
Received January 28, 2018, accepted February 28, 2018, date of publication March 6, 2018, date of current version March 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2812173

Fast Automatic Differentiation for Large
Scale Bundle Adjustment
YAN SHEN 1 AND YUXING DAI1,2
1College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
2College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China

Corresponding author: Yuxing Dai (daiyx@hnu.edu.cn)

This work was supported by the Natural Science Foundation of Zhejiang Province under Grant LZ16E050002.

ABSTRACT A parallelized implementation of automatic differentiation that derives from the problem of
bundle adjustment is proposed in this paper. Reverse mode of automatic differentiation is more efficient
to compute the derivatives of functions with n real-value parameters, which is the case of computing the
Jacobian matrix in bundle adjustment problem. By reason of a large number of small derivative computing
tasks being needed in bundle adjustment problem, we implement an automatic differentiation library based
on operator overloading and OpenCL parallel framework. In order to parallelize the computation in the
framework of OpenCL, we generate forward and reverse computational sequences from computational graph
by topological sorting. This library enables us to write down the function formula elegantly and then evaluate
the derivatives rapidly and automatically. Finally, large scale bundle adjustment data sets is used to evaluate
our proposed implementation. The result shows that our implementation runs about 3.6 times faster than
Ceres Solver, which utilizes OpenMP parallel programming model.

INDEX TERMS Automatic differentiation, bundle adjustment, stereo vision, parallel computing.

I. INTRODUCTION
Many numerical optimization methods involve computations
of derivatives, Jacobians and Hessians. Traditionally, these
computations can be figured out manually. It is affordable
for many small problems. For optimization problems of find-
ing n real-valued parameters x that minimize m real-valued
functions, writing down the derivatives by hand can be a
formidable task. There are three categories of computations
of derivatives in the computer world. The first one is numeri-
cal differentiation by using finite difference approximations.
But it can cause large round-off error and truncation error
problem. Another one is symbolic differentiation by applying
symbolic computation. The main drawback of symbolic dif-
ferentiation is that it produces large symbolic expressions as
the complexity of formula increases. This problem is known
as an expression swell. So, the final method which is the topic
of this paper is automatic differentiation that can eliminate
these problems.

The primary motivation of developing a parallelized
automatic differentiation be derived from solving large-
scale bundle adjustment (BA) [1], [2] problems in stereo
vision. BA problem minimizes the error of reconstruction
by adjusting parameters which include poses of camera and

positions of 3D points. Numerical optimization methods such
as Levenberg-Marquardt (LM) [3] and Powell’s Dog-leg [4]
are introduced to solve this kind of problem. Both of these
methods should compute the derivatives of the projection
function x = F(X), whereX is a 3D point and x is the projec-
tion on the image plane of this point. Also, this point projec-
tion formula can be replaced by a line projection formula in
line-based reconstruction. There are two aspects to expound
that it is necessary to do further research on fast automatic
differentiation for bundle adjustment problem. First, for very
large BA problems, tens of millions of image points exist,
which means the derivatives of huge amount of projection
functions need to be computed. Efficient and parallel imple-
mentation of such an automatic differentiation can speed up
this process during multiple iteration procedures of BA. Sec-
ond, in the field of robotics, visual simultaneous localization
and mapping (SLAM) is very important [5]. There are three
most popular algorithms used in SLAM to estimate camera
pose and 3D point locations. They are Kalman filtering (KF),
particle filtering (PF), and BA. BA can be superior to KF
and PF in terms of accuracy [6], [7], but with much more
computation. Fast automatic differentiation makes BA more
real-time.

11146
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-7431-8570


Y. Shen, Y. Dai: Fast Automatic Differentiation for Large Scale Bundle Adjustment

Automatic differentiation consists of two modes [8]:
forward mode and reverse mode. For functions with n real-
valued parameters, reverse mode is preferred for its compu-
tational efficiency. There are a few softwares of automatic
differentiation designed for general purpose. ADOL-C is
the earliest implementation using C programing language,
and is still under development [9]. Hogan [10] proposed a
C++ version library which is called ‘‘Adept’’ by utilizing
expression template to provide compile time-time represen-
tation of mathematical expressions. A Java implementation
calledADiJac uses source transformation rather than operator
overloading to generate derivatives for functions expressed
in Java bytecode [11]. These implementations do not give
enough thought to nowadays’ techniques of parallelization
which can get better performance for large scale problem.
For bundle adjustment, Ceres Solver [12] implements an
OpenMP supported automatic differentiation which enables
parallel acceleration by exploiting multiple cores in CPU.
In this paper, we proposed an even faster OpenCL-based auto-
matic differentiation(CLAD) which also uses C++ template
and operator overloading.1 Forward and reverse computa-
tional sequences are generated from computational graph by
using C++ style function formulation. Then, these sequences
are executed on parallel computing devices very efficiently.
The rest of this paper is split into following several sec-
tions. Section II introduces the automatic differentiation in
a brief way. In Section III, we demonstrate the problem
of bundle adjustment. Section IV shows how is the CLAD
implemented. In Section V, it shows that CLAD can be used
for bundle adjustment problem efficiently. Finally, we draw
conclusions in Section VI.

II. AUTOMATIC DIFFERENTIATION
Truncation error-free numerical values of the derivatives
rather than closed form expressions or approximate numer-
ical derivatives are obtained by automatic differentiation.
This largely benefits from the combination of chain rule
and computer programming. A function can be decomposed
into elementary operations which include binary arithmetic
operations and unary functions. Binary arithmetic operations
typically are additions, subtractions, multiplications and divi-
sions. Unary functions usually are transcendental functions
such as trigonometric functions, exponential and logarithmic
functions. As an example, Fig. 1 shows the computational
graph of two real functions which are defined in Eq. (1).
A computational graph is a directed acyclic graph(DAG).

f1(x1, x2) = sin(x1)+ ln(x2)

f2(x1, x2) = ln(x1)+ sin(x1) ∗ x2 (1)

These two functions can be regarded as one vector function
f : R2

7→ R2. Derivatives related to xi can be computed in
two ways: forward mode and reverse mode.

1Source code is available from https://github.com/arczee/CLAD/

FIGURE 1. Computational graph of Eq.(1)

A. FORWARD MODE
Let vi−n = xi, i ∈ [1, n] be the inputs, vi, i ∈ [1, l] be the
intermediate variables, and ym−i, i ∈ [m−1, 0] be the outputs
of functions fk , k = m − i. A three-part notation is used to
formalize the forward computation of derivatives.

In Table 1, relation j ≺ i means that vi depends directly
on vj. In computational graph, this also means that node vi is a
direct successor of node vj. ϕi is the function describes an ele-
mentary operation. ui = (vj)j≺i is the set of all predecessors
of vi. Let the input be a vector x = [x1, . . . , xi, . . . , xn].We set
ẋ = [0, . . . , 1i, . . . , 0], then ẏm−i must be the derivative
∂fk�∂xi we wanted to calculate by carrying out the proce-
dure depicted in Table 1. Forward mode is quite straight-
forward and easy to understand. It is efficient for function
f : R 7→ Rm. But for function f : Rn 7→ R or f : Rn 7→ Rm,
the procedure in Table 1 must run n or n × m times and
it is very inefficient. A reverse mode computation for the
derivatives is preferred for such case.

TABLE 1. Forward mode computation.

B. REVERSE MODE
In reverse mode, we think in an opposite way. The chain
rule which is ẏ = f ′(x)ẋ in forward mode is changed to
a dual form x̄ = ȳf ′(x) in reverse mode. We explain it in
a graphic way: it means that the derivative of function to
node vi can be expressed as multiplication of adjoint of its
successor and derivative of its successor to itself. Adjoint
means v̄i = ∂y/∂vi. Therefore, the derivative evaluation
procedure is listed in Table 2.

This procedure consists of two parts. The first part evalu-
ates the value of the function in forward mode while the sec-
ond part evaluates the derivatives of functions in reverse
mode. If function f : Rn 7→ Rm is scalar-valued, then the

VOLUME 6, 2018 11147



Y. Shen, Y. Dai: Fast Automatic Differentiation for Large Scale Bundle Adjustment

TABLE 2. Reverse mode computation.

derivatives can be figured out just one time. Otherwise, this
procedure should be run m times by providing ȳwith ei at one
time. The final Jacobian matrix is obtained.

III. BUNDLE ADJUSTMENT
A. BASIC PRINCIPLE
Before applying automatic differentiation to bundle adjust-
ment, we first demonstrate the basis of bundle adjustment.
In computer vision, 3D points in space are projected onto the
2D image plane of cameras(see Fig. 2). Usually, if we want to
build a 3D model of a scene, a series of camera imaging are
needed to make the triangulation available [13]. Let Pj be the
projection matrix of the jth camera in the imaging sequence
and Xi be the ith point of the scene. The projection matrix is
an arbitrary homogeneous 3× 4 matrix having rank 3.

FIGURE 2. Perspective projection of 3D point X on image point x. Note
that x̃ is the actual measured image point.

It can be further decomposed as K[R|t], where K is 3× 3
upper triangular intrinsic matrix of the camera, R and t are
3 × 3 rotation matrix and 3 × 1 translation vector which are
referred to as the camera’s extrinsic orientation parameters.
The total numbers of cameras and 3D points are m and n
respectively. The 2D projection of point Xi onto Pj is

λxij = PjXi. (2)

Let projection error be ‖xij − x̃ij‖. For BA, the intrinsic
matrixK can be known and fixed, butR and t should be tuned
to get better projection errors, and so are the 3D point coor-
dinates. Reconstruction problem also referred to as structure

from motion(SfM) estimation problem which is used to esti-
mate extrinsic parameters of cameras and coordinates of 3D
points under the situation that image points of multiple views
are known. Due to the noise generated by feature point extrac-
tion and reconstruction algorithms, the estimated parameters
are not optimal. So bundle adjustment algorithm can come
in handy to reduce the errors. BA problem is usually solved
by trust region approaches such as Levenberg-Marquardt,
Dogleg and two dimensional subspace minimization. Both
these methods need to compute the Jacobian matrix to obtain
steepest-descent step and Newton step. We let estimated pro-
jection be x̃ = f (p), where p is the combination of camera
parameters and 3D point coordinates. In each iteration of
the non-linear optimization method-LM, a series of vectors
{p1,p2, . . . }, can converge towards a local minimum that
minimizes the quantity

‖ x− f (p+ δp) ‖≈‖ x− f (p− Jδp) ‖=‖ ε − Jδp ‖ (3)

where J is the Jacobianmatrix ∂f (p)/∂p. The solution search-
ing step δp can be solved by so-called augmented normal
equation:

(JT J+ µI)δp = JTε (4)

where I is an identity matrix. Let B = JT J+µI, the damping
term µ enables B to be positive definite. Solving Eqn. 4 then
becomes solving a positive definite system.

B. ABOUT THE JACOBIAN MATRIX
In a large scale optimization problem, such as BA, millions
of parameters including cameras and 3D points may exist.
We split these parameters into two or three groups. The first
group is a set of 3D points, denoted as {a1, · · · , ai, · · · , aL}.
The second group is a set of external parameters of cameras,
denoted as {b1, · · · ,bi, · · · ,bM }. There may exist the third
group containing the intrinsic parameters of cameras, and
denoted as {c1, · · · , ci, · · · , cN }. If the third group is fixed,
then automatic differentiation is not needed for this group.
If all images are taken from the same camera, then N = 1.
For any image point, we have xTijk = f([aTi , a

T
j , a

T
k ]
T ), which

means the projection of the ith 3D point on the jth cam-
era position, and corresponding to the kth camera intrinsic
parameter. In BA problem, a uniform function F can be used
to demonstrate the relations between cameras, 3D points and
image points. First, put all parameters together and form a
parameter vector as

p = [aT1 , · · · , a
T
i , · · · , a

T
L ,b

T
1 , · · · ,b

T
j , · · · ,b

T
M ,

cT1 , · · · , c
T
k , · · · , c

T
N ]

T (5)

and let all image points to be the result vector as

x = [xT111, x
T
121, · · · , x

T
ijk ]

T (6)

which is caused by function F. We assume that camera intrin-
sic parameters are known and fixed. So xijk can be simplely
denoted as xij. Note that the number of image points in x
is not L × M × N . Because not all 3D points have their

11148 VOLUME 6, 2018



Y. Shen, Y. Dai: Fast Automatic Differentiation for Large Scale Bundle Adjustment

corresponding image points on all cameras. Then, we form
the function as x = F(p). This is an extremely complicated
non-linear function. But we can obtain large sparsity when
differentiate it with respect to parameter vector p and get large
scale sparse Jacobian matrix J . This is due to the fact that
there are a large number of zero blocks:

∂xTij
∂au
= 0 u 6= i

∂xTij
∂bv
= 0 v 6= j

(7)

LetAij = ∂xij/∂ai,Bij = ∂xij/∂bj. They are matrix blocks
with size 2 × 6 and 2 × 3 for example. The exact form of
Jacobian matrix J consists of a large number of Aij and Bij,
which is shown in Eq. (8).

J =



A11 0 0 B11 0 0
0 . . . 0 . . . 0 0
0 0 A1m B1m 0 0
. . . 0 0 0 . . . 0
0 . . . 0 0 . . . 0
0 0 . . . 0 . . . 0

An1 0 0 0 0 B11
0 . . . 0 0 0 . . .

0 0 Anm 0 0 B1m


(8)

Sparse matrix J is viewed in block form. The size of its
block rows is the number of image points. The block row that
corresponds to xTij contains the derivatives of x

T
ij with respect

to parameter p, but only Aij and Bij are non-zero. This form
of Jacobian matrix J enables us only to compute and storeAij
and Bij.

IV. CLAD: AN IMPLEMENTATION OF
AUTOMATIC DIFFERENTIATION
In this section, we implement a library of parallelized auto-
matic differentiation called CLAD for ‘‘large-small’’ prob-
lems with OpenCL [14], [15] and hardware acceleration
support. ‘‘large-small’’ means that one single computational
graph is small, but there are a large number of such com-
putations. Just like in bundle adjustment, the computation of
derivatives of a single image point is relatively small, while
there are millions of image points need to be addressed. The
CLAD library is well parallelized and consists of two parts.
The first part generates computational graph and sequence
on the host side in the framework of OpenCL. Template and
function overloading features [16] in C++ are utilized for the
construction of computational graph. Another part executes
the generated computational sequences in parallel by feeding
proper data to the device side.

A. HOST SIDE PROGRAMMING
In order to simplify the usage of this library from user’s
viewpoint, the construction of functions should be in an
intuitive and convenient way just like writing it with the

original C/C++ style language. An example of the function
mentioned in Section II can be written as follows.

To obtain such simplicity, some crucial tasks should be done.
First, structure ADV_data is introduced and defined as

This structure represents a node in the computational graph
and a variable in programming. OpType is an enumeration
type that indicates the operation of the node. In addition,
we add CONST in it and regard a const value as a node,
and also add PLACEHOLDER to indicate which node is an
input variable. For each node, we assigned a unique id to it
starting from zero.Wrapper class ADV is designed as the final
variable representation for writing a mathematical formula
and is defined as follows.

The purpose of using shared_ptr to create node ADV_Data
dynamically is to make sure that ADV variables can across
over functions in C/C++ to implement the structure of func-
tions in mathematics. As an example, dot3(ADV<T> *a,

FIGURE 3. Computational graph, forward and reverse computational
sequences generated by CLAD for Eq. (1).

VOLUME 6, 2018 11149



Y. Shen, Y. Dai: Fast Automatic Differentiation for Large Scale Bundle Adjustment

ADV <T> *b) implement inner product for 3D vectors and
returns an ADV variable can capture all the structure of
operations.

All of the constructors and assignment operators in this
class insure correct variable generation. All of the operations
between variables are implemented out of the class by func-
tion or operator overloading. Each overloading creates a new
variable that describes the operation of its predecessors. The
overloaded operator of the addition operation is written as
follows.

For double-float precision, we define ADV<double> as
DOUBLE for short. This is used in most situations. By cre-
ating variables with different operations, an underlying com-
putational graph of the object function is then constructed.

B. COMPUTATION SEQUENCE GENERATION
So far as computational graph is obtained, values and deriva-
tives of functions can be evaluated according to it. For the
purpose of parallelly computing values and derivatives of
functions which are projections and Jacobianmatrix blocks in
BA problem, a computational sequence that consists of nodes
in the correct order must be produced.

At first, a breadth-first search(BFS) is applied to generate
a list of nodes. By virtue of id of every node, getting the
forward sequence for function value computation is very easy.
Since each node with a larger id number must be successor
of nodes with lower id numbers. Then we simply get the
forward sequence by sorting nodes with respect to their ids
in ascending order. But for reverse mode sequence, we must
execute a topological sorting [17] to solve the dependency
problem(shown in Fig. 3). This algorithm is summarized in
Algorithm 1. As long as all the computational sequences are
generated, devices such as Multicore CPUs and GPUs can
then be utilized for parallel computing by providing them
computational sequences and input data.

C. DATA STRUCTURE
The organization of dataset for our CLAD system should
be taken into acount. For bundle adjustment, parameters
for projection including camera parameters and 3D points
become input variables for CLAD. But one image point only
corresponds to one camera and one 3D point. Most of the
time, intrinsic parameters of a camera are out of consideration
for bundle adjustment, while they still serve as input vari-
ables. In order to execute large scale automatic differentiation
through parallel computing on CPU/GPU, The large number

Algorithm 1 Topological Sorting for Generating Reverse
Computational Sequence
Require: Computational graph G = (V ,E)
Ensure: An reverse computational sequence L
1: Initialize counter array C recording in-degrees of each

node
2: for v in V do
3: Let s, t be predecessors of v
4: Increase the in-degrees of s, t in C
5: end for
6: while L is not full do
7: Find node v with zero in-degree
8: Add it to L in the back
9: Let s, t be predecessors of v
10: Decrease the in-degrees of s, t
11: end while

FIGURE 4. A BA example of data structure used in CLAD. There are three
parameter groups. The third group is fixed, which means its
corresponding derivatives are not needed.

of parameters must match the computational sequences well,
and shoule be processed on the device side efficiently. As we
discussed before, derivatives that computed in BA are split
into two parts:Aij,Bij, which are derivatives of image points
with respect to cameras and 3D points. For generalization, all
parameters can be split into K groups. The number of param-
eters in each group can beNi, i ∈ [0,K ), and the dimension of
a parameter in each group isDi, i ∈ [0,K ). Then tuples can be
formed by extracting parameters from each parameter group.
Tuples are elementary units that the automatic differentiation
machine should process, and have constraint that the sum of
total dimensions must be in accord with the number of input
nodes. Taking BA as an example, there are three parameter
groups which are intrinsic parameters of cameras,external
parameters of cameras and 3D point coordinates respectively.
Extracting parameters from them forms a tuple. One thing
that must be noted is that not all parameters need derivatives
and can be treated as fixed. In OpenCL, one work item can
handle a tuple, multiple tuple can be processed parallelly.
Tuple indices are used to indicate that which parameters
should be taken from each parameter group for each tuple.
We can see the corresponding data structure in Fig. 4.

11150 VOLUME 6, 2018



Y. Shen, Y. Dai: Fast Automatic Differentiation for Large Scale Bundle Adjustment

D. PARALLEL COMPUTING
OpenCL programing [18] consists of code of two sides.
On the host side, some preparatory work should be done,
including initialization, providing data and starting the ker-
nels. On the device side, kernels are executed in parallel on
OpenCL devices such as CPUs, GPUs and FPGAs. OpenCL
devices include many compute units(CU) that correspond to
workgroups when running kernels. Host side code specifies
how many threads(which are also called work items) to run
for a kernel code. Work items in the same workgroup run in
Single Instruction Multiple Thread(SIMT) mode and share
local memory. On-chip local memory is much faster than
off-chip global memory, but its size is limited. When pro-
cessing each tuple, there must be some memory space to
store values and derivatives of each node in the graph. For
tens of millions of tuples, the storage memory must be huge
and unnecessary. Because only the values of output nodes
and the derivatives of input nodes are needed to form the
final results. Thus, we can exploit the private registers in
each work item to store them temporarily. The size of private
registers per each work item is much device-dependent. For
AMD GPU, there may be 16384 128-bits registers per CU
that can be used by work items within a CU. Taking into
consideration that there are only tens of nodes within a graph,
the values and derivatives of each node can be stored in
private registers. By utilizing high-speed local memory and
private register, we can avoid slow global memory access and
boost the computing process. The data storage framework is
shown in Fig. 5

FIGURE 5. The data storage framework of CLAD under OpenCL. Node
infomations and parameters are provided by Host. Node informations are
cached in local memory, which include IDs, operator, operands, and
corresponding computational sequences. Very fast private registers are
used to cache value and derivative of each node.

The kernel code for automaticly processing each tuple is
very trivial. First, evaluate the value of every node according
to the forward sequence. Then evaluate the derivative of each
node according to the reverse sequence. The values of output
nodes(function values) can also be used to evaluate residual
errors for almost all of the optimization algorithms. The
primary pseudocode of the kernel is listed in Algorithm 2.
Function compute_vals calculate the value of the current

TABLE 3. Test datasets.

node, and compute_diffs calculate the derivatives of the cur-
rent node with respect to its one or two predecessors. Index
array fwIdx indicates the position of each node in the node
list and is also a forward sequence.

Algorithm 2 Kernel Function for Automatic Differentiation
Require: Node list NL, parameters P , tuple indices T I

forward sequenceFS , reverse sequenceRS , input nodes
IN , output nodes ON .

Ensure: function values V and derivatives D.
1: Initialize private register PV and PD to store values and

derivatives of each node.
2: Copy NL, FS and RS to LNL, LFS and LRS ;
3: Copy part of P to LV according to T I
4: for id in FS do
5: compute_vals(id , LNL, PV)
6: end for
7: Copy values of ON from PV to V
8: for id1 in ON do
9: Clear PD to 0, except that PD[id1] = 1
10: for id2 in RS do
11: compute_diffs(id2, LNL, PV , PD)
12: end for
13: Copy derivatives of IN from PD to D
14: end for

V. APPLICATION OF CLAD IN BUNDLE ADJUSTMENT
A. FORMULATION OF PROJECTIONS
Applying CLAD to bundle adjustment can be straightfor-
ward. Before writing the projection formula using CLAD,
the form of rotation should be specified. There are manyways
to represent rotation in 3D space, such as rotation matrix,
eular angle, quarternions and rodrigues parameters. The most
used representations in bundle adjustment are quarternions
and rodrigues parameters [19].

Quarternions are represented in the form: q = 〈s, v〉, and
rotation transformation of a 3D point Xi under the coordinate
frame of jth camera is

Rot(Xi) = q̃j · q(Xi) = q̃j ⊕ q(Xi)⊕ q̃−1j (9)

where q(Xj) turnsXi into a quaternion form 〈0,Xi〉, ‘·’ repre-
sents rotation transformation, and ‘⊕’ represents a Hamilton
product.

For rodriguez form, rotation is represented by an unitary
rotation axis vector k and a rotation angle θ , a point Xi can

VOLUME 6, 2018 11151



Y. Shen, Y. Dai: Fast Automatic Differentiation for Large Scale Bundle Adjustment

be rotated by the following rodriguez formula

Rot(Xi) = Xicosθ + (k× Xi)sinθ + k(k ∗ v(1− cosθ ))

(10)

While we can combine rotation axis and rotation angle
together and express rotation by a non-unitized vector. The
whole projection formula using rodrigues representation is
written as

X′ = Rot(X)+ t

x = f ·
[
X′(1)
X′(3)

,
X′(2)
X′(3)

]T
(11)

where f is the focal length, t is the cartesian translation vector
between the origins of the camera coordinates frame and the
world coordinate frame. This equation can be translated into
C++ style language as follows.

The constructed intrinsic computational graph is shown
in Fig. 6, which then is converted to computational sequences
for parallel computing of the Jacobian matrix blocks Aij
and Bij under OpenCL programming framework.

B. EVALUATION AND RESULTS
We evaluate our proposed CLAD on several large-scale bun-
dle adjustment datasets which are listed in Table 4 and are
known as bundle adjustment in the large(BAL) problem [20].
For comparison, Google’s Ceres Solver is introduced. Ceres
Solver is an open source library for solving large optimization
problems including bundle adjustment. The automatic differ-
entiation used in Ceres Solver can be accelerated by using
OpenMP which is a multi-threading framework that allows
the compiler to generate code for task and data parallelism.

FIGURE 6. The final computational graph of projection formula generated
by CLAD. The green nodes are input parameters including camera’s
paramters and coordinates of 3D point. the red nodes are coordinates of
image point as outputs.

TABLE 4. Runing times(s) of CLAD applied to bundle adjustment datasets.

FIGURE 7. Performance with different size of work group.

At first, due to the reason that there are many branching in
the kernel, work group size should be considered. By testing
Dubrovnik dataset on Intel XEON E5 CPU and AMD R9
290 GPU with different work group size, the result is shown
in Fig. 7. A better performance of the CPU is achieved with
work group size 32. While in the case of GPU, work group
size 8 is much better. The choice of work group size is
uncertain. Because there are all kinds of devices with all kinds
of hardware architectures. We usually leave this decision to
the system.

We run testing on two hardware platforms. One is com-
patible desktop PC. The desktop PC uses an Intel XEON
E5 2643 v2 CPU with 8G DDR3 RAM. An AMD R9 290

11152 VOLUME 6, 2018



Y. Shen, Y. Dai: Fast Automatic Differentiation for Large Scale Bundle Adjustment

graphics card is installed on the desktop PC to evaluate the
performance on GPU. Another one is a mobile workstation
with i7 4700MQ CPU and 8G DDR3 RAM. OpenCL 2.0 is
supported by both the CPUs and GPU. Compared to previous
versions of OpenCL, OpenCL 2.0 introduced SVM(Shared
Virtual Memory) which enables direct data sharing between
host and devices and avoids redundant data transfer opera-
tion. For OpenMP used in Ceres Solver, we set the number
of threads to the number of cores of each CPU to achieve
maximum performance.

The evaluation results are shown in Table 4. Regardless
which CPU is used, our proposed CLAD achieves a better
performance. CLAD runs about 3.6 times faster than Ceres
Solver. We get unfavorable results when test on GPU. Even
though AMD R9 290 has 40 CUs, but it works at 1Ghz
which is lower than 2.7Ghz and 3.2Ghz of i7 and E5 respec-
tively. Furthermore, the code of computing the forward and
reverse sequence of automatic differentiation involves many
branches. GPUs allow branching, but usually with much
performance penalty. However, CPUs have more complex
ALU and better branch prediction which are necessary for
the proposed implementation of automatic differentiation.

VI. CONCLUSION
In this article, We have first demonstrated how an automatic
differentiation system works by introducing forward mode
and reverse mode computation. For functions with n real-
value parameters, the reverse mode for derivatives is more
efficient than forward mode, which is more suitable for the
computation of large scale sparse Jacobian matrix in bundle
adjustment problems. We implement an automatic differenti-
ation library called CLAD based on template and overloading
futures in C++. In order to parallelize the computation in
the framework of OpenCL, we generate forward and reverse
computational sequences from computational graph. This
library enables us to write down the function formula ele-
gantly and then evaluate these derivatives rapidly even when
the provided input parameters are very large. We evaluate this
library on large scale bundle adjustment datasets. The result
shows that our implementation runs 3.6 times faster than
Ceres Solver which utilizes OpenMP parallel programming
model on the same hardware platform.

REFERENCES
[1] B. Triggs, P. F. Mclauchlan, R. I. Hartley, and A. W. Fitzgibbon, ‘‘Bundle

adjustment—Amodern synthesis,’’ in Proc. Int. Workshop Vis. Algorithms,
Theory Pract., 1999, pp. 298–372.

[2] Y. Gong, D. Meng, and E. J. Seibel, ‘‘Bound constrained bundle adjust-
ment for reliable 3D reconstruction,’’ Opt. Express, vol. 23, no. 8,
pp. 10771–10785, 2015.

[3] M. I. A. Lourakis and A. A. Argyros, ‘‘SBA: A software package for
generic sparse bundle adjustment,’’ ACM Trans. Math. Softw., vol. 36,
no. 1, p. 2, 2009.

[4] M. I. A. Lourakis and A. A. Argyros, ‘‘Is Levenberg–Marquardt the most
efficient optimization algorithm for implementing bundle adjustment?’’ in
Proc. 10th IEEE Int. Conf. Comput. Vis., vol. 2. Oct. 2005, pp. 1526–1531.

[5] C. Cadena et al., ‘‘Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,’’ IEEE Trans. Robot., vol. 32,
no. 6, pp. 1309–1332, Dec. 2016.

[6] H. Strasdat, J. M. M. Montiel, and A. J. Davison, ‘‘Real-time monocular
SLAM: Why filter?’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2010,
pp. 2657–2664.

[7] H. Strasdat, J. Montiel, and A. J. Davison, ‘‘Visual SLAM: Why filter?’’
Image Vis. Comput., vol. 30, no. 2, pp. 65–77, 2012.

[8] A. Griewank and A. Walther, Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation, 2nd ed. Philadelphia, PA, USA:
SIAM, 2008.

[9] A. Griewank, D. Juedes, and J. Utke, ‘‘Algorithm 755: ADOL-C: A pack-
age for the automatic differentiation of algorithms written in C/C++,’’
ACM Trans. Math. Softw., vol. 22, no. 2, pp. 131–167, 1996.

[10] R. J. Hogan, ‘‘Fast reverse-mode automatic differentiation using expres-
sion templates in C++,’’ACMTrans. Math. Softw., vol. 40, no. 4, pp. 1–16,
2014.

[11] E. I. Sluşanschi and V. Dumitrel, ‘‘ADiJaC—Automatic differentiation of
Java classfiles,’’ ACM Trans. Math. Softw., vol. 43, no. 2, pp. 1–33, 2016.

[12] S. Agarwal and K. Mierle. Ceres Solver. Accessed: Feb. 3, 2018. [Online].
Available: http://ceres-solver.org

[13] N. Snavely, S. M. Seitz, and R. Szeliski, ‘‘Modeling the world from
Internet photo collections,’’ Int. J. Comput. Vis., vol. 80, no. 2,
pp. 189–210, 2007.

[14] D. R. Kaeli, P. Mistry, D. Schaa, and D. P. Zhang, Heterogeneous Comput-
ingWith OpenCL 2.0, 1st ed. San Francisco, CA, USA:MorganKaufmann,
2015.

[15] A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg, OpenCL
Programming Guide, 1st ed. Reading, MA, USA: Addison-Wesley, 2011.

[16] E. Phipps and R. Pawlowski, ‘‘Efficient expression templates for operator
overloading-based automatic differentiation,’’ in Recent Advances in Algo-
rithmic Differentiation. Berlin, Germany: Springer, 2012, pp. 309–319.

[17] K. Kristensen, A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell, ‘‘TMB:
Automatic differentiation and Laplace approximation,’’ J. Statist. Softw.,
vol. 70, no. 5, pp. 1–21, 2016.

[18] T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, ‘‘Fast cal-
culation of computer-generated-hologram on AMD HD5000 series GPU
and OpenCL,’’ Opt. Express, vol. 18, no. 10, pp. 9955–9960, 2010.

[19] J. S. Dai, ‘‘Euler–Rodrigues formula variations, quaternion conjugation
and intrinsic connections,’’ Mech. Mach. Theory, vol. 92, pp. 144–152,
Oct. 2015.

[20] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, ‘‘Bundle adjustment
in the large,’’ in Proc. Eur. Conf. Comput. Vis., 2010, pp. 29–42.

YAN SHEN was born in Changde, China,
in 1985. He received the B.Sc. degree (Engineer-
ing) from Hunan Normal University, Changsha,
China, in 2008. He is currently pursuing the Ph.D.
degree at the College of Electrical and Information
Engineering, Hunan University. His research inter-
ests include robotics, computer vision, and image
processing.

YUXING DAI was born in Changsha, China,
in 1965. He received the Ph.D. degree in control
theory and control engineering from Central South
University, Changsha, in 2003. From 1995 to
2001, he was a Professor with the Department of
Electronic Engineering, Hunan Normal Univer-
sity. From 2001 to 2011, he was a Professor and
the Director with the Department of Electronic
Science and Technology, College of Electrical
and Information Engineering, Hunan University,

Changsha. Since 2011, he has been a Professor and the Dean with the
College of Physics and Electronic Information Engineering, Wenzhou Uni-
versity, Wenzhou, China. He is also the Director of the National-Local
Joint Engineering Laboratory of Digitalize Electrical Design Technology,
Wenzhou University. He has headed over 20 national, provincial, and indus-
trial projects. He has authored or co-authored 5 books, over 100 journal
and conference articles, and over 10 inventions. He holds 12 patents. His
research interests include modeling, control and optimization of power elec-
tronic systems, microgrids and computer numerical control machine tools,
computational intelligence, and engineering practice. He was a recipient
of 10 ministerial and provincial science and technology progress awards.

VOLUME 6, 2018 11153


	INTRODUCTION
	AUTOMATIC DIFFERENTIATION
	FORWARD MODE
	REVERSE MODE

	BUNDLE ADJUSTMENT
	BASIC PRINCIPLE
	ABOUT THE JACOBIAN MATRIX

	CLAD: AN IMPLEMENTATION OF AUTOMATIC DIFFERENTIATION
	HOST SIDE PROGRAMMING
	COMPUTATION SEQUENCE GENERATION
	DATA STRUCTURE
	PARALLEL COMPUTING

	APPLICATION OF CLAD IN BUNDLE ADJUSTMENT
	FORMULATION OF PROJECTIONS
	EVALUATION AND RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	YAN SHEN
	YUXING DAI


