IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 21, 2017, accepted March 4, 2018, date of publication March 7, 2018, date of current version April 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2812925

Scaling up the Lab: An Adaptable and Scalable
Architecture for Embedded Systems Remote Labs

IGNACIO ANGULO"?, LUIS RODRIGUEZ-GIL" "2, AND
JAVIER GARCIA-ZUBIA!, (Senior Member, IEEE)

!Faculty of Engineering, University of Deusto, 48007 Bilbao, Spain
2LabsLand, 48014 Bilbao, Spain

Corresponding author: Ignacio Angulo (ignacio.angulo@deusto.es)

The work of L. Rodriguez-Gil was supported by the Department of Education, Language Policy, and Culture of the Basque Government
though a Predoctoral Scholarship. This paper has supplementary downloadable material available at http://ieeexplore.ieee.org, provided by
the authors, including a screencast that briefly shows the lab implemented under the proposed architecture.

ABSTRACT Upgraded embedded systems and technologies are continuously appearing. Remote
laboratories are an ever more promising technology that educators can use to train their students. However,
they are still costly to develop and maintain. Most software and hardware architectures are tailored to specific
hardware boards, and little can be reused when a laboratory for a different board is to be created. This
paper proposes a novel remote laboratory architecture. It is specifically designed to support a wide range
of embedded systems, so that laboratories for new or upgraded ones can be implemented and deployed
easily and efficiently. In order to propose an appropriate architecture, some of the most significant deployed
remote laboratories for embedded systems education are first analyzed, and the key design requirements are
determined. In order to evaluate it, a new microcontroller-oriented remote laboratory that implements it has
been created. Results suggest that the proposed architecture does indeed meet the requirements and that it is
a step towards more cost-efficient and reusable remote laboratory architectures.

INDEX TERMS Remote laboratory, embedded system, experimentation, online education.

I. INTRODUCTION

Today, most of the current remote labs for embedded sys-
tems have three significant constraints. Firstly, adapting the
specific embedded system to new devices or models is not
straightforward. This difficulty increases costs, limits the
potential of the laboratories, and makes it more expensive to
adapt to technological advancements. Secondly, they often do
not allow the user to experience the full design-and-test work-
flow. This workflow should not only include programming
and testing, but also debugging, which is a feature that is often
lacking. Thirdly, this workflow is often not integrated into
a single web-based platform, negatively affecting the user
experience. Therefore, the main motivation and research chal-
lenge of this work is to design and evaluate a novel laboratory
architecture that can overcome these three constraints.

The embedded systems field is always changing. New
boards and upgraded devices are constantly being release.
This demands from developers and educators continuous
training in emerging technologies. Due to the wide catalog of
vendors and device families, the election of the appropriate
device is a very important step in the embedded systems

design cycle. Educators have the responsibility to train stu-
dents in skills for the most widely used technologies in the
industry. For this, they need to train themselves in industrial
informatics and to continuously update the labs and equip-
ment they use during their courses. This requires a signifi-
cant monetary and time investment that is often difficult to
amortize.

Since 1996 [1], remote experimentation is part of Technol-
ogy Enhanced Learning (TEL). This field can benefit from
the emergence of various technologies that allow students to
access lab resources remotely, including virtual and remote
labs [2]. Remote experimentation provides users (e.g., stu-
dents, teachers, researchers) with the means to experiment in
a similar way as in a hands-on lab. Remote labs are suitable
for teaching [3]-[6] and they can be considered a new trend in
education [7]. Furthermore, a company can promote their new
products through a remote lab. Instead of shipping samples
and managing pre-stocking, they can offer them remotely to
prospective buyers.

For all these reasons, there are many possibilities for
remote experimentation in the field of embedded systems.

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission.

16887

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2414-8646
https://orcid.org/0000-0003-3611-1418

IEEE Access

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

There are a high number of deployed remote labs for embed-
ded system devices [8], [9].

FIGURE 1. Archimedes remote lab at https://labsland.com.

Generally, remote labs provide both input and output
peripherals. The inputs (e.g., switches) can be controlled
through the lab client’s GUI. The outputs can be observed
through a live webcam. Fig.1 shows an example of such
a lab. Users can see several liquid-filled tubes. They can
calculate whether certain objects would sink or float if they
were dropped into the liquid. Then, they can drop them for
real and see whether their calculations were correct. They can
also monitor several variables such as ball weight or liquid
height.

In the case of an embedded system, users would often
write a program or a logic definition (e.g., in C, Python,
Assembler, or VHDL). They would then upload that program
into the remote device (e.g., microcontroller, DSP, FPGA).
Being able to program the device could in fact be considered
as the main functionality of conventional embedded systems
remote laboratories. Nonetheless, in further sections, this and
other important requirements will be described and analyzed
in detail.

This work presents a novel remote laboratory architecture
for embedded systems. It has three main goals. The first
is to facilitate the implementation, deployment and upgrad-
ing of remote laboratories for different embedded platforms.
The second is to assist remote laboratory developers in pro-
viding access to new embedded devices, through several
common and reusable architectural components. The third
is to ensure that students can acquire the skills in embedded
systems development that they require.

In order to evaluate the proposed architecture, this work
presents a new remote laboratory that implements it. It pro-
vides access to different ARM Cortex M microcontrollers.
It has been designed to leverage all the advantages that the

16888

architecture offers. It is thus highly scalable, and it offers
students not only conventional board programming features,
but also debugging ones. It is described in detail. The require-
ments for the architecture are compared against that imple-
mentation, and user studies are conducted to evaluate its
effectiveness.

The remainder of this paper organized in five sections.
Section II describes the main requirements and characteristics
of any remote lab for embedded systems, and analyzes five
advanced existing remote laboratories. Section III describes
the novel proposed architecture. Section IV describes the
ARM microcontroller remote laboratory that implements
the proposed architecture. Section V reports the results of
the user study using the remote laboratory in the classroom.
Section VI outlines conclusions and future work.

Il. ANALYSIS OF DEPLOYED SOLUTIONS

Remote experimentation in embedded systems has been con-
sidered to be one of the major shifts in education [7]. Previous
research works have determined the main requirements for
interdisciplinary remote laboratories [10], [11]. Nonetheless,
an additional, specific analysis should be done according to
the particularities of embedded systems.

A. EDUCATIONAL REQUIREMENTS

The conventional development cycle of an embedded system
design consists of writing the code, uploading it to a hard-
ware platform, and testing and debugging it. Throughout this
process the user requires an IDE (Integrated Development
Environment) and a testing board.

Embedded systems require a codesign: developers must
deal with both hardware and software components. Most
embedded systems courses are based on development kits that
integrate hardware peripherals on the system itself. There-
fore, students can learn about both the hardware and soft-
ware related tasks without needing to physically integrate the
peripherals themselves. Remote laboratories can provide a
similar experience, integrating a full set of peripherals [12].
Fig. 2 depicts the classical waterfall design system [13].
Firstly, the experiment requirements are analyzed. Secondly,
the system is designed in terms of block diagrams or data
flows. Then, students recursively repeat a cycle: coding the
design, compiling or synthesizing it, and testing and debug-
ging it. Eventually, this cycle leads to a validated system, and
it is directly programmed into the final device [14].

In a “hands-on” laboratory the appropriate vendor-specific
IDE provides all the required tools to properly progress
through the design cycle. Similarly, remote laboratories
should include the tools to offer students a similar experience.
Nowadays, most embedded systems remote labs, however,
are limited at that respect. They allow users to interact with
the hardware through a live-stream and virtualized controls.
However, they do not offer an IDE: they only offer an inter-
face to upload an already-compiled file. This binary file
needs to have been compiled or synthesized locally by the
laboratory users. For this, they require their own IDE. This is

VOLUME 6, 2018

IEEE Access

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

/\

* Reguirements

. Code

* Functional
* Detailed

* Resources
* Constraints

‘.‘._

* Compile

| m |

. Program

* Debug ¢ launch

= Deployment

N

FIGURE 2. Embedded systems education design cycle stages and the tasks that require most time.

often very inconvenient for them, because such IDEs tend
to be platform-dependent, not web-based, and often require
administrator privileges to deploy.

The results of the annual embedded development survey
conducted by UBM in 2017 [15] among more than two
thousand embedded developers, remark that the most time-
consuming stage in an embedded system development cycle
consists in the debugging task. This is done during the testing
stage, consuming a 29% of the full embedded design time.

The specific software such as IDEs and debugging tools
are sometimes expensive and are often platform-specific.
If alternatives are not part of the remote laboratory, users
need a computer with the software installed. This is often
significantly inconvenient, especially for students.

A successful remote laboratory for embedded systems
should thus include the tools that are necessary to progress
through all the stages in the embedded design development
cycle. It should provide, by itself, all the required hardware
and software tools.

B. TECHNICAL REQUIREMENTS

When including remote laboratory based instruction in regu-
lar courses, some technical requirements must be considered.
Otherwise, the remote lab could be unsuccessful [10]:

1) Access to the laboratory should comply with the secu-
rity policies of the institutional IT services without
requiring specific configurations (e.g., open ports, fire-
walls, deployments of specific software). This pro-
motes deployability.

2) Universality. This implies that the remote laboratory
may be accessed from any device (e.g., laptop, tablet,
smartphone) with any operating system in any web
browser.

3) Usually, the remote laboratory is integrated in an edu-
cational platform. Examples are Moodle and Google
classroom. Integrability is therefore a fundamental fea-
ture for a remote laboratory.

Therefore, if a company were to implement a remote lab-

oratory to promote its new SoC (System on a Chip), this

VOLUME 6, 2018

platform should be accessible from any device, without
restrictions. It should support the full user experience. Other-
wise, the remote lab may be unsuccessful and may contribute
to a poor adoption of the proposed technology.

When a user is accessing, programming and testing a
programmable device in a remote laboratory, other users
cannot access it. They must wait in a queue until the remote
experiment is released. Scalability for multiple users can be
achieved by adding multiple experimentation instances.

The short life cycle of embedded device products requires
professionals and educators to continuously adopt new device
families and technologies. Therefore, the only way to ensure
the sustainability of a remote laboratory is to facilitate this
upgrading. Adaptability must be taken into account in the
design stage of the remote laboratory to avoid having to redo
the design of the remote laboratory from scratch. Therefore,
the cost of annexing a new instance or adapting an existing
one must be taken into account.

C. MAIN EMBEDDED SYSTEMS REMOTE LABS

In [9] more than 20 remote laboratories that are deployed
to conduct experimentation with different embedded tech-
nologies are analyzed in depth, attending to the previous
requirements.

Some remote laboratories for other fields are designed to
allow concurrent access to the device. Nonetheless, for this
type of remote laboratory, it is needed to physically program
the device with the logic the user provides. Therefore, a single
instance can only serve a single user. The only way to scale
the laboratory is replicating the number of experimentation
instances.

Most embedded systems laboratories [16]-[27] are
designed under a centralized architecture. The laboratory
server directly controls the experimentation platform through
a standard protocol (e.g., USB, UART). This limits the num-
ber of possible experimentation instances and greatly hinders
the scalability of the whole system. Other more advanced
systems have been designed with a distributed architecture.
In those, the main laboratory server can control several

16889

IEEE Access

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

experiment servers. These experiment servers are connected
to the local area network and handle the hardware platform
over which the experimentation is conducted. This approach
can provide access to big domains of students [28]-[35].

Throughout the remainder of this section, the five most rep-
resentative embedded systems remote laboratories are going
to be presented. This analysis describes the fulfillment of the
embedded systems features that were previously observed for
remote laboratories.

1) REMOTE LABORATORY FOR FPGA FROM THE
UNIVERSITY OF ERLANGEN-NUREMBERG

This laboratory [28] was developed as the main tool to con-
duct an online course on FPGA design as part of the Virtual
University of Bavaria (VHB). The design corresponds to a
hierarchical architecture where one unique resources server
is responsible of all administration tasks (user authentication,
booking, analytics) but also of programming of hardware
platform, interfacing the inputs and outputs, and webcam
streaming. This system provides significant scalability: up to
10 instances can be connected to the server. The programming
of the embedded device is performed through UrJTAG [29].
This is an open software package which enables working with
JTAG-aware (IEEE 1149.1) hardware devices. Due to this,
it is easily adaptable to other devices as long as they are JTAG
programmable.

The user experience differs deeply from that conducted
in a regular lab. Firstly, students need a computer with the
appropriate FPGA design suite installed. Secondly, connec-
tion to the server requires an SSH connection, a web browser
and a RTSP streaming client. Thirdly, HTTP sockets to non-
standard ports are mandatory, making it difficult to access
from other institutions [11].

2) ViciLab

This remote laboratory provides experimentation over dig-
ital circuits and FPGA devices. It was developed by the
Reconfigurable Computation Research Team of the National
University of Ireland, Galway [30]. It is nowadays hosted
by a spinoff company called Vicilogic [31]. This system
presents a very particular design. The main components of
the laboratory are implemented within the experimentation
platform. An IP core [31] programs the users’ binary into the
experimentation platform. It also supports the management
of inputs and outputs. The system provides full scalability
but adaptability is limited to FPGA-based systems that can
implement the RTL core. The user interface is managed by a
proprietary software that provides access to a system based on
a Microsoft Windows platform. It provides a user experience
with high educational possibilities. Nonetheless, it is very
different to the experience in a conventional laboratory.

3) DSP-BASED REMOTE CONTROL LABORATORY

FROM THE UNIVERSITY OF MARIBOR

This laboratory allows students to perform several exper-
iments on automatics control [32]. The system follows

16890

a distributed architecture where a unique administration
server manages different laboratory servers, guaranteeing
scalability. All the laboratory is based on a specific DSP
educational development board so no adaptability is possible.
The user experience is the same as the one conducted on a
conventional laboratory. However, students need a computer
with MATLAB/Simulink and a browser that is compatible
with the LabView plugin.

4) MICROLAB

This remote laboratory is hosted by the Faculty of Technical
Education in the Suleyman Demirel University [33]. It was
developed in 2004 and it has been continuously updated. It is
used in the present day. The main feature of this system is
its communication between multiple instances through the
CAN protocol. This provides a distributed architecture that
is managed by the experiment server. The programming of
the embedded system is conducted through a custom boot-
loader developed for 8051 MCU. This limits adaptability.
Access to the laboratory is conducted through the Microclient
proprietary software [33]. It needs to establish several TCP
connections through non-standard TCP ports. This discour-
ages access from other institutions. Users require a Windows
platform to run the Microclient software, though no other
software is required to conduct the experimentation.

5) GOLDi

This laboratory [34], [35] allows students to control a group
of didactical electromechanical models from a set of different
embedded platforms. The architecture of the system is based
on a unique laboratory bus. This bus is able to multiplex
the signals of the selected embedded device and model. The
addition of new components (embedded platforms and elec-
tromechanical models) can be done by designing a custom
adaptor that hinders the replicability of the system by third
parties. Although the system provides great adaptability over
different devices, the only way to provide access to multiple
users is duplicating the whole system. The cost of the sys-
tem, due to the complex custom-designed components and
the use of very expensive electromechanical models, hinders
affordability.

D. ANALYSIS OF EMBEDDED SYSTEMS REMOTE LABS
Table 1 shows the degree of compliance for each feature by
the systems highlighted in this chapter.

Beyond the aforementioned features, it is essential that a
remote laboratory allows the completion of all the steps that
are typically conducted in a conventional laboratory while
experimenting with embedded systems. This process consists
basically in a cyclic progression through four main steps:
coding, preparing a binary file, testing and observing how
the system runs the program with the real inputs and outputs
injected by the user or sensors.

Table 2 indicates which experimentation steps are sup-
ported directly in each analyzed laboratory. A significant
limitation of the analyzed systems [16]-[35] is that none of

VOLUME 6, 2018

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

IEEE Access

TABLE 1. Comparison between remote laboratories designed under a
distributed architecture.

Q
& Y ANIL LI
& /PSS LS
2N NPT
%3 N R & &
S YN

FPGA FAU (1) v X ~ v ~

ViciLab (2) vVIX[Xx]~1X

DSP UM (3) V]~ |lvl~1lX
MicrolLab (4) v ~ v v X

GOLDi (5) X[v X1 v 11X
v Completely achieved ~ Partially achieved X Not achieved

TABLE 2. Experimentation steps supported by the analyzed remote
laboratories

System Code |Binary generation| Debug Run
FPGA FAU (1) ~ ~ X v
Vicilab (2) v ~ X v
DSP UM (3) ~ ~ X v
MicroLab (4) ~ ~ X v
GOLDi (5) v ~ X v

v Inside the laboratory ~ ~ Using external tools X Not supported

them provides real debugging capabilities during the experi-
mentation stages. This step is the most time-consuming one
according to [15]. The novel proposed architecture solves this
problem and includes web-based debugging support.

Ill. NEW ARCHITECTURE TO DEPLOY REMOTE
LABORATORIES FOR EXPERIMENTATION

OVER EMBEDDED SYSTEMS

The main goal of most remote laboratories is to be able to
provide an experimentation process that is similar to that
performed in a hands-on laboratory. Thus, the proposed archi-
tecture has been built around a set of components that are
oriented to fulfill the described embedded systems experi-
mentation steps. The main subsystems proposed by the archi-
tecture are the following (Fig. 3):

1) Experiment Platform. Real experimentation requires
that the program users provide is really programmed
into the target embedded device. The Experiment Plat-
form holds the embedded device and provides similar
resources (e.g., inputs, outputs, communication buses)
to those that the development systems used in hands-on
laboratories provide.

2) Interface Server. In a real laboratory, students can
interact directly with the peripherals. However, using
a remote laboratory, a connected system is required to
transform the client commands into physical signals.
These signals monitor and process the outputs gener-
ated by the embedded device.

3) Experiment Server. This subsystem manages the
interaction with the experiment platform. It manages

VOLUME 6, 2018

FIGURE 3. Diagram of the proposed architecture for the development of
embedded systems remote laboratories.

all the tasks that students perform over it through any
IDE. This includes not only programming but also
erasing the devices’ memory. It also includes executing
the different debugging commands, which have to be
available from the Experiment Server.

4) Binary Generator. In order to free the laboratory
from any specific tool, this subsystem receives the
source code, generates the appropriate binary file, and
returns it. The binary file can then be programmed
into the Experiment Platform through the Experiment
Server. This system can be implemented in the cloud
through virtualized machines or deployed locally.

5) Client. This subsystem provides the student with all the
graphical user interfaces required to perform the exper-
imentation process. In order to fulfill the previously
described requirements of accessibility, it has to consist
of a web interface accessible from multiple platforms.
That includes supporting access from mobile devices,
which is ever more demanded [36].

6) Administration Server. This component is in charge
of the administration tasks required to properly manage
a session of a remote laboratory (authentication, book-
ing, queuing, load balance between different instances,
user tracking). Every analyzed system includes

16891

IEEE Access

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

a custom experiment server. However, by integrat-
ing it in a Remote Laboratory Management Sys-
tem (RLMS) [37], the architecture also makes it easier
to cover the requirements and guarantee sustainability.

7) Interactive live-streaming platform: A key compo-

nent of most remote laboratories is the live-stream
through which users can monitor the device and see
the results of their actions. In an interactive remote lab,
this live-stream needs to provide a very low capture-
render delay, so that interaction is not hindered. This
platform abstracts out specific camera idiosyncrasies
and reliably provides these functionalities.

Just as important as the components, is their inter-
connection. The dependence between the components that
support the experiment (IP Camera, Experiment Server,
Interface Server, Experiment Platform) is critical. These com-
ponents comprise the Experimentation Instance. They are
independent from the other components. This makes it eas-
ier to replicate, thus providing higher scalability. Interac-
tive experimentation over embedded systems requires that
the particular user’s binary be programmed into the board.
Therefore, several experimentation instances are required for
multiple simultaneous users. The RLMS can balance the
load among different instances. Through this scheme, it can
provide simultaneous access to as many users as instances are
available.

Experimentation
Instance 1

| |

Experimentation
Instance 2

Experimentation
Instance n

network

Interactive
. . v
Live-streaming | |5
Platform N

FIGURE 4. Embedded laboratory with multiple instances under the
proposed architecture.

Nonetheless, there can also be a queue. Users’ time in it
will be lowered with a higher number of instances (Fig. 4).
The Experimentation Instance can only be accessible from
the RLMS. In the same line, the independence of the Exper-
imentation Instance provides adaptability. It becomes eas-
ier to exchange the experimentation platform, by simply
updating the Experiment Server and adapting the Interface
Server to the new embedded system. Decoupling the Binary
Generator from the Experiment Server makes it easier to
replace. Moreover, it allows highly time-consuming tasks,
such as compilation or synthesis, before accessing the lab-
oratory. This way, a user can experiment while other user is
synthesizing a source code, minimizing inactivity time. The
Binary Generator component consists of a system capable of

16892

queuing compile or synthetization requests and generating
the resulting binaries. Generating certain kinds of binaries
takes a significant amount of computational resources. The
Binary Generator is designed as a Cloud service, so that it
can scale horizontally when new experimentation instances
need to be served.

The Client component provides the web-based Graphical
User Interface (GUI). It provides the student with a full
IDE to experiment with, similarly to how it would be done
in a hands-on laboratory. In a conventional laboratory, this
would normally be a desktop-based IDE that is physically
connected to the embedded system and that offers debugging
features. Therefore, in the case of a remote lab, the Client
should provide similar features. In this case, the Client pro-
vides a web-based source code editor, and different view
perspectives to either run the experiment or debug it, always
remotely.

IV. THE WEBLAB-ARM LABORATORY
This system has been developed as a proof of concept imple-
menting the proposed architecture. Weblab-ARM provides
experimentation with NXP Kinetis KL25-48 MHz, Ultra-
Low-Power Microcontrollers (MCUs) based on ARM®
Cortex®-MO+ Core. This choice has been made due to its
extensive use in different universities, and the fact that the
board is recommended by the ARM University Program for
conducting its basic embedded systems course. The RLMS
used in this work, and the library developed for facilitating the
development of new labs under this architecture are released
as open source. !

In the next subsections, the implementation of each com-
ponent is presented according to the proposed architecture.

A. EXPERIMENT PLATFORM

A new trainer board has been designed to allow performing
most typical embedded systems exercises. This board is con-
nected to the same FRDM K1.25Z [38] development system
that students are using in the hands-on laboratory:

o Digital Input/Outputs (GPIO). The student can experi-
ment with GPIOs managing the LED diodes included in
the platform. The web client features, also, the virtual
representation of several switches and buttons that are
converted into physical signals through the Interface
Server.

« Motor control. 2 servo motors, 1 stepper motor and a DC
motor have been included in the experiment platform.
They allow students to experiment with different motor
control approaches.

o Communication Protocols. Several peripherals that
are made available through the experiment platform
(e.g., RTC, Port Expander, EEPROM Memory,
Serial Terminal) can be managed through the I12C,
SPI or UART protocols.

IThe RLMS is available at https://github.com/weblabdeusto/weblabdeusto
and the library at https://github.com/weblabdeusto/weblablib

VOLUME 6, 2018

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

IEEE Access

FIGURE 5. Architectural overview of the Interactive Live-Streaming Platform. From [39].

o Alphanumeric LCD. A 2 x 16 characters alphanumeric
LCD is integrated in the experiment platform and visible
through the displayed live-stream.

B. INTERACTIVE LIVE-STREAMING PLATFORM

The main characteristic of remote laboratories is that they
allow users to access real, remote equipment, attempting to
resemble hands-on laboratories [39]. In a hands-on labora-
tory, users view the equipment with their own eyes, and
rely on their sight to interact with it. To achieve the same
purpose, most remote laboratories rely on a live-stream from
a webcam (e.g. [40]-[42]). Through that live-stream, remote
users can view the equipment, and use what they see for their
interaction with the equipment.

A proper design and implementation of this feature is criti-
cal for a remote laboratory to provide a satisfying user experi-
ence. The live-stream is the main link between the laboratory
user and the remote equipment. It is important to remark that
the live-streaming system of a remote lab needs to be inter-
active [43]-[45]. That is, it needs to guarantee a particularly
low delay between the moment a frame is captured and the
moment it is rendered (the capture-render delay). This is not
the case for standard live-streaming systems. Popular live-
streaming platforms such as Youtube Live? or TwitchTV,? in
fact, often allow for a several seconds delay [46]. For standard
live-streaming applications (e.g., live sports events stream-
ing) this is an adequate choice because that delay makes the
platform more scalable, allowing it to rely on buffering and
high-compression transcoding techniques.

The architecture that is proposed in this work relies
on an Interactive Live-Streaming Platform that has been
purposefully designed to meet the requirements of remote

2http://www.youtube.com
3 http://www.twitch.tv

VOLUME 6, 2018

laboratories [44]. The main requirement is, as previously
described, a minimal capture-render delay. Other important
requirements, however, are being fully web-based, supporting
many source webcams, and being scalable to many clients.
Being web-based is important because most educational
remote laboratories today are (and certainly are expected)
to be accessible through a simple web-browser. In the past,
laboratories often relied on desktop-based software or in
vendor-specific custom browser plugins (such as Adobe
Flash* or Java Applets) [11]. This hinders universality, which
is ever more important, especially with the growing usage of
mobile devices in education [36], [47], [48]. Supporting many
webcams and being scalable to many clients is also important,
because a key feature of the remote lab architecture that is
proposed in this work is, precisely, to be highly scalable.
Fig. 5 shows an architectural overview of the interac-
tive live-streaming platform and its main components. The
webcams (depicted to the left) are normally IP-based. They
tend to contain a very simple web server to provide streams
(often in M-JPEG format), but their hardware and software is
limited, they are not meant to support a significant number
of issues, and they are prone to security issues [49], [50].
Thus, they are secured within the LAN and feed their image
into a Feeder component. The Feeder component takes the
stream as input (supporting several formats) and forwards
it into a Redis’ instance, transcoding it if necessary using
FFmpeg.® A CamServer component reads the stream from
Redis, and serves it to the end-user, in various formats which
are web-based and appropriate for remote laboratories [39].
This architecture is highly scalable. There can be any number
of webcams, any number of Feeders and any number of

4http://www.adobe.com/products/flashplayer.html
5https://redis.io
6https :/[ffmpeg.org

16893

IEEE Access

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

CamServers. Redis, which is a general-purpose in-memory
data engine, designed precisely for scalability, is at the core.

By integrating the interactive live-streaming platform into
the remote laboratory architecture that is proposed in this
work, the previously defined constraints are appropriately
satisfied. Live-streams are supported and can scale for any
number of experiment instances and of users. The laborato-
ries can still be fully web-based and thus easy to deploy and
mobile-friendly. And the capture-render delay is minimized
to provide a satisfactory user experience.

FIGURE 6. Hardware platform for the ARM remote lab.

C. INTERFACE SERVER

The output peripherals can be monitored through the provided
live-stream (see Fig. 6). Controlling the input peripherals is
always a key factor in the design of an embedded systems
remote laboratory.

Users must be able to act on the inputs just as they would
in a conventional laboratory. Because the interaction with the
student is performed through the web client, this must be done
through virtualized controls.

Their appearance and UX is designed to be similar to
the physical ones they are intended to replace. Their effect
is mirrored physically in the hardware, thus being highly
realistic.

The Interface Server that has been developed for the
proposed remote laboratory provides several input periph-
erals through which students can interact with the MCU.
These include 2 potentiometers, 4 buttons and 2 switches
(see Fig. 7).

The virtual representation in the client of these peripherals
is intended to provide a physical behavior similar to that of
fully real peripherals. The implementation of the system is
based on a REST APIL. It provides several HTTP methods to
be consumed by the client. These methods trigger the corre-
sponding physical signals. The API is directly deployed in an
embedded platform (Raspberry Pi 2) wired to the Experiment
Platform through the SPI and UART interfaces and 6 GPIO.

16894

FIGURE 7. Web Client of the “Experimentation perspective”.

Client-side, potentiometer management is assisted by two
slide widgets that allow the student to select the voltage that
the MCU receives through two ADC channels.

The Interface Server includes a SPI interfaced Digital-
Analog converter (MCP4902) that adjusts the signal con-
nected to each ADC channel every time the slide is changed
in the client.

Buttons are controlled from the client through a graphical
button widget and a slide widget that sets the pulse duration.

Switch widgets in the client allow students to set and clear
their respective GPIOs in the MCU.

Finally, the client also includes a serial terminal widget that
allows sending and receiving ASCII characters to and from
the MCU. It is backed by the Interface Server through the
UART included in the Raspberry Pi. The main HTTP methods
for the REST service, implemented in Python with the Flask
framework, are shown in Table 3.

TABLE 3. Main HTTP commands included supported by the interface
server.

Method Function
Returns the current value of
potentiometers.

Sets a new valuein a
potentiometers.

Generates a pulse in a buton.
Sets or clear a switch.

Retuns received buffer from

Command

potentiometers GET

potentiometers/post_id/value|POST

buttons/but_id_time POST
switches/switch_id/value POST

serial GET

UART.
serial POST |Sends a string to UART.

Returns the current values of all
actuators GET

the input peripherals.

D. EXPERIMENT SERVER

The implementation of the previous components follows the
traditional mandates of embedded remote laboratory develop-
ment. The experiment server is the key component that pro-
vides new demanded capabilities for remote experimentation
over embedded systems. The goals are:

VOLUME 6, 2018

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

IEEE Access

TABLE 4. Main HTTP commands included supported by the ExperimentServer.

Command | Method Function GDB Command
Connects the hw. target, loads the file and target remote/monitor
start POST receives the binary file to be loaded reset/file/load
end POST Just disconnects the in the GDB session quit
stepinto POST Executes an instruction step
stepover POST Executes an instruction/function next
run POST Executes the program until Breakpoint continue
interrupt POST Interrupts the execution of the program ctrl+c
breakpoint |POST set/delete a breakpoint b | clear
status GET Returns the state of the GDB session frame

« To support every stage of the embedded systems design
cycle. The server is not only responsible for receiving
the user’s binary file and programming it into the MCU,
but also for providing all the required functions that are
necessary for a complete debugging experience.

o To facilitate portability to new platforms or embed-
ded devices. The laboratory supports microcontrollers
based on ARM Cortex M, which are highly popular.
Just performing minor changes, the remote laboratory
could support up to 3887 different devices (This is the
MDAKS device list number on March 2017).

The implementation of this component requires a Linux
machine running OpenOCD (Open On-Chip Debugger) [51]
and the GDB (GNU Project Debugger) [52]. A Python REST
API provides HTTP methods that handle debugging actions
that users can request on the experiment platform. The server
keeps a GDB session opened and automatically injects GDB
commands as needed. A list of the main GDB commands that
are supported through the implemented REST API are shown
in Table 4.

E. CLIENT

The ARM laboratory’s client is a key component for the
proposed embedded remote laboratory architecture. The GUI
that it provides is fully web-based. Nonetheless, it has been
designed to support the basic features of the traditional
desktop-based software development kits for embedded sys-
tems. Particularly, the web-based interface has been designed
to support editing and debugging code on-line. The Weblab-
ARM laboratory features three different perspectives:

« Experimentation: To interact with the hardware system
once it has been programmed. It provides control over all
the virtual interaction devices, such as the switches or the
potentiometers. It also provides a live-stream through a
webcam to monitor the device’s behavior (Fig. 7).

o Programming: It provides a syntax-highlighting editor
to code for the ARM device. Currently it supports “C”
and “C++” programming.

o Debugging: This view shows, simultaneously, the code
that is programmed into the device, the device itself

VOLUME 6, 2018

through a live-stream, and the interaction components.
With those tools, users can debug their program, relying
on standard debugging features such as breakpoints and
execution controls (Fig. 8).

FIGURE 8. Screenshot of the “Debugging” perspective.

As described above, one of the remarkable aspects of the
proposed GUTI is that users view and interact with the labora-
tory hardware through a live-stream. To do so, the architecture
relies on an interactive live-streaming system [42]. Unlike
standard live-streaming systems, interactive ones focus on
minimizing the capture-render delay: the time that elapses
between the moment a frame is taken by the camera, and the
moment it is rendered in the screen. This can be achieved by
relying on certain techniques such as image-refreshing, M-
JPEG, or even small video buffers H.264 [43], and avoid-
ing others which require large buffers or heavy transcoding.
Maintaining such a low, interactive-level delay is of utmost
importance for this kind of system, because users expect to
see an immediate response in the remote equipment whenever
they hit a button or interact with other components.

Binary Generator: As discussed, the cloud-based design
of the Binary Generator that generates binary files from
the source code is important for scalability. It is also use-
ful to facilitate the adaptation of the implementation to
new or upgraded hardware boards.

The binary generator in Weblab-ARM is implemented as
a cloud service based on Azure services. One or several

16895

IEEE Access

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

virtual machines (VM) run the ARM GCC compiler. A mes-
sage brokering service based on the Azure Service Bus (ASB)
guarantees the possibility of load balancing under intensive
demand. Virtual machines continuously monitor the queue,
waiting for unassigned tasks. When a new task is available,
the Cloud Compiler Tool receives the source code and updates
the broker’s task object, publishing the corresponding binary
file and setting the task to “finished” (Fig. 9). The compiling
process for the ARM Cortex M microcontrollers are very fast
tasks. A single VM can handle many compilations. However,
the system is designed to be easily portable to other hardware
platforms where binary file generation is more complex and
takes higher amounts of time and resources, such as FPGAs.

FIGURE 9. Different stages in the cloud compiling process.

F. REMOTE LABORATORY MANAGEMENT SYSTEM
Weblab-ARM is hosted under the WebLab-Deusto RLMS. Its
main goal is to provide basic common features such as user
management, learning analytics, LMS integration, or labora-
tory federation among different institutions.

V. EVALUATION

A. TECHNICAL EVALUATION

The main objective of the proposed architecture is to sat-
isfy two key requirements identified during the analysis of
remote experimentation for embedded systems: scalability
and adaptability. Most efforts are therefore oriented towards
facilitating the addition of multiple instances and the portabil-
ity to new embedded devices. Section IV: a new remote lab-
oratory for ARM-based boards, describes an implementation
of the architecture. This implementation has been developed
to validate the architecture attending to the previously listed
requirements.

To test the adaptability capabilities that it provides, we have
analyzed the effort that is required to adapt the devel-
oped remote laboratory to other embedded development kits.
The “ARM University Program” recommends the following
development boards for teaching Embedded Systems/MCUs
from different vendors:

1. Freescale Freedom FRDM-KL25Z
2. ST STM32F4 Discovery Board

16896

NXP LPC1115 LPCXPRESSO Board
NXP LPC4088 Experiment Base Board
Cypress PSoC4 Pioneer Board
. ST Nucleo F401RE Board.
Furthermore, beyond the ARM MCU architecture, other
two development boards are considered:
7. Arduino Uno
8. PIC18 Explorer Board.

oL s W

TABLE 5. Level of redesign required for different embedded systems
development boards.

Q Ko‘@ N
< 5 & &
L & \J &
& 2 r-}*é o 5}
X ;
& 5 & S48
(& & & <&
8 &
F* @(’ S & &
S/ S SRR

Freescale Freedom FRDM- 0 0 o 0 0 0
KL25Z

T STM32F4 Di
STSTM3. iscovery 0 1 0 1) o
Board
NXP LPC1115 LPCXPRESSO

0 1 0 1 2 0
Board
LI E i

NXP LPC4088 Experiment 0 1 0 1 1 0
Base Board
C PSoC4 Pi

ypress PSoC4 Pioneer o 1 0 1 1 o
Board
ST Nucleo F401RE Board 0 1 0 1 1 0
Arduino Uno 0 3 0 4 0 0
PIC18 Explorer Board 0 3 0 4 2 0

TABLE 6. Efforts in the Weblab ARM remote laboratory development.

Task N2 Hours

Weblab-Deusto RLMS deployment and Configuration 96
Interactive Live-Streamming Platform deployment and 72
Configuration
Binary generator development 120
Experiment server development 160
Experimentation platform implementation 60
Interface server development 80
Remote laboratory integration and testing 160

Total| 748

Table 5 shows a rating from O (no changes required) to 5
(complete re-design required). It describes the approximate
effort that it would take to modify the described Weblab-
ARM remote laboratory to support the listed devices.

As the table indicates, several components of the remote
laboratory are completely independent from the embed-
ded device (the RLMS, the Client and the Interface Server
components). Only three components must be re-developed
to adapt the remote laboratory to a different development
device:

« Binary generator: All the boards based on the ARM
Cortex M architecture are compatible with the Keil
development tools. Only minor changes (mainly, recon-
figuration of the device package) are required for sys-
tems 1 to 6 (see Table 7). Adaptation to different
MCU architectures (7 and 8 in Table 7) requires deeper

VOLUME 6, 2018

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

IEEE Access

TABLE 7. Required updating efforts for the considered embedded platforms.

Q> S 7}6
& > & /& oS ®
& ® & SN 0 °
& F < S & &2
& S DO S &S & ® 5
NN v O &L » & R YO Ca
& ‘;\@ L 3 C\SQ‘ o & d\z" RS & S (o
EL 8 S TS SK XS & W QS

Weblab-Deusto RLMS deployment and

. . 96 0 0 0 0 0 0 0
Configuration
interactive lee—Streammlng Platform 72 0 0 0 o a 0 o
deployment and Configuration
Binary generator development 120 24 24 24 24 24 72 72
Experiment server development 160 32 32 32 32 32 128 128
Experimentation platform implementation 60 24 24 12 12 12 0 48
Interface server development 80 0 0 0 0 0 0 0
Remote laboratory integration and testing 160 42 42 36 72 36 108 134
Total 748 122 122 104 140 104 308 382
Adaptation efforts required 16% 16% 14% 19% 14% 41% 51%

changes to this component. The compiler would need to
be switched for a different one, and integrated with the
developed web service.

Experiment Server: The design of this component
in the Weblab-ARM remote laboratory is based on
the OpenOCD on-chip debugger. The boards that are
compatible with this system (1-6) would only require
to change the OpenOCD configuration file. However,
in order to adapt the system to a new architecture (7 and
8), this component would need to be redesigned. The
handlers for each command in Table 4 would need to
be re-developed.

Experimentation platform: The Weblab-ARM labo-
ratory is based on the FRDM KL25Z development
board. It provides an Arduino UNO compatible inter-
face. Therefore, all the boards that offer the same inter-
face (1, 4, 5, 6 and 7) can be plugged directly to the
experimentation board. For those with a different con-
nector, an adaptation board must be implemented.

Table 6 shows the total resulting staff hours required for the
Weblab ARM remote laboratory development. Considering
these times, and the required updating effort for every com-
ponent (Table 5), Table 7 estimates the time it would take to
adapt the system for new embedded platforms.

As described in previous sections, the architecture is
designed so that adding new experiment instances requires
little effort.

After setting up the hardware for the new instance and
cloning the systems, only their registered IP addresses would
need to be updated. Then, the new instance would need to
be registered in the WebLab-Deusto RLMS configuration.
Currently, registering new instances is relatively simple. The
Experiment Servers for these instances can be deployed any-
where within the local network, and then registered into the
system. Once properly set up, load balancing is automatic.
Users are automatically and transparently redirected to a free
instance when one is available, or asked to wait in a queue
if all instances are busy. Therefore, the sum of the proposed

VOLUME 6, 2018

architecture and of the native load-balancing capabilities of
the RLMS lead to a very adaptable and highly scalable frame-
work.

B. DIDACTICAL EVALUATION

The ARM-based remote laboratory was used in the
2016-2017 course for the Degree in Industrial Electronics at
the University of Deusto. The Microprocessors subject is part
of the first semester of the third school year. Its main goal is
to teach the principles and applications of microprocessors
and microcontrollers. The teaching and learning strategy is
mostly practical. Students can design and test their programs
using both a hands-on laboratory and a remote laboratory. The
latter relies on the WebLab-Deusto RLMS. Therefore, every
practical session can be done by the student using either the
classical or the remote laboratory.

During the 2016-2017 course, 27 students were enrolled
in the subject and 25 followed it. They accessed the remote
lab 1581 times. The average was 63 accesses per student,
the maximum number of accesses was 153, and the minimum
was 16.

Every week the students have to write and test a pro-
gram that is associated to a challenge. The students can use
either of the laboratories; it is up to them based on their
preferences or on their location during the session. Using
the remote laboratory was therefore not mandatory, it was
offered as a complementary resource to help them with pro-
gramming tasks. To access the remote lab, students access
the weblab.deusto.es web platform, introduce their user and
password, and access the ARM remote lab. After accessing
it they upload the produced HEX file to see how their pro-
gram behaves when running under real hardware. They have
5 minutes per session to complete the testing process. After
5 minutes, the session is automatically closed. When students
do not finish in time, they can reserve a new session and repeat
the process. The maximum amount of time per session can
be easily changed by the teacher, but if the time is too high it
can lead to a long access queue. Therefore, the teacher needs

16897

IEEE Access

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

to choose the appropriate time, so that students have enough
time but at the same time every student gets the chance to
access fast enough.

When the subject was over, the students were asked to fill
a survey about their opinion on the remote lab and its usage.
The original survey was created by [53] and [54] and the final
version includes the result of the eMerge project [55]. It has
11 items with a 5-point Likert scale (1: completely disagree,
2: disagree, 3: neutral, 4: agree, 5: completely agree). 25 of
the students filled the survey, and 2 did not. The results are
shown in the Table 8.

TABLE 8. Survey's results in microprocessors subject in 2016-2017.

Average | Deviation
1. The WebLab has helped me in the subject:
. : 4.72 0.54
concepts, practice, the project, etc.
2. When I am using the remote lab I feel that it is
. . . 432 1.22
real and that it is not a simulation.
3. It is a good idea to extend the use of the remote
lab to other students. 4.76 0.44
4. The WebLab is easy to use 4.64 0.91
5. The quality of the webcam-provided visual
. 4.30 0.9
feedback is good.
6. The time assigned to each session is 3.44 1.47
appropriate.
7. Even being far from the remote lab I felt that I
. 4.08 1.38
had control over it.
8. I would like to use the WebLab in other 3.60 161
subjects.
9. In general, I am satisfied with the remote lab. 4.48 0.96
11. The WebLab-Deusto RLMS is good enough 452 0.96
and it has helped me during the session. : ’

The experience with students shows that the designed
remote laboratory is well-regarded as a tool for programming
and debugging code in ARM microcontrollers. Most of the
values are higher than 4, and in general the students are
satisfied with the remote lab (4.48) because it is easy to use
(4.64), they feel that there is a real hardware that they control
(4.08 and 4.32) and the RLMS that manages the remote lab
is good (4.52).

VI. CONCLUSION AND FUTURE WORK

The analysis of the state of the art shows that the field
of remote laboratory development for embedded systems is
a very active field. However, it also reveals some existing
problems and challenges. This work extracts a set of technical
and educative requirements, and proposes a novel remote
laboratory architecture for embedded systems.

The proposed architecture is designed to provide certain
key capabilities. Firstly, it is designed to provide scalable
remote laboratories, that support multiple instances of the
same equipment to support multiple users. Secondly, it is
designed to avoid deployment and networking limitations.
It relies only on HTTP and standard ports to avoid firewall

16898

traversal limitations, which obstruct the accessibility of other
architectures. Thus, it can be deployed on any web platform,
LMS environment, or institution. Thirdly, it is designed to be
adaptable. The laboratories that implement the architecture
require very few modifications to support new embedded
system families, or to be upgraded to their latest versions.
This feature is of particular interest for industry, because it
makes it possible to swiftly deploy various devices for them to
be tested remotely by prospective users. It should be possible,
for instance, to support various FPGA devices and various
microcontroller platforms.

Beyond the aforementioned characteristics, the proposed
architecture includes a particularly important one which is
unique: full access through the Web. Users do not need
to have any programming or testing environment on their
machines. An Internet connection and a web browser are
enough. A complete embedded system programming and
testing experience is possible. Thus, the laboratories also
become available for tablets and smartphones. This was not
possible through most previous architectures, and it used to
be a very significant restriction, since the popularity and
ubiquity of these devices is certainly growing. This is also
interesting for industry.

Additionally, this work complements the proposed archi-
tecture with a new interactive live-streaming platform for
remote laboratories. This augments the effectiveness and sus-
tainability of the system in terms of image and video quality,
bandwidth and user immersion.

Finally, the architecture and its implementations have been
evaluated from a mainly technical perspective, but also con-
sidering some didactical issues.

This work has presented, in detail, a remote laboratory that
implements the architecture, for an ARM-controlled robot.
Additionally, it has presented another laboratory for a FPGA
device. Thus, the scalability and adaptability of the architec-
ture have been validated. The ARM deployment has been
used in a classroom environment, and the experience has
been positive, both in objective terms (access number and
lack of significant issues) and subjective ones (satisfactory
for students and teacher).

The developed laboratory is currently being used by
real students, and in the future we aim to conduct fur-
ther pedagogically-oriented research using the resulting data.
Additionally, in the future, the next steps will be oriented
towards deploying implementations of the proposed architec-
ture in other educative and research centers, and also towards
being used and proving its value for the embedded systems
industry.

REFERENCES

[1] C. Bohus, B. Aktan, M. H. Shor, and L. A. Crowl, “Running
control engineering experiments over the Internet,” Dept. Comput.
Sci., Oregon State Univ., Corvallis, OR, USA, Tech. Rep. 95-60-07,
Aug. 1995.

[2] R. Bose, “Virtual labs project: A paradigm shift in Internet-based
remote experimentation,” IEEE Access, vol. 1, pp. 718-725, 2013, doi:
10.1109/ACCESS.2013.2286202.

VOLUME 6, 2018

http://dx.doi.org/10.1109/ACCESS.2013.2286202

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

IEEE Access

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. R. Brinson, “Learning outcome achievement in non-traditional (virtual
and remote) versus traditional (hands-on) laboratories: A review of the
empirical research,” Comput. Edu., vol. 87, pp. 218-237, Sep. 2015, doi:
10.1016/j.compedu.2015.07.003.

L. D. Feisel, G. D. Peterson, O. Arnas, L. Carter, A. Rosa, and
W. Worek, “Learning objectives for engineering education laboratories,”
in Proc. 32nd Annu. Frontiers Edu. (FIE), vol. 2. 2002, p. FID, doi:
10.1109/FIE.2002.1158127.

T. de Jong, M. C. Linn, and Z. C. Zacharia, “‘Physical and virtual labora-
tories in science and engineering education,” Science, vol. 340, no. 6130,
pp. 305-308, 2013, doi: 10.1126/science.1230579.

J. Sdenz, J. Chacén, L. Da La Torre, A. Visioli, and S. Dormido, “Open
and low-cost virtual and remote labs on control engineering,” IEEE Access,
vol. 3, no. , pp. 805-814, 2015, doi: 10.1109/ACCESS.2015.2442613.

J. E. Froyd, P. C. Wankat, and K. A. Smith, “Five major shifts in 100 years
of engineering education,” in Proc. IEEE, vol. 100, Special Centennial
Issue, pp. 1344-1360, May 2012, doi: 10.1109/JPROC.2012.2190167.

L. Gomes and S. Bogosyan, “‘Current trends in remote laboratories,” [EEE
Trans. Ind. Electron., vol. 56, no. 12, pp. 4744-4756, Dec. 2009, doi:
10.1109/T1E.2009.2033293.

I. Angulo, “Arquitectura abierta para el despliegue de laboratorios
remotos sobre tecnologias de desarrollo de sistemas embebidos,”
Ph.D. dissertation, drea de Electricidad, Electrénica, Automatica y Comu-
nicaciones, Univ. Deusto, Bilbao, Spain, 2015.

D. Lowe, S. Murray, E. Lindsay, and D. Liu, “Evolving remote labo-
ratory architectures to leverage emerging Internet technologies,” IEEE
Trans. Learn. technol., vol. 2, no. 4, pp. 289-294, Oct. 2009, doi:
10.1109/TLT.2009.33.

J. Garcia-Zubia, P. Ordufa, D. Loépez-de-Ipifia, and G. R. Alves,
“Addressing software impact in the design of remote laboratories,” IEEE
Trans. Ind. Electron., vol. 56, no. 12, pp. 4757-4767, Dec. 2009, doi:
10.1109/TIE.2009.2026368.

C. Ebert and C. Jones, “Embedded software: Facts, figures, and
future,” Computer, vol. 42, no. 4, pp. 42-52, Apr. 2009, doi:
10.1109/MC.2009.118.

T. Myers, R. G. Dromey, and P. Fritzson, ‘““Comodeling: From requirements
to an integrated software/hardware model,” Computer, vol. 44, no. 4,
pp. 62-70, Apr. 2011, doi: 10.1109/MC.2010.270.

H. Mitsui, H. Kambe, and H. Koizumi, “Use of student experiments
for teaching embedded software development including HW/SW co-
design,” IEEE Trans. Educ., vol. 52, no. 3, pp. 436-443, Aug. 2009, doi:
10.1109/TE.2008.930096.

Embedded Market Study, Produced by Embedded Systems Design mag-
azine and the Embedded Systems Conference, UBM Tech, Denver, CO,
USA, 2014.

F. Y. Limpraptono, H. Sudibyo, A. A. P. Ratna, and A. S. Arifin,
“The design of embedded Web server for remote laboratories microcon-
troller system experiment,” in Proc. IEEE Region 10 Conf. (TENCON),
Nov. 2011, pp. 1198-1202, doi: 10.1109/TENCON.2011.6129302.

T. Hoang and H. N. Quang, “A low-cost remote laboratory of field pro-
grammable gate arrays,” in Proc. 12th Int. Conf. Remote Eng. Virtual
Instrum., Feb. 2015, pp. 172-176, doi: 10.1109/REV.2015.7087286.

H. Zhao and T.-J. Xiao, “An innovative remote experiment system
for FPGA-based curriculum,” in Proc. IEEE Int. Symp. IT Med. Edu.,
Dec. 2008, pp. 870-875, doi: 10.1109/ITME.2008.4743991.

J. Butime, R. Besiga, A. Bwonyo, V. Nakanwagi, T. Togboa, and
A. Katumba, “Design of online digital electronics laboratories based on
the NI ELVIS II platform,” in Proc. 9th Int. Conf. REV Remote Eng. Virtual
Instrum., Jul. 2012, pp. 1-3, doi: 10.1109/REV.2012.6293098.

S. Karthik, P. Shreya, P. Srihari, and N. M. Viswanath, “Remote field-
programmable gate array (FPGA) lab,” IJRET, Int. J. Res. Eng. Technol.,
vol. 3, no. 4, pp. 842-845, 2014, doi: 10.15623/ijret.2014.0304149.

M. Gilibert, J. Picazo, M. E. Auer, A. Pester, J. A. Cusidd, and J. A. Ortega,
“80C537 microcontroller remote lab for E-learning teaching,” iJOE, Int.
J. Online Eng., vol. 2, no. 4, pp. 1-3, 2006.

A. G. de Moraes and A. K. M. de Sales, “Aplicacao de laboratorios
remotos em microcontroladores PIC,” in Proc. 19th Congr. Brasileiro
Autom. (CBA), 2012, pp. 3634-3641.

P. Zenzerovi¢ and V. Suci¢, “Remote laboratory for microcontroller
systems design,” in Proc. 34th Int. Conv. MIPRO, May 2011,
pp. 1685-1688.

V. Fotopoulos, I. S. Anastasios, and F. Anastasios, ‘“‘Preparing a remote
conducted course for microcontrollers based on Arduino,” in Proc. 7th Int.
Conf. Open Distance Learn. (ICODL), 2013, pp. 1-6.

VOLUME 6, 2018

(25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

[41]

[42]

(43]

(44]

(45]

(46]

J. Ferreira, Z. Nedi¢, J. Machotka, A. Nafalski, and O. G&l, “International
collaborative learning using remote workbenches,” in Proc. Annu. Conf.
Eng. Technol. Edu., 2010, pp. 47-51.

M. Tawfik, E. Sancristobal, S. Martin, G. Diaz, J. Peire, and
M. Castro, “Expanding the boundaries of the classroom: Implementation
of remote laboratories for industrial electronics disciplines,” IEEE
Ind. Electron. Mag., vol. 7, no. 1, pp. 41-49, Mar. 2013, doi:
10.1109/MIE.2012.2206872.

M. Tawfik, E. Sancristobal, S. Martin, G. Diaz, and M. Castro, ‘‘State-of-
the-art remote laboratories for industrial electronics applications,” in Proc.
Technol. Appl. Electron. Teach. Conf. (TAEE), Jun. 2012, pp. 359-364, doi:
10.1109/TAEE.2012.6235465.

M. Reichenbach, M. Schmidt, B. Pfundt, and D. Fey, “A new virtual
hardware laboratory for remote FPGA experiments on real hardware,” in
Proc. 2011 Int. Conf. E-Learn., E-Bus., Enterprise Inf. Syst. E-Government
(EEE), 2011, pp. 17-23.

K. Waschk. (2008). Universal JTAG Library, Server and Tools. [Online].
Available: http://urjtag.org/book

F. Morgan, S. Cawley, and D. Newell, “Remote FPGA lab for enhancing
learning of digital systems,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 5, no. 3, Oct. 2012, Art. no. 18. doi: 10.1145/2362374.2362382.

F. Morgan et al., “ViciLogic: Online learning and prototyping platform
for digital logic and computer architecture,” in Proc. eChallenges (e),
Oct. 2014, pp. 1-9, 2014.

D. Hercog, B. Gergic, S. Uran, and K. Jezernik, “A DSP-based
remote control laboratory,” IEEE Trans. Ind. Electron., vol. 54, no. 6,
pp. 3057-3068, Dec. 2007, doi: 10.1109/TIE.2007.907009.

A. Kutlu and K. Tagdelen, “Remote electronic experiments using
LabVIEW over controller area network,” Sci. Res. Essays, vol. 5, no. 13,
pp. 1754-1758, Jul. 2010.

K. Henke, T. Vietzke, H.-D. Wuttke, and S. Ostendorff, “GOLDi—Grid of
online lab devices Ilmenau,” Int. J. Online Eng., vol. 12, no. 4, pp. 11-13,
2016.

K. Henke, T. Vietzke, H.-D. Wuttke, and S. Ostendorff, “GOLDi—Grid
of online lab devices Ilmenau: Demonstration of online experimentation,”
in Proc. 3rd Experim. Int. Conf. (EXP.AT), Jun. 2015, pp. 109-110, doi:
10.1109/EXPAT.2015.7463230.

J. Garcia-Zubia, D. Lopez-de-Ipina, and P. Orduna, ‘““Mobile devices and
remote labs in engineering education,” in Proc. 8th IEEE Int. Conf. Adv.
Learn. Technol., Jul. 2008, pp. 620-622, doi: 10.1109/ICALT.2008.303.
P. Orduia et al., ““An extensible architecture for the integration of remote
and virtual laboratories in public learning tools,” IEEE Rev. Iberoamer-
icana Tecnol. Aprendizaje, vol. 10, no. 4, pp. 223-233, Nov. 2015, doi:
10.1109/RITA.2015.2486338.

Freescale Semiconductor, Inc. (2013). FRDM-KL25Z User’s Manual Revi-
sion 2.0, [Online]. Available: http://www.nxp.com/

J. E. Corter, J. V. Nickerson, S. K. Esche, and C. Chassapis, ‘“Remote
versus hands-on labs: A comparative study,” in Proc. 34th Annu. Frontiers
Edu. FIE), 2004, pp. 1-5.

C. A.Jara,F. A. Candelas, and F. Torres, “Virtual and remote laboratory for
robotics e-learning,” Comput. Aided Chem. Eng., vol. 25, pp. 1193-1198,
Jun. 2008, doi: 10.1016/S1570-7946(08)80205-2.

A. Yazidi, H. Henao, G.-A. Capolino, F. Betin, and F. Filippetti, “A Web-
based remote laboratory for monitoring and diagnosis of AC electrical
machines,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4950—4959,
Oct. 2011, doi: 10.1109/TIE.2011.2109331.

H. Vargas, G. Farias, J. Sanchez, S. Dormido, and F. Esquembre, ‘“Using
augmented reality in remote laboratories,” Int. J. Comput. Commun. Con-
trol, vol. 8, no. 4, pp. 622-634, 2013.

L. Rodriguez-Gil, P. Orduiia, J. Garcia-Zubia, and D. Lépez-de-Ipiiia,
“Interactive live-streaming technologies and approaches for web-based
applications,” in Multimedia Tools and Applications. Cham, Switzerland:
Springer, Mar. 2017, pp. 1-32, doi: 10.1007/s11042-017-4556-6.

L. Rodriguez-Gil, J. Garcia-Zubia, P. Orduiia, and D. Lépez-de-Ipiiia,
“An open and scalable Web-based interactive live-streaming architecture:
The WILSP platform,” IEEE Access, vol. 5, pp. 9842-9856, 2017, doi:
10.1109/ACCESS.2017.2710328.

G. Paravati, C. Celozzi, A. Sanna, and F. Lamberti, “A feedback-based
control technique for interactive live streaming systems to mobile devices,”
IEEE Trans. Consum. Electron., vol. 56, no. 1, pp. 190-197, Feb. 2010, doi:
10.1109/TCE.2010.5439144.

C. Zhang and J. Liu, “On crowdsourced interactive live streaming:
A Twitch.tv-based measurement study,” In Proc. 25th ACM Workshop
Netw. Oper. Syst. Support Digit. Audio Video, 2015, pp. 55-60.

16899

http://dx.doi.org/10.1016/j.compedu.2015.07.003
http://dx.doi.org/10.1109/FIE.2002.1158127
http://dx.doi.org/10.1126/science.1230579
http://dx.doi.org/10.1109/ACCESS.2015.2442613
http://dx.doi.org/10.1109/JPROC.2012.2190167
http://dx.doi.org/10.1109/TIE.2009.2033293
http://dx.doi.org/10.1109/TLT.2009.33
http://dx.doi.org/10.1109/TIE.2009.2026368
http://dx.doi.org/10.1109/MC.2009.118
http://dx.doi.org/10.1109/MC.2010.270
http://dx.doi.org/10.1109/TE.2008.930096
http://dx.doi.org/10.1109/TENCON.2011.6129302
http://dx.doi.org/10.1109/REV.2015.7087286
http://dx.doi.org/10.1109/ITME.2008.4743991
http://dx.doi.org/10.1109/REV.2012.6293098
http://dx.doi.org/10.15623/ijret.2014.0304149
http://dx.doi.org/10.1109/MIE.2012.2206872
http://dx.doi.org/10.1109/TAEE.2012.6235465
http://dx.doi.org/10.1109/EXPAT.2015.7463230
http://dx.doi.org/10.1109/RITA.2015.2486338
http://dx.doi.org/10.1016/S1570-7946(08)80205-2
http://dx.doi.org/10.1109/TIE.2011.2109331
http://dx.doi.org/10.1145/2362374.2362382
http://dx.doi.org/10.1109/TIE.2007.907009
http://dx.doi.org/10.1109/ICALT.2008.303
http://dx.doi.org/10.1007/s11042-017-4556-6
http://dx.doi.org/10.1109/ACCESS.2017.2710328
http://dx.doi.org/10.1109/TCE.2010.5439144

IEEE Access

1. Angulo et al.: Scaling up the Lab: Adaptable and Scalable Architecture for Embedded Systems Remote Labs

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

S. N. Sad and O. Goktas, “Preservice teachers’ perceptions about using
mobile phones and laptops in education as mobile learning tools,” Brit. J.
Edu. Technol., vol. 45, no. 4, pp. 606-618, 2014.

D. G. delalglesia, J. F. Calderén, D. Weyns, M. Milrad, and M. Nussbaum,
“A self-adaptive multi-agent system approach for collaborative mobile
learning,” IEEE Trans. Learn. technol., vol. 8, no. 2, pp. 158-172,
Apr. 2015, doi: 10.1109/TLT.2014.2367493.

H. Crompton, D. Burke, K. H. Gregory, and C. Gribe, ‘“The use of mobile
learning in science: A systematic review,” J. Sci. Edu. Technol., vol. 25,
no. 2, pp. 149-160, 2016, doi: 10.1007/s10956-015-9597-x.

Z. K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and
S. Shieh, “IoT security: Ongoing challenges and research opportunities,”
in Proc. IEEE 7th Int. Conf. Service-Oriented Comput. Appl. (SOCA),
Nov. 2014, pp. 230-234, doi: 10.1109/SOCA.2014.58.

OpenOCD. Accessed: Sep. 2017. [Online]. Available: http://openocd.
sourceforge.net/

R. M. Stallman, R. H. Pesch, and S. Shebs, Debugging With GDB: The
GNU Source-Level Debugger for GDB (GDB), 10th ed. Boston, MA, USA:
GNU Press, 2017.

J. Garcia-Zubia, D. Lopez-de-Ipina, P. Orduna, U. Hernandez, I. Angulo,
and J. Irurzun, ““Acceptance, usability and usefulness of WebLab—Deusto
from students point of view,” in Proc. 3rd Int. Conf. Digit. Inf. Man-
age. (ICDIM), Nov. 2008, pp. 899-904, doi: 10.1109/ICDIM.2008.
4746846.

I. Gustavsson et al., “On objectives of instructional laboratories, indi-
vidual assessment, and use of collaborative remote laboratories,” IEEE
Trans. Learn. Technol., vol. 2, no. 4, pp. 263-274, Oct./Dec. 2009, doi:
10.1109/TLT.2009.42.

D. Lang, C. Mengelkamp, R. S. Jdger, D. Geoffroy, M. Billaud, and
T. Zimmer, “Pedagogical evaluation of remote laboratories in eMerge
project,” Eur. J. Eng. Edu., vol. 32, no. 1, pp. 57-72, 2007, doi:
10.1080/03043790601055626.

IGNACIO ANGULO presented his Ph.D. the-
sis on Open Architecture for the Deployment
of Remote Laboratories on Embedded Sys-
tems in 2015. Since 2002, he has been with
University of Deusto, where he has been with
the Department of Information Technology, Elec-
tronics and Communication. He has participated
in over 25 research projects. He has collaborated
in the writing of 32 scientific articles published in
magazines of international impact.

16900

LUIS RODRIGUEZ-GIL received the dual degree
in computer engineering and industrial organisa-
tion engineering in 2013, the M.Sc. degree in infor-
mation security in 2014, and the Ph.D. degree in
computer science from University of Deusto. He is
currently a co-founder of the LabsLand remote
labs company. Since 2009, he has been with the
‘WebLab-Deusto Research Group, collaborating in
the development of the WebLab-Deusto RLMS.
He has authored several peer-reviewed publica-

tions and contributed to some open source projects.

JAVIER GARCIA-ZUBIA (M’08-SM’11) received
the Ph.D. degree in computer science from
University of Deusto, Spain. He is currently a Full
Professor with the Faculty of Engineering, Univer-
sity of Deusto. He is the Leader of the WebLab-
Deusto Research Group. His research interest is
focused on embedded systems and remote labora-
tory design, implementation and evaluation.

VOLUME 6, 2018

http://dx.doi.org/10.1109/TLT.2014.2367493
http://dx.doi.org/10.1007/s10956-015-9597-x
http://dx.doi.org/10.1109/SOCA.2014.58
http://dx.doi.org/10.1109/ICDIM.2008.4746846
http://dx.doi.org/10.1109/ICDIM.2008.4746846
http://dx.doi.org/10.1109/TLT.2009.42
http://dx.doi.org/10.1080/03043790601055626

	INTRODUCTION
	ANALYSIS OF DEPLOYED SOLUTIONS
	EDUCATIONAL REQUIREMENTS
	TECHNICAL REQUIREMENTS
	MAIN EMBEDDED SYSTEMS REMOTE LABS
	REMOTE LABORATORY FOR FPGA FROM THE UNIVERSITY OF ERLANGEN-NUREMBERG
	ViciLab
	DSP-BASED REMOTE CONTROL LABORATORY FROM THE UNIVERSITY OF MARIBOR
	MICROLAB
	GOLDi

	ANALYSIS OF EMBEDDED SYSTEMS REMOTE LABS

	NEW ARCHITECTURE TO DEPLOY REMOTE LABORATORIES FOR EXPERIMENTATION OVER EMBEDDED SYSTEMS
	THE WEBLAB-ARM LABORATORY
	EXPERIMENT PLATFORM
	INTERACTIVE LIVE-STREAMING PLATFORM
	INTERFACE SERVER
	EXPERIMENT SERVER
	CLIENT
	REMOTE LABORATORY MANAGEMENT SYSTEM

	EVALUATION
	TECHNICAL EVALUATION
	DIDACTICAL EVALUATION

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	IGNACIO ANGULO
	LUIS RODRÌGUEZ-GIL
	JAVIER GARCÌA-ZUBÌA

