
unimodal distribution. Those models usually have low com-
plexity, but cannot handle dynamic backgrounds or camera
jitter. In fact, multimodal models are more suitable
for representing background appearance in real-world
scenes. Gaussian mixture models (GMM) [11] and non-
parametric kernel density estimation (KDE) [13] are two
classical multimodal techniques and still enjoy tremen-
dous popularity today [12], [14], [35], [36]. Nevertheless,
Barnich and Van Droogenbroeck [15] argued that there is
no imperative to compute the probability density function
and invented a universal background subtraction method,
called ViBe. This method stores, for each pixel, a set of
values taken in the past at the same location or in the
neighborhood, and then compares this set to the current pixel
value in order to determine whether that pixel belongs to
background. ViBe was proved to have high detection rate
and low complexity. The sample-based background modeling
idea has received considerable concerns [31], [42]. Inspired
by ViBe, in this work we maintain a sample-based multi-
modal background model that integrates color and texture
cues.

C. FOREGROUND MODEL

Since the appearance of foreground regions is unpredictable,
it is difficult to estimate a correct foreground model. Instead,
many methods [11], [13], [15]-[20], [22]-[27], [29]-[32],
[35], [36] build adaptive models regarding only background
and recognize foreground pixels purely as nonmatching
points. Some other methods [12], [28], [33] assume a uni-
form distribution for foreground and use Bayes rule to make
the foreground/background decision. Under these simplifica-
tions, the actual foreground characteristics in video sequences
are not utilized, so that camouflaged objects or back-
ground colored object-parts would be missed. A sophisticated
foreground model is desired, in order to distinguish
between foreground and background in low-contrast images.
In [14] and [37], the foreground was characterized by
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assuming temporal persistence of color and smooth changes
in the place of objects. However, in the cases of low frame
rate, fast motion and overlapping objects, appropriate tempo-
ral information is not available. Benedec and Sziranyi [38]
proposed to estimate the foreground model by using spatial
color information from some pixels in a neighborhood which
certainly belong to foreground. Nevertheless, this method
leads to a tradeoff between neighborhood size and fidelity:
too large a neighborhood reduces the dependence of pixel
colors, and too small a neighborhood may lead to very few
certain foreground pixels being found in the neighborhood
of a pixel. In this paper, we propose a novel foreground
modeling idea that relies on the difference between input
frames and the background model, rather than on foreground
appearance directly.

D. REGULARIZATION

After preliminary foreground/background labels (or proba-
bilities) are assigned to each pixel, regularization is often
required to combine information from neighboring pixels
and ensure that uniform regions are assigned homogeneous
labels. Some methods [11], [13], [15], [26], [29], [31], [34]
use heuristic post-processing techniques like closing oper-
ation and area filtering. Parks and Fels [34] evaluated
those techniques and found they do improve performance.
On the other hand, Haines and Xiang [12], Zhou et al. [18],
Liu et al. [21], Huang et al. [32], Sheikh and Shah [37],
and Benedec and Szirdnyi [38] use MRF models
to incorporate contextual constraints into the foreground/
background decision process and optimize the labeling.
However, the existent MRF models for change detec-
tion are mainly pixel-based or grid-structured, with each
variable/node assigned to one pixel. As a result, the graph
structure is very restricted and important relations cannot be
modeled. In this paper, we propose a two-layer MRF model
to represent pixel-based and superpixel-based constraints
compactly.

E. OUR CONTRIBUTIONS
Contributions of this paper are summarized as follows:

1) Under the premise that color and texture cues are inte-
grated into a sample-based multimodal background model,
multiple heterogeneous features regarding brightness, chro-
maticity, and texture variations are extracted from the video.
These features are robust to dynamic backgrounds and illu-
mination changes.

2) Based on the extracted features, a multi-view learn-
ing strategy is designed to online estimate the conditional
probability distributions for both foreground and background.
These distributions help to better understand foreground and
background in the video sequence.

3) After pixel soft-labeling via pixel-wise estimation
of foreground posteriors, a two-layer MRF model (com-
posed of a pixel layer and a superpixel layer) is con-
structed to exploit contextual constrains and optimize the
foreground/background segmentation at the frame level.
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lll. MULTIMODAL BACKGROUND MODELING

ViBe [15] is a sample-based background subtraction method.
In ViBe, some pixel values observed in the past are stored
for each pixel. Each pixel value is regarded as a sample,
and the union of these samples is regarded as background
model. ViBe has many advantages, including sample-based
background representation and conservative update, memo-
ryless update, and spatial propagation of background sam-
ples. In this work, we absorb these advantages. On the
other hand, ViBe has some disadvantages. First, it uses only
RGB or grayscale values as features, which are less reli-
able to handle illumination changes and camouflage. Second,
it builds only the background model and detects foreground
pixels through hard-thresholding. That way, it fails to balance
the influences of noise and camouflage. Third, it lacks proper
regularization.

In this paper, we extend the ViBe method and try to over-
come its disadvantages. The ideas in Section III are inspired
by ViBe, while the ideas in Sections IV and V are different
from ViBe.

A. INTEGRATION OF COLOR AND TEXTURE CUES

In general, color and texture cues are complementary. Color
reflects the spectral property at a single pixel, whilst texture
reflects the spatial layout in local region. The inte-
gration of them is beneficial. There have been many
works [26]-[31], [33], [38] that use both types of cues to
detect changes.

In this work, the input frames are in the range of [0, 255].
We maintain a multimodal background model using a sample-
based idea inspired by ViBe [15]. A collection of N color
samples and N texture samples are stored for each pixel.
Each sample corresponds to an observed value taken in the
past at the pixel location or in the neighborhood. Formally,
the background model M (x) for a pixel x can be expressed as

Mx) = {Ci1(x), ..., Ci(x), ..., Cn(x);
), ....Tix),..., Tyx)}, (D

where Ci(x) (1 < i < N)is a color sample and Tj(x)
(1 <j < N) is a texture sample. The texture samples and
color samples are independent, which means that C(x) and
T1(x) may be taken from different frames. The number N of
samples is a key parameter, which is set to 50 experimen-
tally (see Section VI-B). Based on the sample-based model,
any complex background distributions can be represented,
without the need to compute probability density functions for
each pixel or to estimate statistical parameters, like mean and
variance.

In this work, each color sample is represented with an RGB
value, but there are many candidates available to represent the
texture sample, e.g., local binary pattern [24], local ternary
pattern (LTP) [25], [39], local binary similarity pattern [31],
and galaxy pattern [42]. Here we use the LTP operator, which
has already proved robust to local image noises and illumina-
tion changes. In addition, the LTP operator is computationally
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FIGURE 2. Neighborhood of a pixel to calculate the local ternary pattern.

efficient and compact to describe each pixel using the relative
grayscales of its neighboring pixels.

As shown in Fig. 2, if we index the neighborhood of a pixel
x by {1, ..., 12}, the LTP response can be computed as

LTP(x) = El s(le, I), ()

where I, is the grayscale value of the central pixel x, I is that
of its neighboring pixel, @ denotes concatenation operator of
binary strings, and s(-) is a piecewise function defined as

01, ifl; > max{(1 + ©)l;, I, + v},
sy, Iy) = 110, if I <min{(1 — ), I, — v}, (@3)
00, otherwise,

where T = 0.1 is a scale factor indicating the comparison
range, and v = 5 is a small tolerance range. According to (3),
(1£17)I, takes effect at bright regions (where I, > 50), whilst
I, + v takes effect at dark regions (where I, < 50). Here,
we distinguish bright regions from dark regions because in
dark regions, thermal/dark noise may change the pixel inten-
sity to some degree, so that an additive operator works better.
But in bright regions, the noise becomes minor relative to
the image intensity, so that a multiplicative operator works
better. It should be noted that each comparison results in
one of three values, and LTP encodes it with two bits (with
“11” undefined). As a result, each texture sample consists
of 24 bits.

B. MODEL INITIALIZATION

In ViBe, the background model was initialized from a sin-
gle frame. As there is no temporal information available
in a single frame, it was assumed that neighboring pixels
share a similar temporal distribution. The pixel models were
populated with samples selected randomly according to a
uniform law in the 3 x 3 grid neighborhood of each pixel.
A neighboring sample can be selected several times or not be
selected at all.

In this work, we modify that model initialization strategy
slightly. Specifically, we generate a median image with tem-
poral median filtering over the first 100 frames of a video, and
then select samples from both the first frame and the median
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image to initialize the background model. Our new strategy
is useful when there are foreground objects in the first frame
and helps speed up background recovery in spite of incorrect
initialization.

C. MODEL UPDATE

As stated earlier, we absorb the advantages of ViBe, including
conservative update, memoryless update, and spatial prop-
agation of background samples. Here, we summarize the
model update strategy of ViBe and explain our consideration
in random subsampling.

In each input frame, a pixel sample can be included
in the background model only if it is classified as back-
ground. The classification criterion will be presented in
Section IV-A. As a result, samples belonging to foreground
never have a chance to be included in the background model.
This policy guarantees a sharp detection of moving objects,
even when the objects are moving slowly.

When updating the background model with a new pixel
sample, instead of systematically removing the oldest sample,
ViBe selects the sample to be discarded randomly according
to a uniform law. The new sample then replaces the selected
sample. This policy, called memoryless update, offers an
exponential decay for the remaining lifespan of the samples.

Without proper processing, a conservative update scheme
can lead to deadlock situations and everlasting ghosts.
In order to handle these issues, the authors of ViBe pro-
posed a spatial propagation policy. Specifically, a new back-
ground sample of a pixel is used to update the models of its
8-connected neighboring pixels as well. This leads to a spatial
diffusion of information regarding the background evolution.
With such a policy, challenges such as dynamic background,
camera jitter, and intermittent object motion, can be handled
properly.

ViBe uses a random subsampling policy. When a pixel
value has been classified as background, a random process
determines whether that value is used to update the back-
ground model. This idea can update the background less fre-
quently and extend the expected lifespan of the background
samples. In all its tests, ViBe used a time subsampling factor
of 16, i.e., a background pixel value has one chance in 16 of
being selected to update the background model. In our imple-
mentation, we set the subsampling factor to 1 for the first
100 frames of each video, in order to update the background
model more rapidly. Then the subsampling factor is set to 10,
until a partial model reinitialization is activated due to the
occurrence of drastic background changes, e.g. light switch
and PTZ camera rotation. It should be noted that there is
no distinction between training frames and test frames. The
background model continues being updated whenever a new
frame arrives.

D. MODEL REINITIALIZATION

In practical scenes, it is possible that background changes
occur drastically, e.g. when the PTZ camera rotates or indoor
lights switch on/off. As a result, we must identify such
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FIGURE 3. Example of background model reinitialization for a benchmark
video “twoPositionPTZCam”. (a) The camera position alternates between
“position 1” and “position 2”. (b) Frame instants of model reinitia-
lization. It is clear that the model reinitialization is activated timely after
the PTZ camera rotates.

situations and update the background model properly. We add
aframe-level analysis component similar to SuBSENSE [31].
It works by analyzing discrepancies between the background
model and the short-term temporal median of input frames.

At each frame instant, the median value of color samples
in the background model is computed and then downscaled.
The result is denoted as Ip;. Meanwhile, the temporal median
of some recent downscaled input frames is computed and
denoted as I7y. Then, we compute the disparities between
Ipc and I7y, including the average of color disparities at all
pixels (disp), the percentage of significantly different pixels
(disp»), and the exponential entropy measuring the spatial dis-
order of significantly different pixels (disp3). If the disparities
are large enough, i.e., satisfying disp; > 10.0, disp> > 50%
and disp; > 2.65, we reinitialize the background model
partially by adding color and texture samples from the 3 x 3
grid neighborhood of each pixel. In addition, we set the
subsampling factor to 1 in the following 100 frames, in order
to adapt to the background changes rapidly.

Fig. 3 illustrates background model reinitialization for
a benchmark video “twoPositionPTZCam” in the CDnet
2014 dataset [41]. Fig. 3(a) shows the camera position alter-
nating between ‘“‘position 1’ and ‘““position 2" aperiodically.
Fig. 3(b) shows the frame instants of model reinitialization
with the proposed method. As shown, the model reinitializa-
tion is activated timely after the PTZ camera rotates.

IV. FEATURE EXTRACTION AND MULTI-VIEW LEARNING
In many existent works, only the background model was
built and foreground pixels were recognized purely as out-
liers. That way, it would be difficult to regulate noise and
camouflage: too small a threshold will recognize noises
falsely as foreground, whilst too large a threshold will
recognize camouflaged objects (or object-parts) falsely as
background.
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FIGURE 4. lllustration of extracting brightness variation and chromaticity variation. (a) An input frame with a pixel marked with red “+”. (b) In the
RGB color space, the observed pixel value is marked with red “+, the background color samples are marked with “A”, and the closest samples

are marked with red “A”. (c) The extended computational color model.

In this section, we propose a new idea. Our contributions
are to extract multiple heterogeneous features by compar-
ing the current frame with the background model, and then
to design a multi-view learning policy to estimate condi-
tional probability distributions regarding both foreground and
background.

A. FEATURE EXTRACTION

By comparing the current frame with the background model,
we extract multiple heterogeneous features, i.e., bright-
ness variation, chromaticity variation, and texture variation.
Inspired by [20], we decompose the color variation between
the current frame and the background model into brightness
variation and chromaticity variation.

1) EXTRACTION OF BRIGHTNESS VARIATION AND
CHROMATICITY VARIATION

In [20], a computational color model was proposed to extract
brightness distortion and chromaticity distortion, but a uni-
modal background was assumed there. Since multimodal
background is common in real-world applications, it is criti-
cal to make a multimodal extension for that model.

In the sample-based background model, there is a set
of N color samples at each pixel. When estimating color
variation between the current pixel observation and the back-
ground model, a new value should be compared with only
some close samples. Since the background samples often
originate from multiple modes, it is reasonable to estimate
color variation with a portion of samples rather than with all
samples. Let #./,5. denote the number of close samples. For
simplicity, we fix #¢jy5. to a small value, i.e., #.p5e = 3.

Given an observed value O, of any pixel x, the #.y5. closest
color samples are picked by sorting the Euclidean distances
in the RGB color space. As shown in Fig. 4, for each pixel
of the current frame, the distance between its observed value

(marked with red “+” in Fig. 4(b)) and each background
sample is computed, and the #.,5. closest samples (marked
with red “A”) are picked. In Fig. 4(c), let us denote by
E, one of the closest color samples. For a pair of Oy and
E,, brightness variation and chromaticity variation can be
computed.

For any pixel x, we first compute &’, a ratio between
the observed pixel’s brightness and the background
sample’s. Let Oy = [Og(x), Og(x), Op(x)] and E, =
[Er(x), Eg(x), Ep(x)] denote the RGB color components.
According to [20], o} can be computed as

o — OR(X)ER(x) + Oc(x)EG(x) + Op(x)E(x)
* [ER) + [Ec(0)1> + [Ep(0))*

“)

In this work, the brightness variation BV is defined as the
signed distance of o’ E from Ej:

BV’ = (af = 1) | PoriginEx

, (&)

where || PoriginEx H denotes the straight-line distance between
the origin Poigin and the point Ej.

As in [20], the chromaticity variation C sz is defined as the
orthogonal distance between the observed pixel value Oy and
the expected chromaticity line PoyiginEx, (6), as shown at the
bottom of this page.

Based on #.yse pairs of O, and E,, we obtain multiple BVXS
and CV}. These intermediate results are combined using a
median operator to get the final brightness variation BV, and
chromaticity variation CV:

BV, = mediangey

close

BV?,

CV, = mediangeg,  C VXS, @)

close

where s € #.y5 indicates that sample s belongs to the
#c1ose closest color samples.

Vs = (0r) — @ ER())? + (06(x) — a'EG(x))° + (0s() — 02 Ep(x))’. ©6)
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FIGURE 5. Examples of feature extraction. (a) Input frames. (b) Brightness variations (added by 128). (c) Chromaticity
variations (multiplied by 2). (d) Texture variations (normalized to [0,1]). Coming from the CDnet dataset, these
videos contain challenges of shadows, dynamic background, and camera jitter.

2) EXTRACTION OF TEXTURE VARIATION

Here, we extract texture variation by computing the Hamming
distances between the current texture pattern and background
texture samples. There has been a collection of N texture
samples at each pixel. As done for extracting color variation,
we consider only some close texture samples rather than all
samples. For any pixel x, let us denote by O7(x) its observed
texture value. We can obtain the #.y5 closest texture samples
by sorting the Hamming distances. The Hamming distance
between Or(x) and any close texture sample E7(x) is denoted
by TVXS . The final texture variation TV, is obtained via a
median operator:

TV, = medianses,,,,, TV, ®)

close
where s € #.,5. indicates that sample s belongs to the #j,se
closest texture samples.

We do not use other features such as gradient and optical
flow. The gradient feature is used in some works [14], [29],
[30], [33]. Gradient belongs to the texture cue, as it reflects
the spatial layout at local locations. Using more features
means more computations and lower efficiency. Since we
have used texture (LTP) variation as feature, we do not use
gradient. Optical flow is used by [32], but it cannot be used
to handle the CDnet dataset. This is because there is a video
category called “Low Framerate”, in which all videos have
low frame rates (less than 1 fps), so that optical flow cannot
be computed. This fact prevents us from using optical flow.

Fig. 5 illustrates the results of feature extraction under
some challenges. As shown, the extracted features are reli-
able under multimodal background conditions. Chromaticity
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variation and texture variation are insensitive to shadows.
In general, background pixels cause low variations in bright-
ness, chromaticity, and texture, whilst foreground pixels
cause widespread (but non-uniform) variations in brightness,
chromaticity, and texture.

Based on the extracted features, we use Criterion 1 to
determine whether to update the background model. The
color and texture values of a given pixel x can be used to
update background if satisfying

abs(BV,) < 15and CV, < 15and TV, < 8, (Criterion 1)

where abs(-) denotes the absolute operator. The logic “and”
makes this criterion rather strict and conservative. It ensures
that new samples must have highly similar appearances to the
existent background samples. However, this criterion is not
directly used to detect foreground, because pixels that don’t
satisfy Criterion 1 can also belong to background. In addition
to Criterion 1, if a pixel is eventually classified as background
(through Section V), it is also regarded as candidate to update
the background model.

B. CONDITIONAL INDEPENDENCE OF FEATURES

According to their definitions, brightness variation and chro-
maticity variation are orthogonal in the computational color
model. Given the class label Class that takes on “FG” (fore-
ground) or “BG” (background), the distribution of chro-
maticity variation is conditionally independent of brightness
variation, and vice versa. In addition, texture variation relies
on the spatial layout of a local neighborhood, rather than on
the observation at a single pixel. Hence, given the class label,
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FIGURE 6. The naive Bayes model.

the distribution of texture variation is conditionally inde-
pendent of brightness variation and chromaticity variation.
The conditional independence assumption can be represented
using a naive Bayes model of Fig. 6. Based on this model,
the joint conditional density can be factorized as

p(BV, CV, TV|Class)
= p(BV|Class)p(CV |Class)p(TV |Class). (9)

C. PROBABILITY DISTRIBUTION ESTIMATION

We have extracted three complementary features, each of
which represents a feature source. On top of that, we propose
a multi-view learning strategy to estimate conditional proba-
bility distributions from real data. In this work, we derive the
foreground distribution and the background distribution from
global image statistics. Since foreground may never appear
in some image regions (e.g., sky), it is impossible to estimate
the foreground probability distribution individually for each
pixel. Instead, we assume that BV, CV, and TV have the same
statistics in the image. This assumption makes it possible to
estimate foreground distributions everywhere.

Due to the conditional independence of features, we have

p(BVIFG) = p(BV|FG, CV > tcy or TV > t7v), (10)

where tcy and try are thresholds of CV and TV, respectively.
In other words, given the class label Class = FG, the distri-
bution of brightness variation does not depend on the specific
values of chromaticity variation and texture variation.

Furthermore, because background pixels have low chro-
maticity variation and low texture variation, if tcy and try
are large enough, the pixels that satisfy CV > tcy or
TV > 17y can be confidently considered to be foreground
pixels. This rule is formulated as

IfCV > tcy or TV > 17y, Then Class = FG. (Rule 1)

Combining (10) and (Rule 1), we immediately get
p(BV|FG) = p(BV|CV > tcy or TV > t71v). (11

The right hand side of (11) leaves out the class label
“FG” and indicates that we can use those pixels satisfying
CV > tcy or TV > 17y to estimate p(BV |[FG).

Similarly, we can estimate the conditional densities of CV
and TV given the class label Class = FG,

p(CV|FG) = p(CV|abs(BV) > tgy or TV > 177),
p(TV|FG) = p(TV]abs(BV) > tgy or CV > 1cy), (12)
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FIGURE 7. Diagram to obtain the plausible background mask. In the
left-bottom image, the feature values of white pixels are accumulated to
estimate the background distribution.

where abs(-) denotes the absolute operator and gy is a thresh-
old of BV . It is critical to set right values for thresholds gy,
Tcv, and t7y. They must be large enough, in order to ensure
the picked pixels are mainly from foreground. Meanwhile,
they should not be too large, otherwise only few pixels are
picked out. After careful evaluation on the CDnet dataset,
we set gy = 50, tcy = 20, and 77y = 8.

On the other hand, for estimating the background distri-
bution, we apply (Rule 2) over the current frame to pick
“confident” foreground pixels, which are then dilated by
using a square structuring element whose width is 3 pixels
to propagate the confidence to spatially neighboring pixels
and generate a ““plausible” foreground mask.

If abs(BV) > gy or CV > tcy or TV > 177,
Then Class = FG. (Rule 2)

All the pixels outside the foreground mask constitute a
“plausible” background mask, the feature values of which
are accumulated to estimate the background distribution.
Fig. 7 illustrates the computing diagram, from which it can
be seen that most foreground pixels have been excluded from
the plausible background mask.

As the system runs, enormous data are accumulated. Fig. 8
shows the histograms of feature values from a benchmark
video “highway”’. These feature values are picked out by our
multi-view learning strategy. From Fig. 8, we find that the
distributions of feature values are rather complex and can-
not be approximated well using parametric models. Hence,
we use nonparametric kernel density estimation. Since bright-
ness variation and chromaticity variation are both distances
in a certain range, their values can be quantized directly to
integers. Texture variation has already an interval of 1.0. As a
result, the kernel density estimators require little memory, and
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FIGURE 8. Frequency histograms of the accumulated feature values from a benchmark video “highway. (a) Brightness variation. (b) Chromaticity
variation. (c) Texture variation. The feature values are picked by multi-view learning. In the charts, blue curves correspond to the background class,
and red curves correspond to the foreground class. As shown, the distributions of feature values are rather complex and cannot be approximated

well using parametric models.

the computational cost won’t grow with the size of data set.
In order to obtain smooth density models, we use Gaussian
kernel. The kernel widths for three features are all fixed to 2.0.
Because the data set is quite large, the kernel widths can be
small.

D. PIXEL SOFT-LABELING WITH BAYES RULE

After probability distribution estimation, we perform pixel
soft-labeling with Bayes rule. Specifically, we compute the
posteriors of background and foreground given the extracted
features. This computation is based on the likelihoods and pri-
ors. Given an extracted feature vector f, = [BV,, CVy, TV,]
at any pixel x in the current frame, the posteriors (i.e, soft-
labels) of belonging to foreground and background are

p(x|FG) x P (FG)

> Classe(FG.BG) P(fr| Class) x P, (Class)’
Py(BGlfy) = 1 — P (FGlfy), (13)

P (FGlfy)

where p(f; | Class) denotes the likelihood and can be computed
based on the naive Bayes model of Fig. 6,

p(fx|Class) = p(BVy|Class)p(CVy|Class)p(TVy|Class).
(14)

It should be noted that the bayes rule of (13) is pixel-based,
as we are estimating foreground and background posteriors
for each pixel. The likelihood of (14) is based on conditional
probability distributions as discussed in Section IV-C, which
are estimated based on the entire frame.

P.(Class) denotes the prior probability of belong-
ing to foreground or background at pixel x. In some
works [13], [30], the prior was ignored and only the likeli-
hoods were used. However, we believe that an elaborate prior
model is essential to higher accuracy. The priors should be
spatially distinct. Regions with frequent object motion, such
as the road, should have higher foreground priors. The priors
should also be time-varying. In recent time, if a pixel position
belongs to foreground more frequently than before, its fore-
ground prior should increase; otherwise, its foreground prior
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should decrease. In light of these, we maintain a dynamic
prior model in terms of labels of previous frames,

Pyi+1(FG) = (1 — 0Py (FG) + pLyy,  (15)
where Py ;+1(FG) and Py ,(FG) are pixel x’s foreground
priors at instants ¢ 4+ 1 and ¢, respectively. Ly ; denotes the
pixel x’s label at instant 7, which equals 1 if the pixel is labeled
as foreground and equals O if labeled as background. p is a
learning rate, fixed to 0.001 empirically.

In the beginning, the foreground prior Py o(FG) is initial-
ized to a proper value, such as 0.1 in this work. In the updating
stage, P, ;(FG) must not be too low, otherwise occasionally
emerging objects will be missed. Formally, we demand

P, ;(FG) = max {0.01, Py (FG)}, (16)
in order to prevent the foreground prior from becoming
too low.

Some examples of pixel soft-labeling are illustrated
in Fig. 9. As shown in Fig. 9(b), the foreground priors
reflect frequencies of foreground emergences at different
locations. From Fig. 9(c), it is clear that true foreground
objects have high posteriors to belong to foreground, whereas
true background regions have low posteriors to belong to
foreground.

V. IMAGE LABELING WITH MRF OPTIMIZATION

Pixel soft-labeling is conducted for each pixel separately,
regardless of contextual constraints among neighboring pix-
els. However, pixel-wise labeling is susceptible to local
ambiguity and uncertainty. Hence we use Markov random
fields (MRF). In most existing works, a grid-structured MRF
is constructed, with a variable/node for each pixel, connected
using a four-way spatial neighborhood [12], [18], [21], [32],
[37], [38]. Since grid-structured models have limited repre-
sentation ability, we construct a novel two-layer MRF model
to represent pixel-based and superpixel-based constraints
compactly.
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FIGURE 9. Examples of image labeling. (a) Input frames. (b) Prior probabilities of pixels to belong to foreground. (c) Posterior probabilities of pixels to
belong to foreground. The higher the intensity, the more likely the pixel belongs to foreground. (d) Labeling results after MRF optimization. (e) Labeling
results after heuristic post-processing. (f) Ground truth. The videos come from the CDnet dataset.
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FIGURE 10. Images segmented with SLIC.

A. MRF OPTIMIZATION

We use the SLIC algorithm [45] to generate superpixels for
each input frame, which offers good performance with regard
to the tradeoff between boundary adherence and regularity.
Fig. 10 shows some images segmented using SLIC.

It seems appealing to use only superpixels to build the
MRF model, because the number of nodes and edges can
be decreased greatly, and the computational cost is thus
reduced. However, two considerations prevent us from doing
that. First, the superpixel paradigm usually leads to a coarse
segmentation, especially at blurring object boundaries. As a
result, accurate object contours are difficult to acquire.
Second, under the challenge of intermittent object motion,
we expect the sample-based background model to update
at the pixel level and the ghosts to disappear gradually.
Superpixel on its own cannot fulfill these requirements,
and pixel-based models are also needed. In light of that,
we build a two-layer MRF model that integrates pixel-based
and superpixel-based constraints. As shown in Fig. 11, our
MRF model consists of a pixel layer and a superpixel layer.
The explanations of nodes and edges are given in the annota-
tion of Fig. 11.

We are solving a binary labeling problem, where each pixel
belongs to foreground or background. Let X be the set of
pixels and SX be the set of superpixels in the current frame,
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(2) (b)

FIGURE 11. Two-layer MRF model. (a) In the pixel layer, each node is
assigned to one pixel. (b) In the superpixel layer, each node is assigned to
a set of pixels forming the superpixel. Solid dots of the same color

in (a) and (b) imply the corresponding relation between pixels and the
superpixel. While the intra-layer edges are shown in (a) and (b), there are
inter-layer edges (not shown here) between each superpixel and its
component pixels.

and L be the set of labels. The labels are what we want to
estimate for each pixel and each superpixel: 1 for foreground
and O for background. A labeling [ assigns a label [, € L
to each pixel x € X and a label /s, € L to each superpixel
sx € SX. Under the MRF framework, the labels should vary
slowly almost everywhere but rapidly at some places such as
pixels along object boundaries. The quality of a labeling over
the whole image is determined by an energy function,

E)=Y DU+ Y. Wkl

xeX (x,y)ENB4

+ Y CU)+ Y. Ul ly)
sxeSX (sx,sy)ENBsp
+ Y Ve ). (17)

xeX,sxeSX,xesx

D(l,) is the data term in the pixel layer, which measures
the cost of assigning label I, to pixel x. NBy is the set of
undirected edges in the pixel layer (see Fig. 11(a)).
W(lx, ly) is the regularization term, which measures the cost
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of assigning labels /; and /, to a pair of neighboring pixels
(x,¥). C(ls) is the data term in the superpixel layer, which
measures the cost of assigning label [, to superpixel sx.
NBgp is the set of undirected edges in the superpixel layer
(see Fig. 11(b)). U(lyy, lgy) is the regularization term, which
measures the cost of assigning labels [, and [, to a pair of
neighboring superpixels (sx, sy). Finally, V (I, I, ) exerts the
compatibility constraint between the label of a superpixel sx
and that of its component pixel x. A labeling that minimizes
the total energy function (17) corresponds to the maximum a
posterior estimation of MRF.

In the pixel layer, the data term D(l,) is given by the
pixel-wise posterior probabilities of a pixel belonging to the
foreground and to the background:

D) = {—long(FG[fx), it =1, (18)
—log P.(BGlfy), ifl, =0,

where the pixel-wise posteriors have been computed
with (13). This term enforces a per-pixel constraint and
encourages the labeling to be consistent with per-pixel
observation.

The regularization term W (ly, [,) encourages spatial con-
sistency in pixel labels. A cost is paid if two neighboring
pixels have different labels. We define the term W as

ifl, =1,
if Iy # 1,
where ¢ is a weight coefficient. Z(Oy, Oy) is a decreasing
function that is controlled by the color difference between
pixels x and y. In general, the discontinuity of segmentation

should coincide with the image discontinuity. We define the
function Z as

Z(Oy, 0y) = ex <_M)
x, Uy) = exp ) (20)

Wl 1) = !0’ (19)

¢ % Z(Ox, Oy),

o

where o is a parameter which is fixed to 400 empirically, and
|0« — Oy|| represents the color difference between neighbor-
ing pixels x and y.

In the superpixel layer, the data term C(lyy) is given by the
pixel-wise posterior probabilities of all the component pixels:

Z —log Py (EGlfy), ifly =1,
—_ XESX
s > —log P«(BGfy). if Iy =0, D
XESX
where x € sx means the pixel x is a component of the
superpixel sx. This term uses per-pixel observations to pose
constraint on the superpixel labeling.

The regularization term U (I, Isy) encourages spatial con-
sistency in the superpixel labeling. A cost is paid when two
neighboring superpixels have different labels. We define the
term U as

0, ifly =Ly,
&, ifly # Iy,

where £ is a weight coefficient.

U (lsx, lxy) = (22)
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Finally, the compatibility term V (I, l;x) exists only at the
inter-layer edges, i.e., there is a corresponding relation x € sx.
It is expected that the labels of two layers are consistent,
so a cost is paid when [, # [;,. We define the term V
as

0, ifl, =,
Vi, Iy) = P =l (23)
Wa if lx 7& ls;n

where V¥ is another weight coefficient.

The optimal labeling is found with loopy belief prop-
agation. Although belief propagation is exact only when
the graph structure has no loop, in practice it has been
proved to be an effective approximate inference technique
for general graphical models [43], [44]. In the implemen-
tation, we declare convergence when the relative change
of messages is less than a threshold 10™#, thereby obtain-
ing the labeling result of the pixel layer. Some exam-
ples of image labeling with MRF optimization are shown
in Fig. 9(d).

B. HEURISTIC POST-PROCESSING

Finally, we use heuristic post-processing techniques to
improve the change detection result. We first perform area
filtering. If a foreground connected region has fewer than
Tarea pixels, it is regarded as detection noise and revised
to background. Then, we perform holes filling. If a hole
surrounded by foreground pixels has fewer than 74, pixels,
it is revised to foreground. The value of 74, relies on the
video resolution. It is set to 25 if the video resolution is less
than 2*320%240, and set to 50 otherwise. Some examples
of image labeling after heuristic post-processing are shown
in Fig. 9(e).

VI. EXPERIMENTAL RESULTS

A. TEST DATASET AND EVALUATION METRICS

To evaluate M*CD, we conduct experiments on the CDnet
2014 dataset [9], which is available at change detection.
net [41]. This dataset consists of 53 video sequences
in 11 video categories. As a large-scale dataset composed of
real videos, it supplies accurate ground-truth labels and pro-
vides a balanced coverage of real-world challenges. In addi-
tion, it maintains and updates a rank list of the most accurate
change detection algorithms over the years, facilitating algo-
rithm comparison.

The organizers of CDnet proposed to evaluate the ability
of a change detection method with seven different metrics:
Recall, Specificity, False Positive Rate (FPR), False Negative
Rate (FNR), Percentage of Wrong Classifications (PWC),
F-measure, and Precision. For the Shadow category, they
also provided an average FPR that is confined to hard-
shadow areas (FPR-S) [9], [41]. Here, we use these metrics
to evaluate M*CD. We would like to mention that all our
change detection results can be downloaded online via the
CDnet website, where our method appears under the name
“M4CD Version 2.0”.
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FIGURE 12. Curves of recall, precision, and F-measure related to the four critical parameters. The
experiments are conducted on a challenging video “traffic”.

B. DETERMINATION OF PARAMETERS

All parameters should be determined experimentally. Due to
space limitation, we discuss four of them here: the number N
of samples in the background model [see (1)] and the weight
coefficients ¢, &, and v in the MRF model [see (19), (22),
and (23)]. The other important parameters are discussed in
a supplementary file. We use a benchmark video “traffic”
from the Camera Jitter category to pick these parameters.
This video is rather challenging due to the mixture of camera
jitter, shadows, and motion blur. The picked parameter values
are fixed when processing other videos in the CDnet dataset.

To select a proper value for N we conduct experiments
with N ranging from 10 to 80, estimate per-pixel fore-
ground posteriors and quantify their binary rounding results.
Fig. 12(a) shows the curves of recall, precision, and
F-measure related to N. For this scene, it is impossible to find
an N value that optimizes all the metrics simultaneously. The
precision and F-measure metrics increase monotonously as
N rises, but they tend to saturate for values higher than 50.
On the other hand, larger N values induce a lower recall and
a greater computational cost. Hence we set N = 50.

Then, we fix N to 50 and select a proper value for ¢.
We consider only the pixel layer in the MRF model, i.e.,
terms D and W in (17). We conduct experiments with
¢ ranging from 0O to 100, thereby quantifying the pixel-based
regularization result. Fig. 12(b) shows the curves of recall,
precision, and F-measure related to ¢. As shown, pixel-based
regularization can improve the accuracy. But most of the
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improvements occur when ¢ rises from 0 to 30. Considering
that larger ¢ would cause a risk of overfitting, we set ¢ = 30.

Furthermore, we fix N to 50 and select a proper value for &.
Here we consider only the superpixel layer in the MRF model,
i.e., terms C and U in (17). We conduct experiments with
& ranging from 0 to 400, and quantify the superpixel-based
regularization result. Fig. 12(c) shows the curves of recall,
precision, and F-measure related to £. Superpixel-based reg-
ularization can improve the accuracy. But most improvements
occur when £ rises from O to 150. Considering that larger &
may cause a risk of overfitting, we set £ = 150.

Finally, we fix other parameters and select a proper value
for . Here we consider the complete two-layer MRF model.
We change ¢ from O to 10, thereby quantifying the labeling
result of the pixel layer. Fig. 12(d) shows the curves of recall,
precision, and F-measure related to y. As shown, the compat-
ibility constraint between the pixel layer and the superpixel
layer benefits to higher accuracy. But there is a tradeoff at
this place, as illustrated in Fig. 13. The smaller v, the weaker
compatibility constraint, and the more segmentation noises.
On the other hand, the larger i, the stronger compatibility
constraint, and the more object boundary artifacts. We find
Y = 5 is a proper choice because it results in good balance
between noise removal and boundary preservation.

C. EVALUATION RESULTS ON CDnet

The entire evaluation results of M*CD on the CDnet dataset
are shown in Table 1. It can be seen that M*CD performs very
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TABLE 1. Evaluation results of M*CD for each category of the CDnet dataset.

Video category Recall Specificity FPR FNR PWC F-Measure Precision FPR-S
Baseline 0.9540 0.9976 0.0024 0.0460 0.3927 0.9322 0.9123 -
Dynam. Backg. 0.8518 0.9930 0.0070 0.1482 0.8043 0.6857 0.6841 -
Camera Jitter 0.8159 0.9921 0.0079 0.1841 1.4478 0.8231 0.8403 -
Interm. Obj. Motion 0.7153 0.9909 0.0091 0.2847 3.1601 0.6939 0.8055 -

Shadow 0.9324 0.9922 0.0078 0.0676 1.0796 0.8969 0.8707 0.5749
Thermal 0.6432 0.9981 0.0019 0.3568 2.0839 0.7448 0.9517 -
Bad Weather 0.7391 0.9990 0.0010 0.2609 0.5037 0.8136 0.9067 -
Low Framerate 0.7911 0.9949 0.0051 0.2089 0.8394 0.6275 0.6315 -
Night Videos 0.6525 0.9696 0.0304 0.3475 4.6115 0.4946 0.4891 -
PTZ 0.8538 0.8984 0.1016 0.1462 10.2247 0.2322 0.1791 -
Turbulence 0.7248 0.9997 0.0003 0.2752 0.1639 0.7978 0.8941 -
Overall 0.7885 0.9841 0.0159 0.2115 2.3011 0.7038 0.7423 -
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FIGURE 13. lllustration of how the compatibility constraint influences the labeling result. (a) Input frames. (b) Ground truth. (c) Labeling results when

¥ = 0. There is no compatibility constraint, which is equivalent to the conventional pixel-layer MRF and leads to many segmentation noises. (d) Labeling
results when y = 2. The compatibility constraint is too weak, still leading to many segmentation noises. (e) Labeling results when ¢ = 5. The
compatibility constraint is proper. (f) Labeling results when ¥ = 10. The compatibility constraint is too strong, leading to object boundary artifacts.

well for Baseline and Shadow categories, with F-measures
at the level of 0.9. It performs well for Camera Jitter,
Bad Weather, and Turbulence categories, with F-measures at
the level of 0.8. Nevertheless, PTZ and Night Videos cate-
gories pose heavy challenges to M*CD, with F-measures less
than 0.5.

For the Baseline category, M*CD is affected by a video
named “PETS2006”, where a person keeps motionless in
a subway station for a while, causing a number of false
negatives. For the Dynamic Background category, M*CD is
robust to background motion within a certain range. However,
drastic background motion can cause numerous false posi-
tives, like in videos ‘““fountainQ1”’ and ‘“fall’’. For the Camera
Jitter category, M*CD performs satisfactorily in general,
except on the video “boulevard”, in which there is a mixture
of severe challenges of camera jitter, camouflage, and camera
automatic adjustments. Since M*CD is a bottom-up method
and exploits no object-level cues, Intermittent Object Motion
poses a heavy challenge and cause many false classifications.
For the Shadow category, M*CD succeeds in eliminating soft
shadows, but is not good at handling hard shadows, with
FPR-S as high as 0.5749. For Thermal and Turbulence
categories, even though the video images are in black
and white (without chromaticity information available),
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M*CD achieves acceptable performance. It is interesting that
M*CD performs well in Bad Weather conditions, achiev-
ing an F-measure 0.8136. Since no temporal information
is relied on by M 4CD, Low Framerate itself does not
become a challenge to this method. However, a video called
“port_0_17fps” poses a great challenge due to the mixture
of global illumination changes and dynamic background.
In Night Videos, M*CD suffers from vehicle headlight reflec-
tions on the road and camouflage. PTZ camera poses the
greatest challenge to M*CD, especially when the camera
rotates continuously.

According to statistics at the CDnet website, for the
Turbulence category, M 4CD ranks second in the state-of-the-
art; for Camera Jitter and Thermal categories, M*CD ranks
third; for theShadow category, M*CD ranks fourth; and for
the Intermittent Object Motion category, M*CD ranks fifth.
Table 2 shows the comparison of M*CD with the state-of-
the-art in terms of overall metrics. The method IDs corre-
spond to methods available at the CDnet website. Note that
TUTIS-5 [46] is not an independent method, but a combi-
nation of outputs of 5 top-performing methods. Hence, it is
reasonable to neglect it during algorithm ranking. Among the
state-of-the-art, only PAWCS [47], SuBSENSE [31], Shared-
Model [48], and FTSG [49] outperform M*CD in terms of
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FIGURE 14. Typical outputs of M4CD and ViBe. (a) highway #1514. (b) overpass #2452. (c) badminton #1018. (d) backdoor #1862. (e) corridor #4685.
(f) skating #1956. (g) turnpike_0_5fps #1122. (h) intermittentPan #1246. M*CD results in more accurate foreground/background segmentation
than ViBe. Note that we use a color format which adopts the following specifications: true-positive pixels in white, true-negative pixels in black,

false-positive pixels in red, and false-negative pixels in green.

TABLE 2. Comparison of M?CD with the state-of-the-art in terms of overall metrics.

Ayerage Average | Average Average Average Average Average Average Average
Method ID ranking across rankingg Recaﬁ Speciﬁcgity F PRg F NRg PWCg F —Measire Precisi%)n
categories

TUTIS-5 [46] 2.36 2.71 0.7849 0.9948 0.0052 0.2151 1.1986 0.7717 0.8087
PAWCS [47] 6.27 4.71 0.7718 0.9949 0.0051 0.2282 1.1992 0.7403 0.7857
SuBSENSE [31] 7.55 7.57 0.8124 0.9904 0.0096 0.1876 1.6780 0.7408 0.7509
SharedModel [48] 8.55 7.00 0.8098 0.9912 0.0088 0.1902 1.4996 0.7474 0.7503
FTSG [49] 8.73 9.14 0.7657 0.9922 0.0078 0.2343 1.3763 0.7283 0.7696
M*CD Version 2.0 9.27 12.29 0.7885 0.9841 0.0159 0.2115 2.3011 0.7038 0.7423
SaliencySubsense 9.36 10.43 0.7714 0.9914 0.0086 0.2286 1.8969 0.7176 0.7628
* 9.73 10.71 0.7416 0.9923 0.0077 0.2584 1.8902 0.7129 0.7754
CwisarDRP 10.27 10.57 0.7062 0.9947 0.0053 0.2938 1.7197 0.7095 0.7880

* Superpixel Strengthen Background Subtraction.

Note: the best score for each metric is in bold. Because IUTIS-5 is not an independent method, but a combination of 5 top-performing methods, its scores are

not in bold.

average ranking across categories. But for specific video
categories, this is not certainly the case. For instance, M*CD
surpasses PAWCS, SharedModel, and FTSG on the Turbu-
lence category, surpasses PAWCS, SuBSENSE, and Shared-
Model on the Thermal category, and surpasses SUBSENSE,
SharedModel, and FTSG on the Camera Jitter and Shadow
categories.

D. EVALUATING EACH PART OF M*CD

Figs. 9 and 13 have illustrated some intermediate results of
M*CD. Here, we use a benchmark video “traffic” to quantify
the contribution of each part of M*CD. Table 3 displays some
metrics corresponding to each part. Comparing the metrics
with per-pixel likelihoods and with per-pixel posteriors, there
is a large rise in accuracy if the posteriors are used instead
of the likelihoods. Based on the per-pixel posteriors, another
large rise of accuracy is gained if the two-layer MRF model
is used instead of the conventional pixel-layer MRF model.
Heuristic post-processing continues improving the accuracy.
The three parts of image labeling (Sections IV-D and V) are
all important.

15518

E. COMPARISON WITH ViBe

Since M*CD is inspired by ViBe, we want to compare both
methods on the CDnet dataset. Unfortunately, the evalua-
tion results of ViBe are not available at the CDnet website,
making it difficult to compare them quantitatively. Here,
we use some outputs of M*CD and ViBe to verify the
advantages of M*CD. The inventors of ViBe have publicized
their program at their project website [50]. We run that pro-
gram directly. Fig. 14 shows some typical outputs of M*CD
and ViBe. It is clear that M*CD results in more accurate fore-
ground/background segmentation than ViBe. Under a variety
of environments, the outputs of M*CD are much closer to the
ground truth. Hence, M*CD outperforms ViBe significantly
in terms of accuracy.

F. COMPUTATIONAL TIME

M*CD is implemented on a desktop computer with 2.79GHz
Intel Core i7 CPU and 24GB memory. The main program
is implemented in MATLAB, with some time-consuming
functions (including LTP calculation, feature extraction, and
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TABLE 3. Metrics of each part of image labeling on “traffic”.

Part F-measure PWC Precision
With per-pixel likelihoods 0.6723 5.8160 0.5178
With per-pixel posteriors 0.8165 2.5301 0.7443
With pixel-layer MRF 0.8409 2.1610 0.7763
With two-layer MRF 0.8489 2.0500 0.7842
After post-processing 0.8517 2.0070 0.7888

TABLE 4. Average time of processing one frame.

Average processing time (seconds)
Module 320%240 720%480
resolution resolution
Multimodal background 08 37
modeling (Sec. IIT) ) i
Feature extraction and 18 8.1
multi-view learning (Sec. IV) ) )
Image labeling with MRF 22 9.0
optimization (Sec. V) ) )
Total 4.8 20.8

MREF optimization) implemented using C MEX. The com-
putational time is monitored by “tic”” and *“‘toc” functions.
Table 4 shows the average time of processing one frame
with two different resolutions 320x240 and 720x480. The
cost details of three modules corresponding to Sections III-V
are also given. It takes seconds to process one frame, so cur-
rently the system cannot work in real-time. In the future,
we will use parallel computing platforms to speed up the
computation.

VII. CONCLUSION

In this paper, we propose a robust change detection method
called M*CD. This method is inspired by ViBe but has some
new characteristics. Both the color and texture cues are inte-
grated into the sample-based background model. Multiple
heterogeneous features including brightness, chromaticity,
and texture variations are extracted from the video sequence.
A multi-view learning strategy is designed to online esti-
mate the conditional probability distributions regarding both
foreground and background. This helps to better understand
foreground and background in the video sequence. In addi-
tion, a two-layer MRF model is presented to optimize the
image labeling. Extensive experiments have been conducted
on the CDnet dataset, which prove that M 4CD is robust
under complex environments and ranks among the top meth-
ods. Significantly, it outperforms ViBe in terms of detection
accuracy.
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