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ABSTRACT Camera node perception capability is one of the crucial issues for visual sensor networks,
which belongs to the field of Internet of Things. Multi-object tracking is an important feature in analyzing
object trajectories across multiple cameras, thus allowing synthesis of data and security analysis of images
in various scenarios. Despite intensive research in the last decades, it remains challenging for tracking
systems to perform in real-world situations. We therefore focus on key issues of multi-object state estimation
for unconstrained multi-camera systems, e.g., data fusion of multiple sensors and data association. Unlike
previouswork that rely on camera network topology inference, we construct a graph from 2-D observations of
all camera pairs without any assumption of network configuration.We apply the shortest path algorithm to the
graph to find fused 3-D observation groups. Our approach is thus able to reject false positive reconstructions
automatically, and also minimize computational complexity to guarantee feasible data fusion. Particle filters
are applied as the 3-D tracker to form tracklets that integrate local features. These tracklets are modeled by
a graph and linked into full tracks incorporating global spatial-temporal features. Experiments on the real-
world PETS2009 S2/L1 sequence show the accuracy of our approach. Analyses of the different components
of our approach providemeaningful insights for object tracking usingmultiple cameras. Evidence is provided
for selecting the best view for a visual sensor network.

INDEX TERMS Data fusion, graph theory, Internet of Things, particle filters, visual sensor networks.

I. INTRODUCTION
In today’s society, vehicles, phones, sensors, and other objects
are connected across networks to provide intelligent services
with minimal human intervention. These networks are known
as Internet of Things. Due to the widely deployed cameras
over the world, abundant research has been done regarding
meaningful data and information extraction from the exten-
sive videos produced by visual sensor networks (VSNs).
VSNs are also known as camera sensor networks [1], [2].
Due to the directional property of cameras in the network [3],
some research focuses on proposing optimization-based algo-
rithms to obtain optimal configuration of the network. This
includes, for example, optimal orientation [4], optimal loca-
tion, and full-view coverage problems [1], [5]. With the
exception of network transmission performance related to 5G
technology, the capability of mobile computing and visual

perception by networked nodes is an important factor to judge
optimal network configuration. An important and challenging
issue is accurate tracking ofmultiple targets in the camera net-
work to obtain an intelligent VSN system. Trackers provide
significant hints, i.e., object locations and identities, for the
sensors to continuously recognize the action and intention of
objects in VSNs.

Compared with static camera networks, current VSNs have
high network configuration flexibility that includes camera
locations, viewing angles, and sensor types that can be used.
This flexibility leads to greater difficulty in tracking mul-
tiple objects across cameras, especially with regard to illu-
mination, object occlusion, and different sensor parameters.
Due to improvements in object detection algorithms with
regard to accuracy and computational feasibility, tracking-
by-detection has become a popular framework [6], [7] to
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solve the multi-object tracking problem. In this approach,
detectors obtain object hypotheses that normally contain false
positives and false negatives. The primary goal after apply-
ing the algorithms is to maintain correct data association
for objects’ individual trajectories. However, difficulties are
encountered for single-view tracking when multiple objects
are occluded or when there are ambiguities in distinguishing
different targets. In such situations, trackers can benefit from
data fusion of other views by using multiple cameras. Since
it is safe to assume that different objects do not occupy
the same position in 3D space, conducting tracking on 3D
detections potentially solves the problem of 2D occlusions.
As indicated by previous works [8], [9], there are mainly
two distinct frameworks to track multiple objects using data
obtained from multiple views, depending on how the 3D data
is integrated. The two frameworks are described briefly in the
following:

A. ACROSS-TIME FOLLOWED BY ACROSS-VIEW
ASSOCIATION
It is also called the tracking-reconstruction approach [8].
2D tracks are generated in single cameras using 2D detec-
tions of each view independently. Afterwards, 2D trajectories
are associated across distinct cameras and the matched 2D
trajectories of different views are used to form 3D object
trajectories by reconstructing positions at each time step.

B. ACROSS-VIEW FOLLOWED BY ACROSS-TIME
ASSOCIATION
It is also called reconstruction-tracking approach [8], [9].
Here, 2D detections of multiple views are first reconstructed
into 3D measurements. Detection correspondences are found
by judging appearance similarities and the distances to corre-
sponding epipolar lines [10]. Subsequently, data association
is directly conducted on 3D detections to form 3D object
trajectories. The strategy overcomes early-stage occlusions
that can occur in a 2D image space.

In our paper, we focus on analyzing and improving the
performance of Across-View Followed by Across-Time Asso-
ciation approach. Considering computational complexity,
center points of the rectangles instead of object point clouds
are used as the original 2D detection for creating 3D recon-
structions. Due to inaccurate localization of the detector
and calibration errors, reconstructions of the same objects
in the 3D world coordinate system from multiple camera
views can not be localized accurately. Moreover, matching
and localizing corresponding objects in two separate views
is challenging because of large differences between camera
viewing angles, lighting conditions, and 2D occlusions. As a
result, the ghost effect [8], [9] occurs, which leads to 3D false
positive and missing detections. Fig. 1 shows one example
of the ghost effect using the PETS dataset [11]. As multiple
detections in two cameras are similar in appearance and
spatially close to corresponding epipolar lines, false positive
3D detections are reconstructed. In order to overcome this
problem, sparse matching for reconstruction was formulated

FIGURE 1. An example of false corresponding pairs of detections
between two views in the PETS/S2.L1 dataset [11]. Multiple candidates
(rectangles in (b)) are near the epipolar line (red line in (b)) for the query
object (white rectangle in (a)). Both images have the same frame index in
the sequence.

as a linear assignment problem in [12]. However, when there
are more than three cameras, the problem is NP-hard [13].
To create more accurate 3D measurements from multiple
views, a novel data fusion algorithm is presented which has
linear computational complexity. It works on 3D detections
directly and combines evidence from 2D images to create 3D
measurements with smaller false positive and false negative
rates.

We propose a multi-object tracking framework using
multi-camera systems without the necessity of tuning param-
eters from the ground truth of the sequence [14]. The algo-
rithm does not rely on camera network topology inference
and the type of sensors are flexible. Thus, the multi-camera
system is unconstrained. Our work improves several aspects
of other recent works [15], [16] and optimizes target tra-
jectories both locally and globally. The contributions of the
paper are: (1) We present a novel graph-based data fusion
algorithm to estimate accurate 3D observations of multiple
views, which assembles both 2D and 3D features including
multi-view geometry information. (2) In contrast with pop-
ular tracking algorithms, such as network flow-based [17]
and graph-based [16], particle filters are used for extracting
tracklets, in which motion information is easily incorporated.
(3) A comprehensive analysis of different components of
the approach is presented. The influence of detection perfor-
mance on tracking-by-detection is studied.

The paper is arranged as follows. We discuss related work
in Section II. Section III presents the whole approach includ-
ing graph-based data fusion, particle filter-based tracklet gen-
eration, and graph-based tracklet linking. Experiments and
analysis of parameters are shown in Section IV. Section V
summarizes the paper and proposes possible future work.

II. RELATED WORK
Most tracking approaches [18], [19] use centralized systems
by fusing the information from multiple views in a joint
manner at each time step. The key point then is an accurate
coupling model that captures useful evidence from all the
cameras, since individual views can not contribute to the
tracking system all the time in the same way. For real-time
required applications when the number of cameras increases,
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an efficient data fusion applied on a powerful computer is in
demand. In contrast, other approaches use distributed systems
that perform differently [18] from centralized systems. Object
tracking is first conducted independently on a 2D image
space, and afterwards tracks from individual cameras are
combined globally into 3D trajectories.

Reconstruction of objects seen from several views is also
known as a sparse stereo matching problem [12]. How-
ever, matching objects across views are difficult because of
changing view angles, distinct object poses, illumination,
and occlusion. When the number of cameras is more than
three, the matching problem is NP-hard [13]. As a result,
feature based matching [20] is not suitable for large-distance
camera network scenarios. To reconstruct data, an applicable
and simplified usage is to reconstruct data on a specific
plane from individual views. Khan and Shah [21] proposed
a novel planar homography constraint to resolve occlusions
from multiple observations to determine the locations of
the feet of the corresponding people walking across the
ground. The work of [22] reconstructed the top-view of the
ground plane, mapped the vertical axes of people in each
view to the top-view, to intersect at single points that are
assumed to be the locations of the persons on the ground.
Fleuret et al. [23] combined dynamic programming with the
estimation of occupancy probabilities on the ground plane
at each time step from all view images that are background
subtracted.

Another approach uses multi-person tracking scenarios
combined with reconstruction in order to solve one objective
function. Leal-Taixè et al. [12] built graphs to solve a combi-
natorial optimization problem of reconstruction and tracking,
taking all available evidence into account. In [24], track-
ing in single cameras and estimation of 3D trajectories are
solved simultaneously, by searching optimal sub-hypergraphs
on space-time-view hyper-graphs. Liem and Gavrila [25] fur-
ther integrated appearance information to the objective func-
tion. Later on, Hofmann et al. [14] followed the work. In it,
they did jointly compacted reconstruction and tracking into
one maximum a posterior estimation issue. For this purpose,
an assessment of the detection performance, e.g. false positive
andmissing detections, is required in the tracking framework.

Since data association is the key problem for
detection-based multi-object tracking, there are numerous
works presenting possible solutions [6], [17]. Classic data
association approaches include e.g.Multiple Hypotheses
Tracking (MHT) [26], and Joint Probability Data Associa-
tion (JPDA) [27]. Possible origins of target measurements
in MHT are accounted by a set of data association hypothe-
ses. For measurements per time unit, probabilities that the
measurement belongs to previous tracks, pertains to a new
target, or is a false are calculated. After several time steps as
measurements are received, probabilities of joint hypotheses
are computed recursively. Due to complexity, the analysis is
limited to only few such steps [6]. In comparison to the cal-
culation of posterior probabilities for single measurements,
JPDA considers independence between objects and computes

joint conditional probabilities for data association. However,
the computational complexity grows exponentially with the
number of targets.

Breitenstein et al. [6] proposed a greedy data association
method tomatch detectionswith particle filters in consecutive
frames. In [28], bipartite graphs were employed for track-
ing, with judgments based on likelihood functions embedded
into the weight functions. In contrast to these methods that
search for a local optimum, global optimization schemes
aim to model and investigate over the entire sequence, such
as network flow-based [17], [29] shortest path algorithm,
global energy function minimization [30], and parameter
optimization for the min-cost flow of multi-object tracking
problem [31].

Due to noisy detections, however, direct linking among
detections is error-prone in difficult situations, such as occlu-
sion. As for the case of occlusion, multiple objects tend
to merge and split afterwards, which makes it difficult for
the trackers to maintain the correct identities of the objects.
In addition, as objects cross each other, the same problem
is encountered again. Recently, many approaches separated
the tracking process into several stages [7], [15], [16], [32]
in order to produce more reliable tracklets in each step and
link into longer tracks. Huang et al. [7] proposed a three-
level hierarchical data association approach. At the low level,
affinity constraints was used to link detection responses into
tracklets. The Hungarian algorithm was employed to link
these tracklets into more reliable tracklets in the second level.
Finally, entries, exits and scene occlusions were estimated
to refine the final trajectories. Xing et al. [15] utilized par-
ticle filters for local tracklet extraction and generated global
tracklets within a sliding window thereafter. Jiang et al. [16]
presented a two-stage graph based multi-person tracking
approach. Tracklets and tracks were produced by traversing
the nodes of the shortest paths in two individual graphs.

We follow the framework of tracklet extraction and track-
let linking. Our approach differs from previous work. For
example, consider a person walking on a flat plane across the
ground. Assuming that calibration parameters are provided,
for each time step we extract a set of 2D points that are
composed by the middle points on the bottom margins of
the 2D rectangle detections in each view. These points are
projected onto the ground plane, and tracking is then per-
formed based on the projected detections on the ground plane.
Due to calibration errors, multiple detections on ground plane
in one time step may arise from single objects. Therefore,
we propose a fusion method based on a graph model to
separate them into groups. These grouped detection hypothe-
ses are used to initialize and update the particle filter as a
local tracker. Tracklets are subsequently extracted from local
trackers performed over the whole sequence. Tracklets are
linked by a directed acyclic graph using global temporal and
spatial features.

Since the most similar work to us is [16], we list the
attributes of this work as follows: 1) Original reconstructions
frommore than two cameras are fused to obtainmore accurate
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FIGURE 2. The across-view data association (reconstruction and data fusion) followed by the across-time
data association (data association, particle filters, and tracklet linking) framework.

observations; 2) Motion information is incorporated into the
extraction of tracklets by particle filters; 3) 2D evidence of all
views is fused by a weighted graph.

III. THE ALGORITHM
A. OVERVIEW
Assume that we have the access to 2D detections of each
frame of all camera videos. The original set of 3D reconstruc-
tions are triangulated from 2D detections from all pairs of
cameras using the epipolar geometry restriction. Fig. 2 shows
the framework of the proposed approach, which contains
three main stages: graph-based data fusion, particle filter-
based tracklet extraction, and graph-based tracklet linking.
Given the original set of 3D reconstructions, the goal of the
data fusion module is to create more accurate 3D observa-
tions. Additionally, the tracked positions obtained by particle
filters at the current time step are used in the fusion step
at the next time step. This makes the fusion process guided
by the previously tracked positions, which are temporally
more reliable than original reconstructions. Particle filters are
initialized and updated by temporally connected 3D observa-
tions created by the greedy data association algorithm, where
motion models are also adopted for object state prediction.
After analyzing the whole sequence through particle filters,
tracklets are generated. Finally, a graph is built to globally
link tracklets into tracks.

B. DATA FUSION FROM SEVERAL CAMERAS
As indicated before, original 3D reconstructions from multi-
ple views are ambiguous, e.g. duplicated detections for single
objects, which results in high false positive rates. To generate
more accurate measurements, a graph is constructed to fuse
3D reconstructions at each time step. Reconstructions at the
current time step and tracked object positions from the last
time step are represented as nodes in the graph. Accordingly,
the shortest path algorithm is applied to the graph to find node
groups. A group refers to a set of 3D reconstructions belong-
ing to an identical object. As a result, detections in the same
groups are fused in order to generate single reconstruction

FIGURE 3. The fusion of detections for people which are shown by the
top view. Reconstructions at the current time step and tracked positions
at the previous time step are fused to obtain more accurate object
observations. Color indicates object identity.

hypotheses for individual objects. An illustration of the fusion
process is shown in Fig. 3, where 3D detections are observed
from the top view for a better explanation.

We denote the set of detection candidates at time t as Xt =

Dt ∪ Tt−1, which is composed of the current set of original
reconstructionsDt and the set of previously tracked positions
Tt−1 derived from particle filters. Each xti ∈ Xt ⊆ R3 has a
corresponding 2D detection in one view. At each time step,
we construct a weighted graph G = (V, E,w), where each
node vi ∈ V represents one location xi and w is a weighted
function of edges, i.e. w : E → R. Any two nodes vi,
vj ∈ V, i 6= j are connected by an undirected edge ei,j =
{vi, vj}, ei,j ∈ E , where i, j are indices. The corresponding
weighting function wi,j is defined as follows:

wi,j = w(vi, vj) (1)

=


log

(
‖xi−xj‖
α

)
‖xi − xj‖ < α &

fbp(xi) = fbp(xj)
∞ otherwise.

(2)

The function ‖· ‖ calculates the Euclidean distance between
two points. The threshold α is the maximally allowed
Euclidean distance between two points that can be connected,
since points that are far away unlikely belong to identical

VOLUME 6, 2018 13719



X. Jiang et al.: Data Fusion-Based Multi-Object Tracking for Unconstrained Visual Sensor Networks

objects. This constraint of distance thresholding is intuitive,
and the function gives lower weights to the two nodes that
are spatially close. The projection function in the second
constraint is defined as fbp(·) = {f 1bp(·), . . . , f

C
bp(·)}. For

c ∈ {1, . . . ,C}, f cbp(xi) = {x
i
c, y

i
c, sx

i
c, sy

i
c} only holds when

the projection point of xi into view c is inside the rectangle
represented as {x ic, y

i
c, sx

i
c, sy

i
c}. (x

i
c, y

i
c) is the top left point

and sx ic, sy
i
c represents the width and height of the rectangle,

respectively. Therefore, the equal sign in the second con-
straint of Equ. 2 is valid only when two hypothesis locations
xi and xj are projected into the same 2D detection rectangles
in all identical views. That is to say, it provides evidence in 2D
image space that the two connected nodes likely represent
identical objects. In practice, ‖xi − xj‖ is nonzero due to
calibration errors and detection errors in the image.Whenwi,j
is finite, we get log

(
‖xi−xj‖
α

)
< 0 since ‖xi−xj‖

α
∈ (0, 1).

A virtual source node vsource and a virtual sink node vsink
are defined to start and terminate paths in the graph, respec-
tively. The weights for connecting an arbitrary node vi ∈ V
with the two virtual nodes are assigned as:

w(vsource, vi) = wcomp, (3)

w(vi, vsink) = wcomp, (4)

where wcomp ∈ R+ can be any positive value. We iteratively
employ the Bellman-Ford shortest path algorithm [33] to
obtain a set of shortest paths in the graph.

Define a calculated shortest path as (vsource, v1, . . . , vm, vsink),
where m + 2 is the total number of nodes in this path. The
nodes v1, . . . , vm between vsource and vsink represent a group
{x1, . . . , xm} where ∀xi, i = {1, . . . ,m} belongs to the same
object. The corresponding new detection hypothesesX′t ∈ R3

are estimated from the groups, in which each hypothesis
x′ ∈ X′t is the center of one group:

x′ =
1
m

∑
i

xi. (5)

By fusion of data frommultiple cameras, duplicated recon-
structions are merged into single ones, and false positive
detections in certain views are removed. The computation
complexity is nearly linear to the number of nodes regardless
the number of cameras, while the multi-dimensional assign-
ment for multi-sensor data fusion proposed in [13] is NP-hard
when there are more than three cameras. It can achieve a real-
time performance in practice. Note that objects detected by
only one camera produce the ‘‘new’’ missing reconstructions
induced in this process, since at least two nodes are required
to form a path in the fusion graph.

C. ESTIMATION WITH 3D PARTICLE FILTERS
The following section presents a 3D particle filter-based
tracking approach known as the set of 3D detections.
Given � = (X′0, · · · ,X

′
t ) as 3D object detections until

time t , particle filters are generated. For each unassigned 3D
detection, a new particle filter is initialized and assigned.
The state of a particle s = {x, π} is six dimensional,

i.e. x = {x, y, z,1x,1y,1z} which represents the 3D posi-
tion (x, y, z) of the object and the corresponding framewise
motion (1x,1y,1z). The condensation algorithm [34] is
employed and we keep a constant number N of particles over
the entire time span for each track. The importance factor
πnt for the nth particle of a track at time t can be written as
πnt ∝ p(zt |xt = s(n)t ), which is proportional to the conditional
likelihood of the measurement zt at time t given the state of
the particle s(n)t . It is defined as follows:

p(zt |xt = s(n)t ) =
(
d3Dspat · d

2D
spat

)−1
, (6)

where

d3Dspat = ‖pos(zt )− pos(s
(n)
t )‖, (7)

d2Dspat =
∑
c

‖f cbp(zt )− f
c
bp(s

(n)
t )‖. (8)

The function pos(·) obtains the 3D position of the particle
s(n)t or the measurement zt . The more distant two positions
are, the smaller the value πnt that is assigned. Note that not
only 3D spatial distances, but also projected 2D distances
are used. As indicated in Equ. 8, distances between the pro-
jections of s(n)t and zt in each camera are computed. The
definition of the function fbp can be found in Equ. 2. The item
‖f cbp(zt )−f

c
bp(s

(n)
t )‖ calculates the Euclidean distance between

the center points of the two projected rectangles. Moreover,
other features can also be used to obtain the distance between
the two rectangles.

A constant motion model as in [6] is utilized to propagate
the particles:

(1x,1y,1z)t = (1x,1y,1z)t−1 + ε(1x,1y,1z), (9)

where ε(1x,1y,1z) is drawn from a zero-mean normal distri-
bution independently. The variance of the distribution keeps
accordance with the movement of the target. The motion
(1x,1y,1z)t−1 is set to be equal to the difference of
associated detections at the previous time step. Therefore,
the motion prediction model is in accordance with the motion
of associated detections. However, a simple constant velocity
has been proven to be powerful enough to model the motion
of objects in many real scenarios [6].

1) INITIALIZATION
Every single detection x′t ∈ X′t at time t is considered to
trigger a new track if it is not associated with any existing
track, e.g. τ ′. The binary decision function for initializing a
track by x′t is defined as follows:

I (x′t ) =

{
1 ∀τ ′, ‖x′t − τ

′

t−1‖ > θ

0 otherwise,
(10)

where τ ′t−1 the the position of τ
′ at t − 1. The parameter θ is

the maximally allowed motion, which can be set heuristically
according to the application. Initial particles are normally
distributed around x′t with σ 2

= 1 as variance. Original
particles are assigned with the same normalized weight,
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i.e. 1
N . The initial motion of the tracker is set to be the the same

as the movement of associated detections. After initialization,
particles are propagated to new states according to the motion
model in Equ. 9 at each time step.

2) TERMINATION
In order to obtain accurate object trajectories in ambigu-
ous cases, tracks should be terminated and new ones re-
initialized. One case is when the target of a track has not been
updated for a successive number of frames. This happens
either because of large changes of the object compared with
the previous frames, or due to missing detections in the sys-
tem. When targets are too close to each other and occlusions
occur in all the cameras, the fusion stage groups them into
single objects. Hence, only single detections are estimated for
several objects, which results in missing detections. In this
case, the updating of particle filters is often not reliable.

3) GREEDY DATA ASSOCIATION IN 3D
A greedy data association approach similar to the method
presented in [35] is applied to find detection and track assign-
ments at each time step. Instead of using 2D data, 3D detec-
tions are utilized. Once the associated detection is assigned,
it plays a crucial role in guiding the corresponding track.

The likelihood function for weighting the connection of x′

and τ ′ can be defined as follows:

L3D(x′, τ ′) = L ′pos(x
′, τ ′), (11)

where L ′pos = ‖x
′
− τ ′‖ and L ′pos < θ . The two items, i.e. x′

and τ ′, can be projected to images in different views to obtain
evidence. Note that useful features, e.g. histogram similarity
and 2D spatial distances, give hints to L3D(·) as well. The state
of the target represented by τ ′ is then updated as x′.

4) OBSERVATION
The final state of a track is estimated by the maximum of the
modeled posterior distribution:

xt = argmax
w[n]
t , n=1...N

x[n]t , (12)

where xt is the resulting state of the track at time t and w[n]
t

is the corresponding weight assigned to the particle x[n]t .
Occlusion Reasoning:When there are occlusions, updates

to the particle filter are often not reliable. Therefore, we ter-
minate a tracker when there is ambiguity. If two trackers
are associated to the same detection at the same time, they
are both terminated. When the target of a tracker has not
been updated for successive N frames, it is also terminated.
Additionally, multiple tracklets that are close to each other
for a certain number of frames are merged to single ones
as in [16]. Due to these rules, the tracklets are shorter and
more reliable compared to methods where local tracklets
are unchangeable once wrongly formed [16]. Once reliable
tracklets are acquired, we can link them together into longer
tracks.

D. TRACKLET LINKING
Since the number of objects and the length of an object’s
existence over the sequence are unknown a priori, the linking
of tracklets should be flexible. We construct a tracklet graph
G′ =

(
V ′, E ′,w′

)
, where each vertex v′k ∈ V ′ represents a

tracklet τk =
(
℘k , tτk ,0, tτk ,1

)
from frame tτk ,0 to frame tτk ,1.

℘k stores the sequential positions, which is similar to thework
of [16]. Directed edges e′k,l = (v′k , v

′
l) ∈ E ′ connect vertices,

which results in a graph structure. The weight function w′k,l
is defined as follows:

w′k,l = w′(v′k , v
′
l) (13)

=


−log(dk,lspat)−log(d

k,l
temp) tτl,0−tτk,1>0 &

tτl,0 − tτk,1 < β

∞ otherwise,

(14)

dk,lspat = ‖℘k (tτk,1 )− ℘l(tτl,0 )‖, (15)

dk,ltemp = tτl,0 − tτk,1 , (16)

where dspat, dtemp are spatial and temporal distance of
the considered vertices, respectively. Temporal threshold β
is the maximally allowed number of frames between two
tracklets.

Similar to the data fusion stage, we define a virtual source
node v′source and virtual sink node v

′

sink and configure an equal
positive weight connecting each vertex v′k ∈ V ′ from v′source
and to v′sink:

w′(v′source, v′k ) = w′(v′k , v′sink) = d ′penalty ∈ R+. (17)

Moreover, if a tracklet starts in the first frame of the sequence,
it is assumed that the represented object appears in an
entrance. If a tracklet terminates in the last frame of the video,
it is assumed that the represented object disappears in an
exit. Thus, a smaller positive weight can be assigned to the
tracklets that start or terminate tracks:

w′source(v′k ) = d ′′penalty, (18)

w′sink(v′k ) = d ′′penalty, (19)

d ′′penalty ∈ R+, d ′′penalty < d ′penalty. (20)

We again employ the Bellman-Ford shortest path algo-
rithm [33]. The calculated paths are traversed to form
final trajectories. Consequently, all available connections
of tracklets are encouraged to be globally linked with low
weights. The pseudo code for the whole algorithm is shown
in Algorithm 1.

IV. EXPERIMENTS
In the following section, the performance of each component
of the approach is evaluated and compared with state-of-the-
art algorithms. Note that no preprocessing is implemented,
e.g. learning the foreground or training the detector for the
specific scenario to be analyzed. No assumptions are made,
for example in [7], entries, exits, and occluders on the ground
plane are modeled.
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Algorithm 1Multi-Object Tracking for VSN
1: Input: a number of C sensor videos
2: Output: 3D trajectories of multiple objects
3: for each time t ∈ [1,T] do
4: for all camera c ∈ [1,C] do
5: 2D detection
6: end for
7: Dt ← 3D reconstructions
8: Xt = Dt ∪ Tt−1
9: construct an undirected graph G = (V, E,w), where

vi ∈ V represents 3D reconstruction xi ∈ Xt and
ei,j = {vi, vj}, ei,j ∈ E with corresponding wi,j

10: compute wi,j according to Equ. 2
11: find shortest paths in G
12: estimate new hypotheses X′t ∈ R3

13: Tracklets T ← 3D particle filters estimation
14: construct a directed graph G′ =

(
V ′, E ′,w′

)
, where

v′k ∈ V ′ represents a tracklet τk ∈ T and e′k,l =
(v′k , v

′
l) ∈ E ′

15: compute w′k,l according to Equ. 14
16: Tracks← find shortest paths in G′
17: end for

A. EXPERIMENTAL SETUP
1) EVALUATION METRICS
A fair comparison of the quantitative evaluation for multi-
object tracking is challenging [36]. For our evaluation metric,
we employ the widely accepted CLEAR MOT [37], which
has become the default standard for evaluating multiple
object tracking algorithms.

a: TRACKING EVALUATION
Two important metrics are included in CLEARMOT, namely
MOTP and MOTA. The former metric allows us to inde-
pendently assess the precision of the tracker regardless of
whether the correct object identity matches. The latter metric
provides information about misses, mismatches (ID switch),
and false positives of the track. For details, please refer
to [37].

b: DETECTION EVALUATION
In the case of tracking-by-detection approaches, the perfor-
mance of the tracker heavily relies on accurate detections.
As detectors can be easily replaced, an evaluation of the
detectors themselves are useful to estimate influence on the
final result. Consequently, an evaluation metric similar to the
ones mentioned above is used, namely MODP and MODA as
proposed by [38]. MODP is defined the same way as MOTP
by evaluating the detector precision, and only considering
those matched detections with ground truth data. In contrast,
MODAmeasures the rate of missing and false positive detec-
tions, without considering mismatches as MOTA does.

2) DATASET
Few public datasets are suitable for multi-person track-
ing in multi-camera systems. In recent years, the PETS/S2

FIGURE 4. (a) Camera locations for the PETS dataset. (b) Sample images
in the corresponding PETS/S2.L1 videos of six available views [11].

dataset [11], [38] has become a benchmark in the field of
multi-person tracking. Since it contains videos captured by
multiple cameras, making this a challenging problem to solve,
we implement and test our approach on this dataset. Many
state-of-the-art algorithms reported their evaluation scores on
this dataset, which enables us to make a direct comparison
with our own algorithm. The benchmark dataset for multi-
object tracking consists of three different sets of videos,
i.e. PETS/S2.L1, PETS/S2.L2, and PETS/S2.L3, involving
different numbers of cameras. In total eight cameras are
available, for which the frame resolution for the first four is
768 × 576 pixels and the rest 720 × 576 pixels. The dataset
organizer provided Google maps showing the camera loca-
tions, as shown in Fig. 4a. The framerate for all the cameras
is ∼ 7 f /s. In all our experiments, we used the provided cal-
ibration parameters for the cameras. Since PETS/S2.L1 has
been used as a de facto standard database for tracking mul-
tiple persons, its use for tracking assessment is important.
The goal of this database is to accurately localize individual
people over the sequence, including the bounding boxes and
IDs. Different 2D occlusion types and human movement
patterns are included. Seven calibrated cameras were adopted
to observe a large area resulting in multi-view sequences,
each of which were recorded 795 frames. We did not use
the camera that has synchronization problems against others.
Fig. 4b shows sample pictures captured by six of the available
cameras at the same time in the PETS/S2.L1 database. Fur-
thermore, the ground plane is Z = 0 in the world coordinate
system. In our experiments, detections on the ground plane
are used as input to the 3D tracker, i.e. AViewF. Note that our
approaches do not have the limitation that people in the video
must walk on the ground plane, but our work is applicable to
unconstrained 3D world coordinate system.

3) GROUND TRUTH
Since the first view in the PETS/S2 dataset, i.e. view 001,
has the broadest field of view compared with other cameras
in the system, and many work in the literature [6], [39]
track and evaluate only based on this view, we also eval-
uate our tracking performance using only this view. Anton
Andriyenko [40] provided two different ground truth tracks:
a cropped one and a complete one, both of which are avail-
able in 2D and 3D. The cropped one only contains targets
within the predefined tracking area used in their experiments,
while the complete one contains annotations for all visible
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FIGURE 5. Fusion of reconstructions at one time step taking the PETS/S2.L1 [11] dataset as an example. (a): fusion seen
from the top view: blue dots represent original reconstructions. Large circles group the fused reconstructions; (b-d): the
corresponding fusion process shown on an image. (b): blue dots are original projections; (c): large circles group the fused
projections and the color shows identities; (d): circles are fused detection centers, while the rectangles are original 2D
detections by DPM on that image.

targets in the first view. We use the complete ground truth
tracks and the same evaluation program provided by [30].
Even during the period of occlusion, the individual objects
are labeled. Due to inaccurate localization and mistakes by
the annotator, however, the bounding boxes are not always
perfectly aligned. In the annotation, if a person leaves and
enters the field of the first view, a new ID is assigned. Hence,
there are in total 18 annotated persons in the ground truth.
Note that since our 3D tracking approaches are based on 3D
detections, the IDs are assumed to be retained as in the above
mentioned case. This potentially causes higher numbers of ID
switches of our trackers evaluated on this ground truth, for
consistency of comparison, although smaller numbers would
bemore accurate.Moreover, we note that evaluation results of
single-view based tracking using the 2D ground truth tracks
in that view do not take into account calibration errors. In
contrast, tracking in 3D space as in our case carries calibration
errors from the multi-camera system. Hence the evaluated
precision of the tracker, i.e.MOTP, would be worse than the
real assessment. All in all, our evaluation gives a valuable
comparison with other algorithms.

4) DETECTION
We obtained person detections in an image space for each
camera video by Deformable Part Models [41]. We use the
provided source code of DPM [42], where the classifier
was only trained with people in general cases. Each of the
acquired human detection is composed by a rectangle includ-
ing the top left point, width and height, and a confident score.

B. EVALUATION
Since we use the same ground truth data as [30], comparison
with their work is useful. In the following section, we present
the evaluation of our approach compared with other methods.
Since not many works reported tracking results based on
multiple cameras, several state-of-the-art single-view based
approaches are also taken into account. To have a fair com-
parison of the tracker, the performance of detections is eval-
uated as well. As a result, the difference of the evaluated

scores between detection and tracking is used as an addi-
tional assessment metric. Afterwards, contributions of differ-
ent combinations of cameras to the tracker are studied.

For the dataset of PETS2009 S2/L1, 1000 units in the
world coordinate system on the ground plane equals 1m in the
real world [30]. We assume that the mean distance between
two persons is 0.5 meters. Thus the threshold for fusion is
intuitively set as α = 500. For all experiments, we set
wcomp = 1000, d ′penalty = 6000, d ′′penalty = d ′penalty − 120.
A constant number of 100 particles were used for each tracker
in the second stage. If a tracker has not been updated for N =
2 frames, it will be terminated. Tracklets that are temporarily
near not more than β = 10 could be linked as Equ. 14 shows.

Fig. 5 illustrates the fusion process from the top view
and on one image frame. In Fig. 5(a), the fusion of groups
are viewed from the top view. Small filled dots represent
center positions of original reconstructions from all views.
Large hollow circles group the ones belonging to identical
objects. It shows that fusion recovers missing detections in
certain views by using data from other cameras as well as
removes false positive detections. In Fig. 5(b), blue filled dots
represent projections Xt from original reconstructions of all
the cameras. Afterwards, projections belonging to identical
objects are fused into groups that are visualized by larger
hollow circles shown in Fig. 5(c). Projections with large
errors or false positives from certain views are un-grouped
and hence are automatically rejected. In Fig. 5(d), rectangles
show original 2D detections in the image and circles represent
centers of grouped detections X′t , by which we can see that
missing detections are recovered.

The quantitative results compared with the state-of-the-
art algorithms are shown in Table 1. They indicate that our
method outperforms others with the highestMOTA except the
work of Hofmann et al. [14] that tuned optimal parameters
from the ground truth data of the sequence. While MOTP
is more related to the labeling precision of ground truth
data, ours is comparable to the providers’ in [30]. Further-
more, it could be observed that methods (final three rows
of Table 1) involving separate improvement stages are more
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TABLE 1. Quantitative results on PETS’09 S2.L1 sequence. We compared
our approach with probabilistic tracking [43], particle filter based
tracking-by-detection [6], bipartite matching [28], energy
minimization [30], k-shortest paths [29], [44], two-stage graph [16], and
joint optimization [12]. Only temporal distance is considered in weights
function of Our Approach+. Hofmann et al. [14]* tuned parameters from
the ground truth.

flexible and yield higher performance if the strategies in each
step are well designed. To reveal the influence of different
weighting functions in graph for tracklet linking, we also
applied different weights while using the same tracklets for
Our Approach and Our Approach+. We set θ = 600 and
θ = 800 forOur Approach andOur Approach+, respectively.
However,Our Approach+ did not use spatial distances for the
finite weights in Equ. 14 and obtained a better MOTA. This
reveals that different distances used in the weighting function
have distinct effectiveness. The reason of the higher MOTA
Our Approach+ obtained may be due to non-linear spatial
motion of the objects confuses the algorithm in selecting the
shortest paths ofOur Approach. The work in [28] has a higher
MOTP than ours, however, their MOTA is lower. In many
applications, e.g. biomedical image analysis, MOTA attracts
more attention since the consistency of object identities is
more important. Above all, results show the advantages of
our framework for multi-object tracking using multi-camera
systems.

1) TRACKING VS. DETECTION PERFORMANCE
As indicated, tracking has a strong dependence on the detec-
tion performance in the tracking-by-detection framework.
Thus assessment of tracking performance, with respect to
the detection quality, provides an insight into how robust the
tracker is with regard to detections.

Although there might be bias in the evaluation of tracking
due to various reasons, e.g. distinct ground truth data, differ-
ent detections, and varying reconstruction methods, the dif-
ferences (D-values) betweenMODA andMOTA and between
MODP and MOTP gives a quantitative assessment of tracker
robustness. To some extent it reveals the improvement of the
tracker given the detections. Fig. 6 shows a bar plot for the
four mentioned metrics of [28], Across-View Followed by
Across-Time Association, and [16] trackers compared with
several the state-of-the-art approaches that are publicly avail-
able. For other methods, we would like to refer to [38]. In
our experiments, only detections from DPM are used for
tracking. The D-values of MOTP vs. MODP and MOTA vs.
MODA can be seen as the differences of bars. From the
figure we can see that most of the D-values of the other

FIGURE 6. Detection performance vs. tracking performance of different
approaches on the PETS/S2.L1 dataset [11]. Reference 1: [43];
Reference 2: [44]; Reference 3: [6]; Reference 4: [36]; Reference 5: [28];
Reference 6: our Across-View Followed by Across-Time
Association approach; Reference 7: [16].

TABLE 2. Performance of the fused 3D detections tested on the
PETS/S2.L1 database [11] with respect to α.

approaches are negative. D-values with respect to precision
(MODP vs. MOTP) of our three approaches are positive,
which means our trackers improve the localization precision
of the objects. Our D-values regarding accuracy (MODA and
MOTA) are negative as well, of which the absolute value is
smaller than others, e.g. [6]. D-values validate the robustness
of the presented approaches.

C. ANALYSIS
As can be seen in Fig. 6, detection performance heavily
affects the final tracking assessment. Since original recon-
structions are fused first to obtain 3D detections used in
the tracker, studies on the robustness of the fusion stage
(Section III-B) is of significant importance. In the following,
detection performances with respect to the parameter α and
the number of cameras used are studied.

1) INFLUENCE OF PARAMETERS
The parameter α is the maximally allowed Euclidean dis-
tance between two reconstructions that might be clustered. It
represents how much back-projection error can an identical
object have, since there is calibration error for every camera.
As shown in Table 2, MODA and MODP are affected by α
in the PETS/S2.L1 dataset. Detections from all the cameras
were used in the experiments. The larger α simplifies calcu-
lations for our algorithm in reconstructing camera detections
in order to form single hypotheses. Smaller α makes accurate
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TABLE 3. Performance of the fused 3D detections for the
PETS/S2.L1 database [11] with respect to the cameras used.

reconstructed detections from multiple cameras difficult for
our algorithm to cluster, which results in false negative detec-
tions. As can be seen from the table, if α = 1100 the total
performance is comparable to the performance of α = 1000.
The difference is that the number of false negatives of the
former is smaller than the latter, while the number of false
positives of the latter is better than the former. This is intuitive
since more detections can be clustered into groups resulting
in a reduced missing number as α increases. In this case,
however, false positive reconstructions are also fused into
groups. Notably,MODP remains nearly the same by changing
the value of α.

2) INFLUENCE OF THE NUMBER OF CAMERAS
Since cameras are distributed in different locations in the
scene and some of them have overlapped field of views
while some may not, the contribution of each camera to
the final tracking is different and varies at different time
steps. Adopting different combinations of the cameras may
generate distinct 3D detections. For this purpose, differ-
ent numbers and combinations of the cameras are ran-
domly selected to produce the clustered 3D detections
for the PETS/S2.L1 dataset. Table 3 shows the evalua-
tion of the detections. For all the experiments in the table,
we set α = 1100.
Three observations can be made from the table. First,

the combinations of cameras containing the first view obtain
higher MODPs. This can be explained by the fact that the
ground truth tracks from the first view are used for evaluation,
which reduces the influence of projection errors from other
cameras. Second, as can be seen from the first five rows
and from the following five rows, the usage of more cam-
eras obtains higher detection performance. This performance
follows logically. Third, when only the detections in the
first view are used for reconstruction without fusing other
views, MODP is the highest since no projection error from
other views influences precision. The usage of the first view
obtained a lower but comparable MODA in the case of using
all of the cameras, but with a higher false positive number and
a lower missing number of detections. In this case, the false

TABLE 4. Performance comparison on the PETS/S2.L1 database [11] with
and without adding tracked positions from the 3D particle filter to the
data fusion process.

positive reconstructions in the first view may not appear in
one or more of the other views. Hence, the detection perfor-
mance is not only related to the number of cameras used but
also which cameras are used.

In addition for our Across-View Followed by Across-Time
Association approach, we add the tracked positions from
the 3D particle filter (Section III-C) to the fusion process.
As shown in Table 4, detection performance increases by
adding the tracked results as supplementary detections for
fusion, since the number of false negatives is decreased to a
large extent. We conclude that the increased number of false
positives caused by adding tracked positions is likely related
to the inaccuracy of tracked positions, or the false positive
tracks themselves.

3) RUN TIME
The computation complexity of the proposed data fusion
algorithm is nearly linear to the number of nodes in
the graph regardless the number of cameras in the sen-
sor network, which can achieve a real-time performance
in practice. The multi-dimensional assignment for multi-
sensor data fusion proposed in [13] is NP-hard when there
are more than three cameras. Including the data fusion
phase, our approach took approximately 1 s/f in the first
100 frames.

The computation complexity of the greedy matching
in [28] is O(n2 log n), where n is the size of the nodes. The
experiments were performed on one single core of an Intel
Core2QuadTM CPU with 2.4 GHz and 8 GB of memory.
On average, the running time for the first 50 frames of the
first view is 2.98 s/f with and 2.52 s/f without using the
online classifier. The runtime of the single-camera track-
ing increases to 8.2 s/f if the time of creating new tracks
and training the online classifier is considered. Reference
[28] has a running time of 38.0 s/f with and 36.6 s/f with-
out utilization of the online classifier in the single-camera
tracking. Note that they perform the system in individual
cameras without any parallel computing and the calcula-
tion of the likelihood values does not use parallelism as
well.

The runtime of [6] which is a single-camera tracking
approach was 0.5 - 2.5 s/f without considering the time for
detection calculation. The worst case complexity of [29]
is O(k(m + nlogn)), where k is the number of objects,
m is the number of edges, and n is the number of nodes
in the graph. Other works did not post their run time
performance.
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V. CONCLUSION
In this paper, we proposed a multi-object tracking frame-
work to solve data fusion and data associations problems for
unconstrained VSNs. Unlike sensor network topology
inference-based trackers, which have limited flexibility,
a novel graph-based data fusion modeling approach is con-
ducted. We demonstrated a methodology to efficiently fuse
data from separate sensors, and illustrated the process of
enhancing the performance of 3D observations. The data
fusion algorithm has a nearly linear computational complex-
ity to the number of nodes in the graph regardless the num-
ber of cameras in the sensor network. Moreover, tracking
multiple objects using particle filters makes it possible to
incorporate motion information into object state estimation.
Combining occlusion reasoning rules, tracklets generated are
more reliable in difficult situations. Finally, global temporal
and spatial features were used in the weighting function,
to further link tracklets to form full tracks. The framework
is generic and prior knowledge of specific scenarios is incor-
porated into the weights of the graphs. In addition, discus-
sion of tracking performance with respect to different com-
binations of cameras gives insight to the coverage problem
of VSNs.

The proposed approach is unsupervised, but learning
optimal parameters from the dataset, e.g. velocity of the
object or object appearance changes in different frames and
cameras, will improve the results. It is not currently clear to
which extent this learning process enhances our results. Sys-
tem robustness could be improved by another model different
from occlusion reasoning.
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