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ABSTRACT In this paper, we use hyper-network methods to identify the critical elements of a
cyber-physical system (CPS) under data attack according to IEC 61850. The related works are introduced
first, such as cyber offensive tools, procedures, and data attack models. Some definitions of a hypergraph are
presented. Then, considering the functional attributes of logical nodes, a hyper-network model of substation
auto system (SAS) is proposed using hyper-graph theory. On this basis, a CPS model that takes into account
the functional influence after data attack is established. In addition, combinedwith the analysis of the network
model, the efficiency indexes are given to evaluate the effectiveness of the CPS under data attack. The reasons
why we choose these indexes in network and hyper-network model are also explained. Finally, the analysis
in the case study illustrates that the method proposed is helpful for identifying critical elements of the CPS,
which provides a new avenue for future vulnerability analysis research.

INDEX TERMS Cyber-physical system (CPS), critical elements identification, data attack, hyper-network
model, IEC 61850.

I. INTRODUCTION
Cyber-physical systems (CPS) are physical and engineered
systems whose operations are monitored, coordinated, con-
trolled and integrated by a computing and communication
core [1]. Scholars and researchers believe that the combi-
nation of CPS and power systems is an important techni-
cal basis for the development of smart grids. In addition
to descriptions from the infrastructure perspective [2], [3],
several studies have focused on control and communication
systems and their interaction with the physical system in a
smart grid [4]–[6]. Tight coupling between cyber and physical
systems introduces new security concerns [2].

Several outages worldwide due to attacks on the cyber
network of power systems have generated considerable recent
research interest. Numerous experiments have established
modeling methods and testbeds to study the security issues of
CPS. Petri nets [7], the bi-level model [8], Markov games [9]
and graph theory [10] have been used to model the security
problems of CPS. A variety of factors, such as protection
systems [11] and the attacker’s total budget [8], have been
considered in themodeling processes. Several prominent CPS
security testbeds are listed in [12]. The smart grid secu-
rity testbed at Iowa State University, named PowerCyber
testbed, is comprehensive [13]. It has been used to implement
and evaluate the effectiveness of attacks on several cyber

targets, such as Automatic Generation Control (AGC) [14],
Supervisory Control And Data Acquisition (SCADA) [15],
Wide-Area Protection systems [16]. However, PowerCyber
testbed has not been used for research on Substation Auto
System (SAS), which is the fundamental cyber and physical
component of smart grid. Markov decision process is adopted
to the model cyber-physical security problem for substations
in power grid considering the competition between attacker
and defender [17], using a testbed built in [18]. This is
useful to study the interactions between a complex power
system and the Information and Communications Technol-
ogy (ICT) system in a substation. A white box test based
on internal structures is helpful for studying the mechanisms
of offense and defense. There is still a need for a detailed
modeling method of SAS according to common criteria in
white box tests because implementing attacks on SAS is an
effective means to affect the normal operations of power CPS.
Ref. [19] proposes a cyber-physical interface matrix for reli-
ability modeling and analyzing of modern substation pro-
tection systems based on IEC 618550, which embodies the
characteristics of white box test. The definition of white box
test from engineering science is contrary to black box test
that can be seen only in terms of input and output without
any knowledge of the internal workings. The finer-grained
models are helpful to evaluate the attack profit and defense
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efficiency in CPS security white box experiments. Moreover,
the game process between offence and defense will always
exist in a centralized or distributed CPS. Therefore, the identi-
fication of critical elements is the main task in a vulnerability
assessment, which is the focus of this paper.

Reference [10] proposes a mathematical framework for
cyber-physical systems and attacks from system-theoretic
and graph-theoretic perspectives. Graph theory [20] and
topology theory [21], [22] are usually used to evaluate
vulnerability, but there are problems with applying normal
graph or topology theory to CPS analysis. One is that the
heterogeneity of nodes cannot be described. Another is that
‘‘system of systems’’ or ‘‘network of networks’’ is dif-
ficult to define [23]. However, ‘‘hyper-network’’ is feasi-
ble for a network which has heterogeneous nodes and is
a network of networks. Hyper-networks have been used as
a tool in research on supply chains [24]–[26] and intel-
ligent decision-making [27], [28] by A. Nagurney. Addi-
tionally, hyper-networks have been used in biology [29],
the Internet of Things [30], public crisis management [31],
military communication networks [32], [33], air defense sys-
tems [34], and weapon system of systems [35]. In this paper,
we present a novel SAS model based on hyper-network
to identify the critical elements of the CPS according to
IEC 61850.

Data attack is a common and direct way to cause an out-
age. It can be implemented in any procedure, such as data
generation, communication, storage and application. Several
studies have focused on data attack in CPS with respect to
defense [36] and offense [37], [38]. The Markov process [39]
and semi-Markov process [40] have been used to model
cyber data attacks. The precondition of our research is that
data attacks are assumed to be successfully implemented.
Thus, attack tools, procedures and typical methods are only
introduced in Section II as Related Work. The remainder
of this paper is organized as follows. Section III presents
some definitions of hypergragh, which are used in our work.
Section IV illustrates the application of the hyper-network
model to identify critical elements of a SAS according to
IEC61850. Section V establishes a simple CPS model based
on the model built in Section IV. The effectiveness evaluation
method of a CPS under data attack is proposed, and the result
analysis is provided in Section V. Finally, the conclusion and
future research are proposed in Section VI.

II. RELATED WORK
A. CYBER OFFENSIVE TOOLS AND PROCEDURES
With the development of smart grid, increasingly more
devices, such as IEDs, devices in ICTs and SCADA sys-
tems, are exposed to attacks by cyber offensive tools. The
cyber attacks on power facilities are roughly defined as
two stages: intruding target system and creating disruptive
impacts [17]. However, a complete cyber attack process con-
tains seven phases [41], which are chronologically listed
in TABLE 1.

TABLE 1. Cyber attack process procedures and tools.

B. DATA ATTACK MODEL
By applying the tools listed in TABLE 1, a cyber attack can
be implemented on SAS, Energy Manage System (EMS) and
Market Management System (MMS) in smart grid. The data
obtained by sensors in SAS are the foundation of data collec-
tion and calculations in SCADA system. SCADA telemetry
data are fed into the state estimator (SE) module of EMS,
where the SE module provides an estimate base power flow
and network topology that is sent to the security constrained
economic dispatch (SCED)module ofMMS. The data in SAS
resemble the information passing through the human nervous
system, which helps to perceive the physical world and con-
trol behaviors. Data attacks on SAS alter the operational state
and market clearing results of power system.

Attack methods are not the focus of this paper. Data attacks
on SAS are classified by their effects that refer to the clas-
sifications in electronic countermeasures (ECM). According
to the attack impact, an attack can be divided into a data
jamming attack or a data tampering attack.
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A data jamming attack seeks to make a device or net-
work resource unavailable to users. For example, a denial
of service (DoS) attack is a typical data jamming attack that
is accomplished by flooding the targeted device or resource
with superfluous requests in an attempt to overload systems
and prevent some or all legitimate requests from being ful-
filled [42]. Examples of a DoS attack are Ping of Death,
UDP flood, and SYN flood. A TCP-SYN Flood, for instance,
is an application layer DoS attack that takes advantage of
TCP protocol vulnerabilities. It sends a large number of semi-
connection requests to the target server by injecting false
source addresses into messages and disenabling the Three-
Way Hand Shake between the target server and the node
being attacked. This exhausts the target server resources
and makes the server unable to answer normal connection
requests. The impact of a power system under different data
jamming attacks can be evaluated with building power and
communication joint simulation platforms [12].

A data tampering attack is an attempt to stealthily alter data
for the purpose of deceiving bad data identification modules
and causingmisoperations. False data injection attack (FDIA)
is a typical data tampering attack that makes the user believe
that the altered data reflects the real system state. Here,
the user represents the control center or logical node with
computing functions. FDIA is an attack on the SE function,
which is proposed by Liu et al. [43],

z = h (x)+ e (1)

where z ∈ Rm is the meter measurements vector, x ∈ Rn rep-
resents system state variables, e ∈ Rm is the Gaussian mea-
surement noise, where ej ∼ N

(
0, σ 2

e
)
, j = 1, 2, · · · ,m, and

h (x) = (h1 (x1, x2, · · · , xn) , · · · , hi (x1, x2, · · · , xn) , · · · ,
hm (x1, x2, · · · , xn))T, hi (x, x2, · · · , xn) is a function of
x1, x2, · · · , xn.
A SE based on a linear DC power flow model in EMS, for

example, is used to find an estimate x̂ of X, which is the best
fit of the measurement z according to (2),

z = Hx+ e (2)

where H =
(
hi,j
)
m×n [43].

If the attacker is assumed to have the ability of control-
ling k meters, there can be a nonzero injected attack vector
a = Hc and ‖a‖0 ≤ k. According to (3), once the state vectors
x and x+c are both valid in the DC power flow model, x is
observationally equivalent to x+c for the control center. This
implies that the injected attack vector a is unobservable and
there is no detector that can distinguish x from x+c [44].

z = Hx+ a+ e = H (x+ c)+ e (3)

In addition to numerous studies on the FDIA targeted at
SE of a power grid, there have been studies that focus on
the SE of a substation [45]–[47] and the corresponding FDIA
methods [49]. Reference [48] studies the preconditions and
the smallest attack cost of unobservable FDIAs on current
and voltage sampling sequences from TCTR (Current Trans-
former) and TVTR (Voltage Transformer).

In this study, it is assumed that all the attacks on logical
nodes are successful. Next, the impact on the CPS is analyzed
after each logical node type fails to work properly under data
attack.

III. DEFINITIONS OF A HYPERGRAPH
A. HYPERGRAPH
Reference [49] lists ten important problems in network
research. One of these problems is the ‘‘network of
networks’’, that is, the problem of interaction between
heterogeneous networks. Hyper-network methods should be
considered when the nodes in the network are no longer
homogeneous. The hypergraph was proposed by Berge
in 1970 [50]. It is the most common way to model hyper-
networks and is a tool for studying the influence of the
interaction between networks [51].

A hypergraph H is a pair H = (V ,E) where
V = {v1, v2, · · · , vn} is a finite set of vertices, and E =
{e1, e2, · · · .em} is the set of the hypergraph’s edges. ei is
an edge of the hypergraph, which is a non-empty subset
of V [50], [52].

ei 6= H (i = 1, 2, · · · ,m) (4)
m⋃
i=1

ei = V (5)

B. INCIDENCE MATRIX OF THE HYPERGRAPH
A hypergraph can be represented by an incidence
matrix I (H). The columns in I (H) correspond to the hyper-
edges e1, e2, · · · .em respectively. The rows in I (H) corre-
spond to the vertices v1, v2, · · · , vn respectively. The entry
bij is defined in (6).

bij =

{
1, vi ∈ ej
0, vi /∈ ej

(6)

C. ADJACENCY MATRIX OF THE HYPERGRAPH
If a hypergraph H is connected, its adjacency matrix A (H)
is symmetric, non-negative and irreducible [53]. The diagonal
entries of A (H) are zero, and the other entries are the number
of hyper-edges that contain both vertices vi and vj. The entry
aij is defined in (7) and (8).

aij =


m∑
k=1

akij, i 6= j

0, i = j
(7)

where

akij =

{
1, if vi, vj ∈ Ek
0, else.

(8)

D. DEGREE CENTRALITY
Given a subset S ⊆ V , and a subset of the edge index set
J ⊂ {1, 2, · · · ,m}, the section hypergraph HSec induced by
S and J is defined as

HSec =
(
S,
{
ej ∩ S

∣∣j ∈ J , ej ∩ S 6= ∅}) (9)
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FIGURE 1. Functions of the T1-1 substation.

Given a vertex vi ∈ V , HPar (vi) is defined as a star
section hypergraph of H induced by vi and its connected
edges. CDegree (i) is the degree of vi, defined as the number
of edges in HPar (vi). It can be calculated from the incidence
matrix I (H).

CDegree (i) =
m∑
j=1

bij (10)

E. SUB-HYPERGRAPH CENTRALITY
The eigenvalues and eigenvectors of the adjacency
matrix A (H) help to calculate the sub-hypergraph central-
ity. Let H = (V ,E) be a simple hypergraph of order N .
If vi ∈ V , then the sub-hypergraph centrality CSH (i) can be
expressed as:

CSH (i) =
N∑
j=1

(
uij
)2 eλj (11)

where A (H) = UDUT , uij are the entries of an orthogonal
matrix U =

(
uij
)
whose columns are the corresponding

eigenvectors to the eigenvalues λj, and the eigenvalues are
the diagonal entries of D = diag (λ1, λ2, · · · , λN ) [54].

IV. HYPER-NETWORK MODEL OF SAS
A. MODEL
The T1-1 transmission substation model in IEC 61850 has
one incoming line and two outgoing lines. Although it has a
simple structure, its protection scheme and associated control

functions are in commonly used for other types of transmis-
sion substations. Fewer lines and equipment make it easy
to extend this model to the logical nodes tier and to be
depicted in a limited figure area. Therefore, a T1-1 small-size
transmission substation is used as an example in this study.
The functions of a T1-1 SAS are shown in the left part of
Fig. 1. Each function consists ofmultiple logical nodes (LNs).
A logical node (LN) is a subfunction located in a physical
node, which exchanges data with other separate logical enti-
ties. The links between logical nodes are listed in TABLE 2.
The T1-1 substation has four bays: E01, E02, E03 and D01.
The E01 and E03 are identical in structure and function.
Using the distance protection in E03 as an example, the green
rectangles in the red circle F6 are the logical nodes which
participate in this function. In the right part of Fig. 1, green
rectangles represent logical nodes, blue ellipses represent
the three levels that are listed in TABLE. 3, and red circles
represent functions F5 and F6. F5 is a metering and mea-
surement function that contains several LNs such as MMXU,
MMTR, TVTR, TCTR and IHMI. Measuring (represented as
MMXU) is for the purpose of operation. It acquires data from
current transformers and voltage transformers, and calculates
the measurands. For example, r.m.s. values for current and
voltage can be calculated in F5. These values are normally
used for operational purposes such as power flow supervi-
sion and management, screen displays, and state estimation.
Metering (represented as MMTR) is for the purpose of com-
mercial behaviors. It acquires data from current transformers
and voltage transformers and calculates the energy. F6 is the
distance protection function containing several LNs such as
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TABLE 2. Logical node connection relationships of each function.

IHMI, ITCI, ITMI, PDIS, TCTR, TVTR and XCBR. The
line distance protection starts and trips in cases when the
changes in line impedance, admittance or reactance exceed
the predefined limits [55]. The blue solid line between the
logical nodes represents logical connections, which is the
communication link between logical nodes. It is defined as
an edge in a network model. According to [56], only data
contained in logical nodes can be exchanged. The purple
dashed line represents the mapping of the logical node to the
device.

In a normal network model, the connections between log-
ical nodes are obvious, but the logical node’s participation
in different functions is difficult to show. A hyper-network
model can clearly show this participation. In the hyper-
network model of SAS, a function which consists of a set
of logical nodes is considered a hyper-edge. In this way,
the logical node that participates in multiple functions is
obvious. The incidence matrices and adjacency matrices in
the network model and in the hyper-network model can be
derived from TABLE 1. These matrices are used to calculate
the centrality measures to identify the critical elements in
an SAS.

At the station level, the CALH signals an alarm and warns
the operator to take action. A RBRF is a breaker failure
protection that is a back-up protection and is activated only
when the main protection fails. Man-in-the-loop and back-up
protection are not considered in this paper. Therefore, CALH
and RBRF are not included in TABLES 2 and 3.

TABLE 3. Levels of SAS.

B. TOPOLOGY ANALYSIS
General graphs cannot fully characterize some real world
networks. While analyzing the T1-1 substation, the logical
node must be attributed to the functions it participates in.
This can be performed with a hyper-network model described
above or a bipartite graph model in which logical nodes and
functions are divided into two categories. However, only the
connections between the two categories in a bipartite graph
are shown. With a bipartite graph, analyzing connectivity,
aggregation and other topological properties is difficult. It is
mainly used to solve the maximum matching problem or per-
fect matching problem, which is not included in this study.

A hyper-graph, which can be described in terms of an
analytic form has advantages. First, the matrix expression
of hyper-graph can be easily processed with a computer.
Second, the hyper-edge can be restructured in accordance
with different requirements. This is an advantage for mod-
eling reconfigurable systems. Finally, a matrix describes a
snapshot of a fixed structure and a series of snapshots cor-
respond to a series of moments. This makes it possible for
a hyper-graph to simulate a time-varying system. However,
there are also drawbacks, such as the neglect of connec-
tions between nodes. Moreover, some indices are difficult to
comprehend intuitively or to extend from a general graph.
Therefore, we choose typical indexes from general graph and
we extend them to hyper-graph for a detailed analysis.

The heterogeneous logical nodes in an SAS network play
different roles in structure and function. Identifying critical
nodes is important because it helps with properly estab-
lishing the defense strategies of the SAS. Researchers in
computer science and physics have studied critical node
identification methods. Algorithms have been proposed and
their criteria for identifying critical nodes are diverse. There
does not exist a universal index suitable for every situation.
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A comprehensive understanding of the similarities and dis-
similarities in different methods can help us make the correct
selection in application.

The network topological structure determines the influence
of every node in it. The majority of existing critical node
identification methods only use the structural information
without considering the specific dynamic process. Struc-
tural centrality measures are proposed to evaluate the nodes’
importance in terms of the structural information [57]. The
influence of a node can be determined by its ability to impact
others. Two categories of centrality measures, neighborhood-
based centralities and path-based centralities, are summarized
in [57]. A straightforward measure called degree centrality
is a typical neighborhood-based centrality, which is defined
by counting the number of a node’s immediate neighbors.
According to degree centrality, the more neighbors a node
has, the more critical it is. While considering the information
propagation process, a node is more critical when the paths
through it spread information faster and broader. These can
be calculated by path-based centralities.

Identifying critical elements in the general logical func-
tion model of SAS according to IEC 61850 series is the
research objective in this study. As mentioned above, it can
be represented as an undirected and unweighted graph or a
hyper-graph. LNs are nodes, the logical link between a pair
of LNs is an edge, and a function is a hyper-edge. The
simple parameters of the T1-1 network are listed in Table 4.
The T1-1 network is small because its number of nodes is
19. Its average degree centrality is far less than the number
of nodes; thus, this network is sparse, like some technical
networks.

TABLE 4. The simple parameters of T1-1’s network.

In this graph model, structural centralities help us
to determine the LNs that are more critical. First,
neighborhood-based centralities are discussed. Degree cen-
trality is the simplest measure to evaluate a node’s influence,
which can be calculated by the number of its neighbors and
is equal to the number of its connections. This measure is
widely used because of its simplicity and good performance
in some scenarios. For instance, attacks on nodes with a
larger degree destroy the scale-free networks and exponential
network more effectively than attack on nodes with other
complicated indexes such as betweenness centrality, close-
ness centrality and eigenvector centrality [58]. A frequency
distribution histogram of the T1-1 network is similar to the

Poisson distribution. It can resemble an exponential network
where degree centrality can then be selected to analyze
the importance of the nodes under data attack. In addition,
LocalRank is a centrality measure which fully considers all
the fourth-order neighbors of each node. It is not suitable
for the T1-1 network because its characteristic path length
is less than 3. ClusterRank considers both the nearest neigh-
bors and the interactions among them [57]. However, it is
defined in a directed network, rendering it unsuitable for the
T1-1 network. Since the network diameter and radius are
5 and 3 respectively, the coreness values of all nodes are very
small and indistinguishable. Therefore, a coreness measure is
unsuitable as well.

Among path-based centralities, the eccentricity of a node
is the maximum distance of all the shortest paths to the other
nodes. Maximum indexes fail to evaluate the importance of
nodes because it is affected by unusually long paths in a
network model. Closeness centrality can be calculated by
the inverse of the harmonic mean distances, rendering it
easily affected by the extreme values, particularly the shortest
path lengths. Unlike closeness centrality, Katz centrality is
more comprehensive because it considers all the paths [57],
which increases its computational complexity. The subgraph
centrality of a node is defined as a weighted sum of the
numbers of all closed paths starting from and ending at it.
Compared with the betweenness centrality of a node, which
can be computed by counting all of the shortest paths passing
through it, the subgraph centrality of a node is more suitable
for this study because data attack on a closed loop information
flows can easily confuse the LN.

In this study, degree centrality, which is a neighbor-based
centrality, and subgraph centrality, which is a path-based
centrality, are selected as the main indexes to identify the
critical LNs in the T1-1 network model from a topological
structure aspect. Additionally, they are able to be extended to
hyper-graph easily and clearly defined in Section III. In Part C
of Section IV, the comparative analysis of these centrali-
ties between a network model and hyper-network model is
discussed.

C. CENTRALITY ANALYSIS
We use the concepts of degree centrality and sub-graph
centrality, which have been extended to hypergraphs in [55].
These concepts describe the different node characteristics that
enable the nodes to be ranked in the order of importance in the
hyper-network. The first parameter indicates the participation
of the node in different hyper-edges, and the second parame-
ter characterizes the participation of the node in different sub-
hypergraphs. In Fig. 2 the colored circles are logical nodes in
T1-1, where the size of each circle represents a node’s degree
centrality and the color of each circle indicates its sub-graph
centrality. The degree centralities of logical nodes in a net-
work model and hyper-network model can be calculated by
their corresponding incidencematrices and adjacentmatrices.

In the hyper-network model, a logical node’s degree
centrality and sub-hypergraph centrality can be calculated

VOLUME 6, 2018 16977



Y. FAN et al.: Method for Identifying Critical Elements of a CPS Under Data Attack

FIGURE 2. (a) network model of T1-1. (b) hyper-network model of T1-1.

by (10) and (11) respectively. In the network model,
the degree centrality and subgraph centrality can also be cal-
culated using (8) and (9), however, the incidence matrix I (H)
and adjacent matrix A (H) should be replaced by the cor-
responding definitions of I (G) and A (G) in normal graph
theory. The entry bGij of I (G) is defined in (12) and the entry
aGij of A (G) is defined in (13).

bGij =

{
1, vi ∈ eGj
0, vi /∈ eGj

(12)

aGij =

{
1, if

(
vi, vj

)
∈ EG

0, if
(
vi, vj

)
/∈ EG

(13)

where eGj is an edge and EG is the set of edges in graph theory.
Significant differences can be observed when comparing

the rankings introduced both by different centrality measures
and in different network models. First, we analyze the degree
centrality. The degree centralities of logical nodes in the
network model and hyper-network model can be calculated
by the corresponding incidence matrices. The relative degree
centralities in these models are plotted in Fig. 3.

The top three most central nodes in the two models are
identical. They are IHMI that represents human-machine
interface action and data, TCTR that represents a current
transformer’s device and data, and TVTR that represents a
voltage transformer’s device and data. These three logical
nodes are the most central ones and have more connec-
tions with other nodes; they appear most frequently in more
functions represented as hyper-edges. These three logical
nodes are the most vulnerable nodes based on the degree of

FIGURE 3. Ranking of logical nodes according to the relative degree.

centrality, and disabling one of them will exert a tremendous
influence on the SAS.

The ranking of the other nodes in the hyper-network is
different from the ranking in the network. For instance, ITCI
is ranked as the fourth logical node in the hyper-network but
does not appear among the top ten logical nodes in the net-
work. This implies that although ITCI has fewer connections
with other logical nodes, it appears in more hyper-edges that
represent more different functions in the hyper-network. ITCI
participates in 8 functions and has 2 connections with other
logical nodes, whereas PDIS participates in only 3 functions
even though it is ranked in the top three and has 5 connec-
tions with other logical nodes in the network model. The
network model does not provide the number of functions in
which a particular logical node participates. However, this

16978 VOLUME 6, 2018



Y. FAN et al.: Method for Identifying Critical Elements of a CPS Under Data Attack

information can be obtained directly from the hyper-network
model. The degree in the hyper-network model corresponds
to the number of functions in which a logical node partici-
pates. The node with a greater degree in the hyper-network
plays an important role in the system operation because dis-
abling such logical node through data jamming has a larger
impact on the system and the deviation produced by data
tampering with such logical node is spread to more functions.

FIGURE 4. Ranking of logical nodes according to the relative sub-graph
centrality.

The second measure discussed here is the sub-graph cen-
trality. As shown in Fig. 4, there are significant differences in
the ranking of the nodes’ relative sub-hypergraph centrality
compared with the relative sub-graph centrality calculated in
the network model. PDIS is ranked as the most central node
according to sub-hypergraph centrality, followed by ITMI
and IHMI. ITMI is the second central node in the hyper-
network model but is not among the top five logical nodes
in the network model, whereas PTDF exhibits the opposite
trend.

PDIS, for example, has the maximum sub-hypergraph cen-
trality, which implies that there are more closed walks of dif-
ferent lengths starting and ending at PDIS than at other logical
nodes. The contribution of these closed walks decreases as
the length of the walks increases in the derivation of (11) [54].
Therefore, PDIS’s closed walks pass through more functions,
and the influence of data attack aiming at PDIS will spread
more quickly because PDIS has many shorter closed walks.

The functions, logical nodes and logical connections in
Bay E03 are given in Fig. 5(a), similarly for Bay E01.
Fig. 5(b) shows the functions, logical nodes and logical con-
nections in Bay E02 and D01. The greater the sub-hypergraph
centrality of a logical node, the faster the influence of data
attack aiming at it accumulates and spreads. The greater the
degree centrality of a logical node in the hyper-network,
the wider the range of direct influence it has after a data
attack.

The degree and sub-graph centrality in a network model
can only reflect the relationship between logical nodes.
However, in the hyper-network model they express more
functional information through a hyper-edge, which repre-
sents a set of logical nodes in the same function in this study.

V. EFFECTIVENESS ANALYSIS
A. A CYBER-PHYSICAL SYSTEM MODEL
The hyper-network model of SAS is applied to build a CPS
model. The physical system is the IEEE 14 Bus test power
system. In a power system layout, a bus usually represents
a substation. If a transformer is present between two buses,
the assumption that the transformer and its associated buses
are located in the same substation is reasonable. Therefore,
the cyber system consists of 10 nodes and there are 11 nodes
if the control center is included. The cyber topology is shown
as the blue circles and lines in Fig. 6. In each substation
S/S k, the SAS consists of operating, protecting and monitor-
ing functions. A function consists of subparts called logical
nodes, which only exchange data with each other. In Fig. 6,
the layered chart in the left side represents the interlocking
function in Bay E01. It consists of six logical nodes: IHMI,
ITCI CILO, CSWI, XCBR, and XSWI, which are defined in
the IEC 61850 series.

B. EVALUATION METHODS OF EFFICIENCY AND DAMAGE
A logical node that is suffering from data jamming can not
work effectively. When it is not working, the node and its
associated logical connections are deleted from the network
model and hyper-network model. If a logical node is suf-
fering from data tampering, deviations will spread across
the network via logical connections. The evolution of the
SAS models under data attack can be observed in Fig. 5 and
the IEC 61850 series. For example, when PDIS is under a
data jamming attack, it cannot send data to XCBR in time.
The circuit breaker rejects actions and the power line is not
promptly disconnected.When PDIS is under a data tampering
attack, it sends data to XCBR by error and the misoperation
of the circuit breaker can occur.

The consequences of a data attack can be evaluated by the
effectiveness indexes of SAS. There are two effectiveness
indexes of SAS that are defined below according to attack
scenarios. The first index is link efficiency ELink (S/Sk),
which is used to assess the data link working efficiency
of substation k’s after a data jamming attack on its logical
node n. It mainly considers the remaining logical connections
between the two layers.

ELink (S/Sk)

=
1

NLevel − 1


∑
i∈GS

∑
j∈GB

enij∑
i∈GS

∑
j∈GB

einitialij

+

∑
i∈GB

∑
j∈GP

enijij∑
i∈GB

∑
j∈GP

einitialij


(14)

where einitialij is an entry of the initial adjacency matrix in the
network model and enij is an entry of the adjacency matrix in
the networkmodel after logical node n is attacked.GS ,GB and
GP are the subscripts set of the logical nodes in the substation
level, bay level and process level, respectively. The attributes
of the levels of the logical nodes are listed in TABLE 3.
NLevel is the number of levels.
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FIGURE 5. (a) Functions and logical nodes in Bay E03. (b) Functions and logical nodes in Bay E02 and Bay D01.

FIGURE 6. A Cyber-Physical System based on IEEE 14 Bus test power system.

The second index is function efficiency EFunction (S/Sk),
which can be used to assess the function realization efficiency
of substation k after a data tampering attack on its logical
node n. It is defined by the number of functions involved in
the closed walks that start and end at logical node n.

EFunction (S/Sk) =
Max {CSH (n)}n∈[1,NLN ] − CSH (n)

Max {CSH (n)}n∈[1,NLN ]
(15)

where CSH (n) is the sub-hypergraph centrality of logi-
cal node n and NLN is the number of logical nodes in
substation k .
The integrated efficiency of the SAS of substation k can

be defined in (16). It considers the connections between
the logical nodes in the network model and the functional
influence in the hyper-network model.

E (S/Sk) = αELink (S/Sk)+ (1− α)EFunction (S/Sk) (16)
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Algorithm 1 Effectiveness Evaluation After Data Attack on
Each LN in Some SASs

1: Input: IEEE 14 Bus test power system toppology and
parameters. Each SAS’s nodes, edges and hyper-edges.
2: Output: The nth LN’s tag n, En (CS), En (PS) and
Dn (CPS) after data attack;
3: Initialize: The power system load and the kth SAS’s
incidence and adjacency matrices of the initial graphs
and hyper-graphs I

(
GkBefore

)
, I

(
H k
Before

)
, A

(
GkBefore

)
,

A
(
H k
Before

)
;

4: for k ←0 to NS/S − 1 do
5: Calculate initial efficiency of each substation
E (S/Sk)Before;
6: end for
7: Calculate initial power system load PLoad_Before;
8: for n←0 to NLN − 1 do
9: for k ←0 to NS/S − 1 do
10: Do data link evolution after data attack on
logical node n in S/Sk ; /∗ Algorithm 2∗/
11: Calculate the effectiveness of substation
kE (S/Sk)After after data attack;
12: end for
13: end for
14: Calculate En (CS), En (PS)and Dn (CPS);
15: Output n, En (CS), En (PS) and Dn (CPS);

where α = 0.5 is assumed here. If the number of substations
in the cyber system is NS/S , then the efficiency of the entire
cyber system can be calculated by (17).

E (CS) =
NS/S∏
k=1

E (S/Sk)After
E (S/Sk)Before

(17)

If there is only data jamming on the logical node n, it is
deleted from the model. Deleting a logical node has no influ-
ence on functions sometimes, such as IARC. If there is only
data tampering on the logical node n, it continues to work and
its logical connections are not deleted from the model, and its
data links also continue to work. This integrated efficiency
index E (CS) is applicable even when composite data attack
mode appears in the cyber system. The composite attack
mode is frequently used in current military electronic warfare.

Once the logical nodes in the process level, such as XCBR
and XSWI, are affected by a data attack, the corresponding
power line in the physical system is disconnected. The dam-
age to the entire CPS should take load loss into consideration,
which is defined as the normalized efficiency loss.

D (CPS) = (1− E (CS)) (1− E (PS))

=

(
1−

NS/S∏
k=1

E(S/Sk )After
E(S/Sk )Before

)(
PLoad_Before−PLoad_After

PLoad_Before

) (18)

where E (PS) = PLoad_After/PLoad_Before is the load supply
efficiency of the power system.

Algorithm 2 Data Link Evolution After Data Attack on
Logical Node n in S/Sk
1: Input: Data attack target LN n and logical nodes in
process level set 3;
2: Output: The kth substation’s tag k and the effective-
ness E (S/Sk)After of substation k;
3: Initialize: The lth data link of logical node n in S/Sk
has Wl walks;
5: if S/Sk is under attack then
6: for l ←0 to Ck

Degree (n)− 1 do
7: t ←0;
8: while t <= Wl − 1 do
9:if LNt ∈ 3 then
10: Update matrices;
11: Break;
12: else
13: t ← t + 1;
14: end if
15: end while
16: end for
17: Obtain matrices
I
(
GkAfter

)
, I
(
H k
After

)
,A
(
GkAfter

)
and A

(
H k
After

)
;

18: Calculate E (S/Sk)After ;
19: else
20: After← Before;
21: end if
22: Output k and E (S/Sk)After ;

Effectiveness of the CPS after a data attack on each logical
node type in some SASs is evaluated as the pseudo-code of
Algorithm 1 presented below. A core step in Algorithm 1 is
shown in Algorithm 2.

C. RESULTS AND ANALYSIS
We analyze the effectiveness of the CPS after data attacks
on each individual logical node of substation S/S1 shown
in Fig. 6. Taking PDIS as an example, the data jamming
attack on PDIS can force its next logical node XCBR to
refuse operation for the distance protection function. This
refusal of operation for XCBR can cause a line overload.
Then the line may fail to work. A data tampering attack on
PDIS can make its next logical node XCBR misoperate with
the distance protection function. This misoperation of XCBR
can make the line quit. TABLE 4 shows that when PDIS is
attacked, the integrated efficiency of S/S1 is the lowest. The
analysis of the physical system indicates that when PDISs
in S/S1 are attacked, the influence can arrive at XCBRs in
a walk, causing the three lines to quit and the generator GEN
1 to be cut. The attacks on PDISs have the greatest impact on
the S/S1 in the shortest time. IHMI is allocated at the station
level, taking part in every function of the SAS because it has
hyper-degree of 12. However, the walks of its messages to
the logical nodes in the process level is greater than those
of PDIS. The IEEE 14 Bus test power system is designed to
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TABLE 5. The efficiencies when each logical node in S/S1 is attacked.

FIGURE 7. The effectiveness indexes after data attack on a logical node
in S/S1 and S/S2.

have a large redundant capacity. Therefore, if the three lines
in S/S1 quit, it will not affect the power system’s load supply
efficiency E (PS) = 1, and the damage to the CPS remains
zero with D (CPS) = 0.
In TABLE 5, there are differences when the logical nodes

are sorted in descending order of ELink (S/Sk) and E (S/Sk).
This is because the ELink (S/Sk) column only considers the
connections between logical nodes, and the E (S/Sk) column
considers the f unctional influence on the hyper-network
model.

If we want E (PS) 6= 1, which implies that there is load
loss in the power system, we must design the composite
data attack strategies to target e ach type of logical nodes in
the multiple substations or the control center. For example,
when the PDISs in substation S/S1 and S/S2 are under data
attack, there will be 21.7MW load loss in the power system
and the damage of the CPS is 6.9% as shown in Fig. 7.

FIGURE 8. The effectiveness indexes after data attack on a logical node
in S/S1, S/S2 and S/S3.

When the PDISs in substation S/S1, S/S2 and S/S3 are under
data attack, there will be 94.2MW load loss in the power
system and the damage of the CPS is 33.8% as shown in
Fig. 8. In future studies we will consider protection measures
such as firewalls and gateways, and the evaluation process
will be an offence and defense game.

VI. CONCLUSION
This paper introduces the concept of a hyper-network to
model a CPS according to IEC 61850. Considering the
complexity of the cyber and physical interaction, extended
centrality measurements in hypergraph are used to identify
the critical elements in CPS. An effectiveness evaluation
method of CPS after data attack is proposed in this work.
This method considers not only the influence on connections
between logical nodes, but also the functional influence and
load loss after data attack. This work is helpful for guiding
the white box experiments of defense technology against data
attacks. This paper only analyzes the impact of attacks on one
logical node type (in a station or in several stations). More
complex composite data attack strategies targeting multiple
logical node types will be studied in the future. The game
model in which a successful attack action is considered as a
probabilistic event related to offense and defense measures
can also be established in future research.
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