
Received December 15, 2017, accepted January 16, 2018, date of publication March 6, 2018, date of current version March 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2801792

A Bi-objective Hyper-Heuristic Support Vector
Machines for Big Data Cyber-Security
NASSER R. SABAR 1, XUN YI2, AND ANDY SONG2
1Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia
2School of Computer Science and Information Technology, RMIT University, Melbourne, VIC 3000, Australia

Corresponding author: Nasser R. Sabar (n.sabar@latrobe.edu.au)

ABSTRACT Cyber security in the context of big data is known to be a critical problem and presents a
great challenge to the research community. Machine learning algorithms have been suggested as candidates
for handling big data security problems. Among these algorithms, support vector machines (SVMs) have
achieved remarkable success on various classification problems. However, to establish an effective SVM,
the user needs to define the proper SVM configuration in advance, which is a challenging task that requires
expert knowledge and a large amount of manual effort for trial and error. In this paper, we formulate the
SVM configuration process as a bi-objective optimization problem in which accuracy and model complexity
are considered as two conflicting objectives. We propose a novel hyper-heuristic framework for bi-objective
optimization that is independent of the problem domain. This is the first time that a hyper-heuristic has
been developed for this problem. The proposed hyper-heuristic framework consists of a high-level strategy
and low-level heuristics. The high-level strategy uses the search performance to control the selection of
which low-level heuristic should be used to generate a new SVM configuration. The low-level heuristics
each use different rules to effectively explore the SVM configuration search space. To address bi-objective
optimization, the proposed framework adaptively integrates the strengths of decomposition- and Pareto-
based approaches to approximate the Pareto set of SVM configurations. The effectiveness of the proposed
framework has been evaluated on two cyber security problems:Microsoft malware big data classification and
anomaly intrusion detection. The obtained results demonstrate that the proposed framework is very effective,
if not superior, compared with its counterparts and other algorithms.

INDEX TERMS Hyper-heuristics, big data, cyber security, optimisation.

I. INTRODUCTION
The rapid advancements in technologies and networkings
such as mobile, social and Internet of Things create massive
amounts of digital information. In this context, the term big
data has been emerged to describe this massive amounts of
digital information. Big data refers to large and complex
datasets containing both structured and unstructured data
generated on a daily basis, and need to be analysed in short
periods of time [49]. The term big data is different from the
big database, where big data indicates the data is too big,
too fast, or too hard for existing tools to handle. Big data is
commonly described by three characteristics: volume, variety
and velocity (aka 3Vs). The 3Vs define properties or dimen-
sions of data where volume refers to an extreme size of data,
variety indicates the data was generated from divers sources
and velocity refers to the speed of data creation, streaming
and aggregation [49]. The complexity and challenge of big

data are mainly due to the expansion of all three characteris-
tics (3Vs)- rather than just the volume alone [14]. Learning
from big data allows researchers, analysts, and organisations
users to make better and faster decisions to enhance their
operations and quality of life [38]. Given its practical appli-
cations and challenges, this field has attracted the attention
of researchers and practitioners from various communities,
including academia, industry and government agencies [14].

However, big data created a new issue related not only to
the 3Vs characteristics, but also to data security. It has been
indicated that big data does not only increase the scale of
the challenges related to security, but also create new and
different cyber-security threats that need to be addressed in
an effective and intelligent ways. Indeed, security is known
as the prime concern for any organisation when learning
from big data [47]. Examples of big data cyber-security
challenges are malwares detection, authentications and

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

10421

https://orcid.org/0000-0002-0276-4704


N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

steganoanalysis [45]. Among these challenges, malware
detection is the most critical challenge in big data cyber-
security. The term malware (short for malicious software)
refers to various malicious computer programs such as
ransomwares, viruses and scarewares that can infect com-
puters and release important information via networks,
email or websites [53]. Researchers and organisations
acknowledged the issues that can be caused by these danger-
ous software (malicious computer programs) and therefore
new methods should be developed to prevent them. Yet,
despite the fact that malware is a crucial issue in big data, very
little researches have been done in this area [47]. Examples of
malware detectionmethods include signature-based detection
methods [22], behaviors monitoring detection methods [54]
and patterns-based detection methods [19], [53]. However,
most of existing malware detection methods are mainly pro-
posed to deal with small-scale datasets and unable to handle
big data within a moderate amount of time. In addition, these
methods can be easily evaded by attackers, very costly to
maintain and they have very law success rates [53].

To address the above issues, machine learning (ML) algo-
rithms have been proposed for classifying unknown patterns
and malicious software [45], [53]. ML have showing promis-
ing results to classify and identify unknown malware soft-
ware. Support vector machines (SVMs) are among the most
popular ML algorithms and have shown remarkable success
in various real-world applications [15]. The popularity of
SVMs is due to their strong performance and scalability [40].
However, despite these advantages, the performance of an
SVM is strongly affected by its selected configuration [9].
A typical SVM configuration includes the selection of the
soft margin parameter (or penalty) and the kernel type as
well as its parameters. In the literature, various methodolo-
gies have been developed for selecting SVM configurations.
These methodologies can be classified based on the formula-
tion of the SVM configuration problem and the optimisation
method used [9], [12]. An SVM configuration formulation
can rely on either a single criterion, in which case k-fold
cross-validation is used to assess the performance of the
generated configuration, or multiple criteria, in which case
more than one criterionmust be used to evaluate the generated
configuration, such as the model accuracy and model com-
plexity [46]. The available optimisation methods include grid
search methods, gradient-based methods and meta-heuristic
methods. Grid search methods are easy to implement and
have shown good results [13]. However, they are compu-
tationally expensive, which limits their applicability to big
data problems. Gradient-basedmethods are very efficient, but
their main shortcomings are that they require the objective
function to be differentiable and that they strongly depend
on the initial point [4]. Meta-heuristic methods have been
suggested to overcome the drawbacks of grid search methods
and gradient-based methods [5], [28], [56]. However, the per-
formance of a meta-heuristic method strongly depends on the
selected parameters and operators, the selection of which is
known to be a very difficult and time-consuming process.

In addition, only one kernel is used in most works, and the
search is performed over the parameter space of that kernel.

This work presents a novel bi-objective hyper-heuristic
framework for SVM configuration optimisation. Hyper-
heuristics are more effective than other methods because
they are independent of the particular task at hand and can
often obtain highly competitive configurations. Our proposed
hyper-heuristic framework integrates several key components
that differentiate it from existing works to find an effec-
tive SVM configuration for big data cyber security. First,
the framework considers a bi-objective formulation of the
SVM configuration problem, in which the accuracy and
model complexity are treated as two conflicting objectives.
Second, the framework controls the selection of both the
kernel type and kernel parameters as well as the soft margin
parameter. Third, the hyper-heuristic framework combines
the strengths of decomposition- and Pareto-based approaches
in an adaptive manner to find an approximate Pareto set of
SVM configurations.

The performance of the proposed framework is validated
and compared with that of state-of-the-art algorithms on
two cyber security problems: Microsoft malware big data
classification and anomaly intrusion detection. The empirical
results fully demonstrate the effectiveness of the proposed
framework on both problems.

The remainder of this paper is organised as follows. In the
next section (Section II), we present a brief overview of
related work. The definition and formulation of SVMs are
presented in Section III. In Section IV, we describe the pro-
posed hyper-heuristic framework and its main components.
In Section V, we discuss the experimental setup, including
the benchmark instances and the parameter settings of the
proposed framework. In Section VI, we provide the compu-
tational results of our framework and compare the framework
with other algorithms. Finally, the conclusion of this paper is
presented in Section VII.

II. RELATED WORK
In this section, we briefly discuss some related works
on malware detection methods and meta-learning methods.
It also includes review on hyper-heuristics for classification
problems.

A. MALWARE DETECTION METHODS
Recent survey by Ye et al. [53] classified malware detec-
tion methods into three types: signature-based detection
methods, patterns-based detection methods and cloud-
based detection methods. Most of existing detection
methods use signature to detect malware software [21], [22].
Signature is a unique short string of bytes defined for each
known malware software so it can be used to detect future
unknown software [22]. Although signature-based detec-
tion methods are able to detect malware software, they
require constant updating to include the signature of new
malware software into the signature database. In addition,
they can be easily evaded by malware developers by using

10422 VOLUME 6, 2018



N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

encryption, polymorphism or obfuscation [53]. Furthermore,
signature database is usually created via manual process
by domain experts which is known as tedious task and
time-consuming [16].

Patterns-based detection methods check whether a given
malware software contains a set of patterns or not. The
patterns are extracted by domain experts to distinguish mal-
ware software and non-benign files [2], [10], [35]. However,
the analysis of malware software and the extraction of pat-
terns by domain experts is subject to error-prone and requires
a huge amount of time [19]. This indicates that manual anal-
ysis and extraction are major issues in developing patterns-
based detection methods because malware software grows
very fast [53].

Cloud-based detection methods use a server to store detec-
tion software so malware detection can be done in a client-
server manner using cloud-based architecture [41], [53], [54].
However, cloud-based detection methods are highly affected
by the available number of cluster nodes and the running
time of the detection methods [29]. This can slow down the
detection processes and thus multiable malware software can
not be easily detected.

Generally speaking, due to the economic benefits, malware
software getting increasingly complex and malware develop-
ers employ automatedmalware development tool-kits towrite
and modify malware codes to evade detection methods [44].
In addition, existing methods are not scalable enough to
deal with big data and less responsive to new threats due to
the quickly changing nature of malware software. Machine
learning (ML) algorithms have been suggested to be used
as malware detection methods to automatically detect mal-
ware software [53]. However, designing an effective detection
method using machine learning algorithm is a challenging
task due to the large number of possible design options and
the lack of intelligent way for how to choose and/or com-
bine existing options. This work addresses these challenges
through proposing a hyper-heuristic framework to search the
space of the design options and their values, and iteratively
combine and adapt different options for different problem
instances.

B. META-LEARNING APPROACHES
A traditional SVM has several tunable parameters that need
to be optimised in order to obtain high quality results [9].
Meta-learning approaches have been widely used to find the
best combination of parameters and their values for SVM.
Meta-learning is an approach that aims at understanding
the problem characteristics and the best algorithm that fit
to it [52]. In particular, it tries to discover or learn which
problem features contribute to algorithm performance and
then recommend the appropriate algorithm for that prob-
lem. Soares et al. [43] proposed a meta-learning approach
to find the parameter values of Gaussian kernel for SVM
to solve regression problems. The authors used K-NN as
a ranking method to select the best value for the kernel
width parameter. Reif et al. [36] hybridisedmeta-learning and

case-based reasoning to generate the initial starting solutions
for genetic algorithm. The proposed genetic algorithm is used
to find appropriate parameter values for a given classifier
to solve a given problem instance. Ali and Smith-Miles [3]
employed a meta-learning approach that uses classical, dis-
tance and distribution statistical information to recommend
kernel method for SVM. Gomes et al. [24] proposed a hybrid
method that combines meta-learning and search algorithms to
select SVM parameter values. Other examples that use meta-
learning approaches to tune SVMs are [30]–[32] and [37].

Although meta-learning approaches have shown to be
effective in tuning SVMs parameter values, they still face
the problem of over-fitting. This is because the extracted
problem features only capture the instances that have been
used during the training process. In addition, most of existing
approaches are used to tune single kernel method and were
tested on small scale instances. Our proposed framework uses
kernel methods and the selection process is formulated as
a bi-objective optimisation to effectively deal with big data
problems.

C. HYPER-HEURISTICS
Hyper-heuristic is an emergent search method that seeks to
automate the process of combining or generating an effec-
tive problem solver [11]. A traditional hyper-heuristic frame-
work takes all possible designing options as an input and
then decides which one should be used. The output of a
hyper-heuristic framework is a problem solver rather than
a solution [39]. Sim et al. [42] proposed a hyper-heuristic
framework to generate a set of attributes that characterise
a given instance for one dimensional bin packing prob-
lem. The authors used hyper-heuristic framework to predict
which heuristic should be used to solve the current problem
instance. Ortiz-Bayliss et al. [34] proposed a learning vector
quantization neural network based hyper-heuristic frame-
work for solving constraint satisfaction problems. The hyper-
heuristic framework was trained to decide which heuristic to
select based on the given properties of the instance at hand.
Greer [25] presented a stochastic hyper-heuristic framework
for unsupervised matching of partial information. The hyper-
heuristic framework was implemented as a feature selection
method to determine which sub-set of features should be
selected. Basgalupp [7] proposed a hyper-heuristic frame-
work to evolve decision-tree for software effort prediction.
Other examples that use hyper-heuristic frameworks to evolve
classifiers are [6], [8], and [51].

III. PROBLEM DESCRIPTION
This section is divided into three subsections. We first
describe the SVM process, followed by the formulation
of the configuration problem. Finally, we present the pro-
posed multi-objective formulation of the SVM configuration
problem.

A. SUPPORT VECTOR MACHINES
SVMs are a class of supervised learning models that have
been widely used for classification and regression [50].

VOLUME 6, 2018 10423



N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

TABLE 1. Kernel functions.

SVMs are based on statistical learning theory and are better
able to avoid local optima than other classification algo-
rithms. An SVM is a kernel-based learning algorithms that
seeks the optimal hyperplane. The kernel learning process
maps the input patterns into a higher-dimensional feature
space in which linear separation is feasible. Suppose that we
have L sample sets {(xi,yi) | xi ∈ Rv, yi ∈ R}, where xi is
an input vector of dimensionality v and yi is the output vector
corresponding to xi. The basic idea of the SVM approach is to
map the input vector xi into an N-dimensional feature space
and then construct the optimal decision-making function in
the feature space as follows [50]:

min(
1
2
‖ ω ‖ +C

L∑
i=1

(ξi + ξ∗i )) (1)

s.t.

yi − f (xi) ≤ ε + ξi
f (xi)− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0, i = 1, 2, . . .L

where ω = (ω1, ω1, ω1, . . . , ωN)T is the weight vector;
C is themargin parameter (or penalty); ε is the insensitive loss
coefficient, which controls the number of support vectors; and
ξi and ξ∗i are two slack variables, which take non-negative
values. Equation (1) can be transformed into a dual problem,
in which the optimal decision can be obtained by solving the
following:

f (x) =
L∑
i=1

(αi − α∗i )K (x, xi)+ b (2)

where αi and α∗i are Lagrange coefficients representing the
two slack variables, b ∈ R is the bias, and K (x, xi) is the the
kernel function

K (x, xi) = 〈8(x),8(xi)〉 (3)

Here, 8(.) represents the mapping function to the fea-
ture space. The kernel function is used to compute the dot
product of two sample points in the high-dimensional space.
Table 1 summarises the kernel functions that have been
widely used in SVMs [9]. In this table, α, β and d are kernel
parameters that need to be set by the user.

The existing kernel functions can be classified as either
local or global kernel functions [9]. Local kernel functions
have a good learning ability but do not have a good gen-
eralisation ability. By contrast, global kernel functions have

a good generalisation ability but a poor learning ability. For
example, the radial kernel function is known to be a local
function, whereas the polynomial kernel function is a global
kernel function. The main challenge lies in determining
which kernel function should be used for the current problem
instance or the current decision point. This is because the
kernel selection process strongly depends on the distribution
of the input vectors and the relationship between the input
vector and the output vector (predicted variables). However,
the feature space distribution is not known in advance and
may change during the course of the solution process, espe-
cially in big data cyber security. Consequently, different ker-
nel functions may work well for different instances or in
different stages of the solution process, and kernel selec-
tion may thus have a crucial impact on SVM performance.
To address this issue, in this work, we use multiple kernel
functions to improve the accuracy of our algorithm and avoid
the shortcomings of using a single kernel function.

B. SVM CONFIGURATION FORMULATION
A traditional SVM configuration specifies the appropriate
values for C , the kernel type and the kernel parameters.
The aim is to find SVM configurations from the space of
all possible configurations that minimise the expected error
when tested on completely new data. This can be represented
as a black-box optimisation problem that seeks an optimal
cross-validation error (I) and can be expressed as a tuple of
the form <SVM, Θ , D, C, S >, where [26]

• SVM is the parametrised algorithm,
• Θ is the search space of the possible SVM configura-
tions (C , kernel type and kernel parameters),

• D is the distribution of the set of instances,
• C is the cost function, and
• S is the statistical information.

θ∗ ∈ argmin
θ∈Θ

I(Θ) (4)

The goal is to optimise the cost function C: Θ ×D 7−→R
of the SVM over a set of problem instances π ∈ D to find

θ∗ ∈ argmin
θ∈Θ

1
|D|

∑
π∈D

C(θ, π) (5)

Each θ ∈ Θ represents one possible configuration of
the SVM. The cost function C represents a single execution
of the SVM using θ to solve a problem instance π ∈ D.
The statistical information S (e.g., a mean value) summarises
the output of C obtained when testing the SVM across a set
of instances. The main role of the proposed hyper-heuristic
framework is to find a θ ∈ Θ such that C(θ ) is optimised.

C. MULTI-OBJECTIVE FORMULATION
A multi-objective optimisation problem involves more than
one objective function that all need to be optimised
simultaneously [17]. A general multi-objective optimisa-
tion problem of the minimisation type can be represented

10424 VOLUME 6, 2018



N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

as follows:

min F(X ) = [f1(x), f2(x), . . . , fm(x)]
s.t. ζ (X ) = [ζ1(x), ζ2(x), . . . , ζc(x)] ≥ 0

x(L)i ≤ xi ≤ x
(U )
i (6)

where X = (x1, x2, . . . , xN ) is a set of N decision variables,
m is the number of objectives fi, c is the number of constraints
ζ (X ), x(L)i is the lower bound on the ith decision variable, and
x(U )
i is the upper bound on the ith decision variable. In a multi-
objective optimisation problem, two solutions are compared
using the concept of dominance (≺). Given two solutions a
and b, a is said to dominate b (a ≺ b) if a is superior or equal
to b in all objectives and strictly superior to b in at least one
objective [17]:

F(a) ≺ F(b) iff

{
fi(a) ≤ fi(b), ∀i = 1, . . . ,m
∃i ∈ 1, . . . ,m, fi(a) < fi(b)

(7)

A solution a is Pareto optimal if there is no other solu-
tion that dominates it. Accordingly, the set of all Pareto-
optimal solutions is called the Pareto-optimal set (PS), and its
image in the objective space is called the Pareto front (PF).
The main goal of optimisation algorithms is to find the
optimal PS.

For an SVM, the accuracy can be seen as a trade-off
between the complexity (number of support vectors (NSV ))
and the margin (C) [46]. A large number of support vec-
tors may lead to over-fitting, whereas a large value of C to
increase the generalisation ability may result in incorrect
classification of some samples. This trade-off can be con-
trolled through the selection of the SVM configuration
(C , kernel type and kernel parameters). To this end, in this
work, we consider the accuracy and complexity (number of
support vectors (NSV )) achieved over the training instances
as two conflicting objectives [46]:
• Accuracy. The accuracy represents the classification
performance on a given problem instance. It can be
calculated via so-called K -fold cross-validation (CV),
in which the given instance is split into K disjoint sets
D1, . . . , DK of the same size. For each configuration
(θ ∈ Θ), the SVM is trained K times. In each iteration,
K − 1 sets are used for training, and the other set is
used for performance testing. The error (err) represents
the average number of misclassified data sets over K
training iterations.

• Complexity. The complexity represents the number
of support vectors (NSV ) or the upper bound on the
expected number of errors.

The SVM configuration θ ∈ Θ comprises the decision
variables (C , kernel type and kernel parameters). The bounds
on each decision variable represent its range of possible
values. The two objectives to be optimised (m = 2) can be
formulated as follows [46]:

minF(X ) = [f1(x), f2(x)]
where f1(x) = err

f2(x) = NSV (8)

FIGURE 1. The proposed methodology.

where err represents the number of misclassified data sets
and NSV denotes the number of support vectors.

IV. METHODOLOGY
The flowchart of the proposed methodology (abbreviated as
HH-SVM) is depicted in Figure 1. The methodology has
two parts: the SVM and the hyper-heuristic framework. The
main role of the hyper-heuristic framework is to generate
a configuration (C , kernel type and kernel parameters) and
send it to the SVM. The SVM uses the generated configu-
ration to solve a given problem instance and then sends the
cost function (mean values of err and NSV ) to the hyper-
heuristic framework. This process is repeated for a certain
number of iterations. In the following subsections, we discuss
the proposed hyper-heuristic framework along with its main
components.

A. THE PROPOSED HYPER-HEURISTIC FRAMEWORK
The proposed hyper-heuristic framework for configuration
selection is shown in Figure 2. It has two levels: the high-
level strategy and the low-level heuristics [11]. The high-level
strategy operates on the heuristic space instead of the solu-
tion space. In each iteration, the high-level strategy selects
a heuristic from the existing pool of low-level heuristics,
applies it to the current solution to produce a new solution
and then decides whether to accept the new solution. The low-
level heuristics constitute a set of problem-specific heuris-
tics that operate directly on the solution space of a given
problem [39].

To address the bi-objective optimisation problem, we pro-
pose a population-based hyper-heuristic framework that oper-
ates on a population of solutions and uses an archive to
save the non-dominated solutions. The proposed frame-
work combines the strengths of decomposition- and Pareto
(dominance)- based approaches to effectively approximate
the Pareto set of SVM configurations. Our idea is to combine
the diversity ability of the decomposition approach with the

VOLUME 6, 2018 10425



N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

FIGURE 2. Hyper-heuristic framework.

FIGURE 3. Solution representation.

convergence power of the dominance approach. The decom-
position approach operates on the population of solutions,
whereas the dominance approach uses the archive. The hyper-
heuristic framework generates a new population of solutions
using either the old population, the archive, or both the old
population and the archive. This allows the search to achieve
a proper balance between convergence and diversity. It should
be noted that seeking good convergence involves minimising
the distances between the solutions and PF , whereas seeking
high diversity involves maximising the distribution of the
solutions along PF .
The main components of the proposed hyper-heuristic

framework are discussed in the following subsections.

B. SOLUTION REPRESENTATION
In our framework, each solution represents one configuration
(θ ∈ Θ) of the SVM, which is represented in the form of a
one-dimensional array, as shown in Figure 3. In this figure,
C is the margin parameter (or penalty), KF is the index of
the selected kernel function, and k1, k2, . . . , kKF are the
parameters of that kernel function.

C. POPULATION INITIALISATION
The population of solutions (PS) is randomly initialised.
We use the following equation to assign a random value to

each decision variable in a given solution (x):

xpi = lpi + Rand
p
i (0, 1)× (upi − l

p
i ),

p = 1, 2, . . . , |PS|, i = 1, 2, . . . , d (9)

where i is the index of the decision variable, d is the total
number of decision variables, p is the index of the solution,
|PS| is the population size, Randpi (0, 1) returns a random
value in the range [0,1] for the ith decision variable, lpi is the
lower bound on the value of that decision variable, and upi is
the upper bound.

D. FITNESS CALCULATION
The fitness calculation assigns a value to each solution in the
population that indicates how good this solution is compared
with those in the current population. In this work, we use
the MOEA/D approach to solve the multi-objective optimi-
sation problem for selecting the SVM configuration. In this
approach, a given multi-objective optimisation problem is
first decomposed into a number of single-objective sub-
problems, and then, all sub-problems are solved in a collab-
orative manner [57]. MOEA/D uses a scalarisation function
to decompose a given problem into a number of scalarised
single-objective sub-problems as follows [57]:

gte(x, λ) = max
i∈m

(λi|z∗i − fi(x)|) (10)

where gte is the Tchebycheff decomposition approach, x is
a given solution (SVM configuration), m is the number of
objectives (in this work, m = 2), and λ = (λ1, λ2, . . . , λm) is
a weighting vector such that λi ≥ 0, ∀ i ∈ m. fi is the fitness
value for the ith objective calculated using Equation (8).

10426 VOLUME 6, 2018



N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

z∗ = (z∗1, z
∗

2, . . . , z
∗
m) is the idea or the reference point,

i.e., z∗i = min{fi(x) | x ∈ � } for each i = 1, 2, . . . ,m.

E. HIGH-LEVEL STRATEGY
The main role of the high-level strategy is to automate the
heuristic selection process [39]. Our proposed high-level
strategy consists of the following steps.

1) SELECT
The selection step involves selecting one heuristic from the
existing pool of heuristics using a selection mechanism.
In this work, we use Multi-Armed Bandit (MAB) [39] as
an on-line heuristic selection mechanism . In MAB, the past
performance of each heuristic is saved; then, these perfor-
mances are used to decide which heuristic should be selected.
Each heuristic is associated with two variables: the empirical
reward qi and the confidence level ni. The empirical reward
qi represents the average reward obtained during the search
process using this heuristic. A higher value of the empirical
reward is better. The confidence level ni is the number of
times that the ith heuristic has previously been applied. Based
on these two variables, MAB calculates the confidence inter-
val for each heuristic and then selects the highest value using
the following formula (Equation (11)):

arg max
i=LLH1...LLHn

qi(t) + c
√√√√2log

∑LLHn
i=LLH1

ni(t)
ni(t)

 (11)

The pool of heuristics in our framework is denoted by
{LLH_1, . . . ,LLH_n}, where n is the total number of heuris-
tics. The index t is the time step or the number of the current
iteration of the search. c is a scaling factor that adjusts the
balance between the influence of the empirical reward and the
confidence level to ensure that the confidence interval will
not be excessively biased by either of these indicators. For
example, a highly rewarded but infrequently used heuristic
should most likely be less preferred than a frequently used
heuristic whose reward value is only slightly lower.

The empirical reward qi(t) is calculated as follows:

qi(t) =
ni(t−1) × qi(t−1) + ri(t)

ni(t)
(12)

where ri(t) is the accumulative reward value of heuristic LLHi
up to time t . The computation of ri(t) uses the equation below,
Equation (13).

ri(t) =
∑

1 gte(x, λ) (13)

The component ri(t) is the sum total of the fitness improve-
ment introduced by heuristic i from the beginning of the
search up through the current iteration t .

2) APPLY
Two tasks are performed in the application step:
• Solution selection. This task determines which solu-
tions should be selected to form the mating pool.

In this work, we propose to utilise the advantages
of both the decomposition- and Pareto (dominance)-
based approaches during the solution selection process.
In MOEA/D, each solution in the current population
represents a sub-problem. To combine decomposition
and dominance, we optimise each sub-problem using
information from only its neighbouring sub-problems
with probability pn, from both the neighbouring sub-
problems and the archive with probability pna, or from
only the archivewith probability pa. A fixed set of neigh-
bouring solutions for each sub-problem is determined
using the Euclidean distances between any two solutions
based on their weight vectors.

• Heuristic application. In this task, the selected heuristic
is applied to the created mating pool to evolve a new set
of solutions.

3) ACCEPT SOLUTION
The acceptance step checks whether the newly generated
solutions should be accepted. In this work, we first compare
each solution x with its neighbouring sub-problems y. x will
replace y if it is superior in terms of the scalarisation function,
gte(x, λ) <gte(y, λ). Next, we update the archive using non-
dominated solutions.

4) TERMINATE
This step terminates the search process. This step checks
whether the total number of iterations has been reached and,
if so, terminates the search process and returns the set of non-
dominated solutions. Otherwise, it starts a new iteration.

F. LOW-LEVEL HEURISTICS
The low-level heuristics (LLHs) are a set of problem-specific
rules that operate directly on a given solution. Each LLH takes
one or more solutions as input and then modifies them to
generate a new solution. In this work, we utilise various sets
of heuristics within the proposed framework. These heuristics
have been demonstrated to be suitable for different problems
and even for different stages of the same problem. These
heuristics are chosen so as to incorporate various characteris-
tics into the search and to include different search behaviours.
The heuristics are as follows [20]:

1) Parametrised Gaussian Mutation

x = x +N (Mean, σ2) (14)

whereMean = 0 and σ2 = 0.5 is the standard deviation.
2) Differential Mutation_1

x = x1 + F × (x2 − x3) (15)

3) Differential Mutation_2

x = x1 + F × (x2 − x3)+ F × (x4 − x5) (16)

4) Differential Mutation_3

x = x1 + F × (x1 − x2)+ F × (x3 − x4) (17)

VOLUME 6, 2018 10427



N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

where x1, x2, x3, x4 and x5 are five different solutions
selected from the mating pool in accordance with the
solution selection process discussed in IV-E.2. F is a
scaling factor, whose value is fixed to 0.9 in this study.

5) Arithmetic Crossover

x = λ× x1 + (1− λ)× x2 (18)

where λ is a randomly generated number, whose
value is within the range λ ∈ [0, 1]. x1 is the cur-
rent sub-problem, and x2 is the best solution in its
neighbourhood.

6) Polynomial Mutation

x =

{
x1 + σ × (b− a), if Rand ≤ 0.5
x1, otherwise

(19)

and

σ =

{
(2× Rand)

1
(η+1) − 1, if Rand ≤ 0.8

1− (2− 2× Rand)
1

(η+1) , otherwise

where η is set to 0.3 and a and b are the lower and upper
bounds, respectively, on the value of the ith decision
variable.

G. ARCHIVE
The archive saves the set of non-dominated solutions and is
updated in each iteration. In this work, the newly generated
solutions are first added to the archive. Then, following the
concept of NSGA-II [18], we use the non-dominated sorting
procedure to divide the archive into several levels of non-
domination such that solutions in the first level have the
highest priority to be selected, those in the second level have
the second highest priority, etc. To ensure that the selected
solutions are distributed along the Pareto front (PF), we may
also select some solutions at the lowest level, depending on
the crowding distance measure.

V. EXPERIMENTAL SETUP
This section summarises the benchmark instances that were
used to assess the proposed framework and the parameter
settings.

A. BENCHMARK INSTANCES
In this work, we analysed our proposed framework on two
different cyber security problems with a broad range of dif-
ferent structures and sizes.

1) MICROSOFT MALWARE BIG DATA CLASSIFICATION
A first experimental evaluation uses Microsoft malware
big data classification problem which was introduced for
BIG 2015, hosted at Kaggle.1 Microsoft provided a total
of 500 GB of data of known malware files representing a mix
of 9 families (classes) for 2 purposes: training and testing.
A total of 10868 malwares are included in the training set,

1https://www.kaggle.com/c/malware-classification/data

TABLE 2. The parameter settings of our framework.

and 10783 malwares are included in the testing set. Each
sample is a binary file with the extension ‘‘.bytes’’, and the
corresponding disassembled file in the assembly language
(text) has the extension ‘‘.asm’’. The ultimate goal is to train
the classification algorithm using the training samples to
effectively classify each of the testing samples into one of the
9 categories (malware families) such that the logloss function
below is minimised:

logloss = −
1
N

N∑
i=1

M∑
j=1

yij log(pij) (20)

where N represents the number of training samples,M is the
number of classes, log is the natural logarithm, and yij is a true
label that takes a value of 1 if i is in class j and 0 otherwise.
pij is the estimated probability that i belongs to class j. Further
description can be found on the Kaggle web site.

2) ANOMALY INTRUSION DETECTION
In the second experimental evaluation, we used the
NSL-KDD2 anomaly intrusion detection instances.
NSL-KDD includes selected records from the KDDCUP99
dataset collected by monitoring incoming network traffic.
NSL-KDD has been used by many researchers to develop
network-based intrusion detection systems (NIDs). The
NSL-KDD problem instance consists of 125,973 training
samples and 22,544 testing samples, each classified as either
normal or anomalous (i.e., a network attack).

B. PARAMETER SETTINGS
The proposed framework has a few parameters that need to
be determined in advance. To this end, we conducted a pre-
liminary investigation to set the values of these parameters.
We tested different values for each parameter while keeping
the other parameters fixed. Table 2 shows the parameter
settings investigated in our work as well as the final selected
values.

VI. RESULTS AND COMPARISONS
In this section, we present the results of the experiments that
we conducted to evaluate the proposed HH-SVM framework
described in this paper. We conducted two experimental tests.
In the first test, HH-SVM was compared with each low-
level heuristic individually. In the second test, the results of
HH-SVM were compared with those of other algorithms
proposed in the literature.

2http://nsl.cs.unb.ca/NSL-KDD/

10428 VOLUME 6, 2018



N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

TABLE 3. Comparison of the HH-SVM results against the results of all
low-level heuristics (LLH1 to LLH6) individually.

TABLE 4. The NSV values obtained by HH-SVM and the individual
low-level heuristics (LLH1 to LLH6).

A. HH-SVM COMPARED WITH INDIVIDUAL
LOW-LEVEL HEURISTICS
This section compares the proposed HH-SVM with each
low-level heuristic (LLH ). Our aim is to assess the benefits
of the proposed hyper-heuristic framework and the effects
of using multiple LLHs on the search performance. To this
end, we tested each LLH separately. The outcomes were the
results of seven different algorithms, denoted by HH-SVM,
LLH1, LLH2, LLH3, LLH4, LLH5, and LLH6. All algorithms
were executed under identical conditions, and the same
base components were utilised on both problem instances
(BIG 2015 and NSL-KDD). The average results over 31 inde-
pendent runs are compared in Table 3. The BIG 2015 results
are compared in terms of logloss, for which lower values
are better (20), whereas the NSL-KDD results are compared
based on accuracy, for which higher values are better. In the
table, the best results achieved among all algorithms are indi-
cated in bold font. From the results, we can see that HH-SVM
outperforms all other algorithms (LLH1, LLH2, LLH3, LLH4,
LLH5, and LLH6) on both BIG 2015 and NSL-KDD. Table 4
reports the numbers of support vectors (NSV) for HH-SVM
and the compared algorithms on both instances, for which
lower values are better. As seen from this table, the proposed
HH-SVM framework produced lower NSV values for both
BIG 2015 andNSL-KDD comparedwith LLH1, LLH2, LLH3,
LLH4, LLH5, and LLH6. These positive results justify the use
of the proposed hyper-heuristic framework and the use of the
pool of heuristics (LLHs).
To further verify these results, we conducted statistical tests

using the Wilcoxon test with a significance level of 0.05.
The p-values for the HH-SVM results versus those of LLH1,
LLH2, LLH3, LLH4, LLH5, and LLH6 are reported in Table 5.
In this table, a p-value of less than 0.05 indicates that
HH-SVM is statistically superior to the algorithm considered

TABLE 5. The p-values of HH-SVM compared with the individual
low-level heuristics.

TABLE 6. Comparison of the logloss results of HH-SVM and other
algorithms.

for comparison. A value greater than 0.05 indicates that the
performance of our proposed HH-SVM framework is not
significantly superior. From the table, we can clearly see that
all p-values are less than 0.05, indicating that HH-SVM is
statistically superior to LLH1, LLH2, LLH3, LLH4, LLH5, and
LLH6 across both BIG 2015 and NSL-KDD.

B. HH-SVM COMPARED WITH OTHER ALGORITHMS
In this section, the results of HH-SVM are compared with
those reported in the literature. For BIG 2015, we consider
the following algorithms in the comparison:

• XGBoost (AE) [55]
• Random Forest (RF) [23]
• Optimised XGBoost (OXB) [1]

For the NSL-KDD instance, the accuracy results obtained
by HH-SVM are compared against those of the following
algorithms:

• Gaussian Naive Bayes Tree (GNBT) [48]
• Fuzzy Classifier (FC) [27]
• Decision Tree (DT) [33]

The results of HH-SVM and the other algorithms for the
BIG 2015 and NSL-KDD problem instances are summarised
in Table 6 and Table 7, respectively. Similar to the literature,
the results for BIG 2015 in Table 6 are given in the form
of the logloss values achieved by the various algorithms,
whereas in Table 7, all algorithms are compared in terms of
the accuracy measure. In the logloss comparisons, a lower
value indicates better performance, whereas in the accuracy
comparisons, a higher value indicates better performance.
The best result obtained among the compared algorithms
is indicated in bold in both tables. As shown in Table 6,
HH-SVM has a lower logloss value than those of AE, RF and

VOLUME 6, 2018 10429



N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

TABLE 7. Comparison of the accuracy results of HH-SVM and other
algorithms.

OXB for the BIG 2015 instance, whereas in Table 7, the accu-
racy value of HH-SVM is higher than those of GNBT, FC and
DT for the NSL-KDD instance. The results demonstrate that
HH-SVM is an effective methodology for addressing cyber
security problems. The good performance ofHH-SVMcan be
attributed to its ability to design and optimise different SVMs
for different problem instances and for different stages of the
solution process.

VII. CONCLUSION
In this work, we proposed a hyper-heuristic SVM opti-
misation framework for big data cyber security prob-
lems. We formulated the SVM configuration process as a
bi-objective optimisation problem in which accuracy and
model complexity are treated as two conflicting objectives.
This bi-objective optimisation problem can be solved using
the proposed hyper-heuristic framework. The framework
integrates the strengths of decomposition- and Pareto-based
approaches to approximate the Pareto set of configurations.
Our framework has been tested on two benchmark cyber
security problem instances: Microsoft malware big data clas-
sification and anomaly intrusion detection. The experimental
results demonstrate the effectiveness and potential of the
proposed framework in achieving competitive, if not superior,
results compared with other algorithms.

REFERENCES
[1] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,

‘‘Novel feature extraction, selection and fusion for effective malware
family classification,’’ in Proc. 6th ACM Conf. Data Appl. Secur. Privacy,
2016, pp. 183–194.

[2] A. V. Aho and M. J. Corasick, ‘‘Efficient string matching: An aid to
bibliographic search,’’ Commun. ACM, vol. 18, no. 6, pp. 333–340,
Jun. 1975.

[3] S. Ali and K. A. Smith-Miles, ‘‘A meta-learning approach to automatic
kernel selection for support vector machines,’’ Neurocomputing, vol. 70,
nos. 1–3, pp. 173–186, 2006.

[4] N.-E. Ayat, M. Cheriet, and C. Y. Suen, ‘‘Automatic model selection for
the optimization of SVM kernels,’’ Pattern Recognit., vol. 38, no. 10,
pp. 1733–1745, 2005.

[5] Y. Bao, Z. Hu, and T. Xiong, ‘‘A PSO and pattern search based memetic
algorithm for SVMs parameters optimization,’’ Neurocomputing, vol. 117,
pp. 98–106, Oct. 2013.

[6] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho, and A. A. Freitas,
‘‘A hyper-heuristic evolutionary algorithm for automatically designing
decision-tree algorithms,’’ inProc. 14th Annu. Conf. Genet. Evol. Comput.,
2012, pp. 1237–1244.

[7] M. P. Basgalupp, R. C. Barros, T. S. da Silva, and
A. C. P. L. F. de Carvalho, ‘‘Software effort prediction: A hyper-heuristic
decision-tree based approach,’’ in Proc. 28th Annu. ACM Symp. Appl.
Comput., 2013, pp. 1109–1116.

[8] M. P. Basgalupp, R. C. Barros, and V. Podgorelec, ‘‘Evolving decision-tree
induction algorithms with a multi-objective hyper-heuristic,’’ in Proc. 30th
Annu. ACM Symp. Appl. Comput., 2015, pp. 110–117.

[9] A. Ben-Hur and J. Weston, ‘‘A user’s guide to support vector machines,’’
in Data Mining Techniques for the Life Sciences. Methods in Molecular
Biology (Methods and Protocols), O. Carugo and F. Eisenhaber, Eds. vol
609. New York, NY, USA: Humana Press, 2010, pp. 223–239.

[10] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin,
‘‘Automatically identifying trigger-based behavior in malware,’’ in Bot-
net Detection (Advances in Information Security, W. Lee, C. Wang, and
D. Dagon, Eds. Boston, MA, USA: Springer, 2008.

[11] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
J. R. Woodward, ‘‘A classification of hyper-heuristic approaches,’’ in
Handbook of Metaheuristics (International Series in Operations Research
& Management Science), vol. 146, M. Gendreau and J. Y. Potvin, Eds.
Boston, MA, USA: Springer, 2010.

[12] A. Chalimourda, B. Schölkopf, and A. J. Smola, ‘‘Experimentally optimal
ν in support vector regression for different noise models and parameter
settings,’’ Neural Netw., vol. 17, no. 1, pp. 127–141, 2004.

[13] C.-C. Chang and C.-J. Lin, ‘‘LIBSVM: A library for support vector
machines,’’ ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27,
2011.

[14] M. Chen, S. Mao, and Y. Liu, ‘‘Big data: A survey,’’ Mobile Netw. Appl.,
vol. 19, no. 2, pp. 171–209, Apr. 2014.

[15] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge, U.K.:
Cambridge Univ. Press, 2000.

[16] M. Damshenas, A. Dehghantanha, and R. Mahmoud, ‘‘A survey on mal-
ware propagation, analysis, and detection,’’ Int. J. Cyber-Secur. Digit.
Forensics, vol. 2, no. 4, pp. 10–29, 2013.

[17] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
vol. 16. Hoboken, NJ, USA: Wiley, 2001.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[19] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, ‘‘A survey on automated
dynamic malware-analysis techniques and tools,’’ ACM Comput. Surv.,
vol. 44, no. 2, 2012, Art. no. 6.

[20] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
vol. 53. Heidelberg, Germany: Springer, 2003.

[21] E. Filiol, ‘‘Malware pattern scanning schemes secure against black-box
analysis,’’ J. Comput. Virol., vol. 2, no. 1, pp. 35–50, 2006.

[22] E. Filiol, G. Jacob, and M. Le Liard, ‘‘Evaluation methodology and the-
oretical model for antiviral behavioural detection strategies,’’ J. Comput.
Virol., vol. 3, no. 1, pp. 23–37, 2007.

[23] Malware Classification: Distributed Data Mining With Spark. [online]
Available: http://msan-vs-malware.com/

[24] T. A. F. Gomes, R. B. C. Prudêncio, C. Soares, A. L. D. Rossi, and
A. Carvalhoc, ‘‘Combining meta-learning and search techniques to select
parameters for support vector machines,’’ Neurocomputing, vol. 75, no. 1,
pp. 3–13, 2012.

[25] K. Greer, ‘‘A stochastic hyperheuristic for unsupervisedmatching of partial
information,’’ Adv. Artif. Intell., vol. 2012, 2012, Art. no. 790485, doi:
10.1155/2012/790485.

[26] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, ‘‘ParamILS:
An automatic algorithm configuration framework,’’ J. Artif. Intell. Res.,
vol. 36, no. 1, pp. 267–306, 2009.

[27] P. Krömer, J. Platoš, V. Snášel, and A. Abraham, ‘‘Fuzzy classifica-
tion by evolutionary algorithms,’’ in Proc. IEEE Int. Conf. Syst., Man,
Cybern. (SMC), Oct. 2011, pp. 313–318.

[28] A. C. Lorena and A. C. P. L. F. de Carvalho, ‘‘Evolutionary tuning of
SVM parameter values in multiclass problems,’’ Neurocomputing, vol. 71,
nos. 16–18, pp. 3326–3334, 2008.

[29] M. M. Masud et al., ‘‘Cloud-based malware detection for evolving data
streams,’’ ACM Trans. Manage. Inf. Syst., vol. 2, no. 3, 2011, Art. no. 16.

[30] P. B. C. Miranda, R. B. C. Prudêncio, A. C. P. L. F. Carvalho, and
C. Soares, ‘‘Combining meta-learning with multi-objective particle swarm
algorithms for SVM parameter selection: An experimental analysis,’’ in
Proc. Brazilian Symp. Neural Netw. (SBRN), Oct. 2012, pp. 1–6.

[31] P. B. C. Miranda, R. B. C. Prudêncio, A. C. P. L. F. de Carvalho,
and C. Soares, ‘‘Multi-objective optimization and Meta-learning for SVM
parameter selection,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jun. 2012, pp. 1–8.

10430 VOLUME 6, 2018

http://dx.doi.org/10.1155/2012/790485


N. R. Sabar et al.: Bi-Objective Hyper-heuristic SVMs for Big Data Cyber-Security

[32] P. B. C.Miranda, R. B. C. Prudêncio, A. P. L. F. DeCarvalho, andC. Soares,
‘‘A hybrid meta-learning architecture for multi-objective optimization of
SVM parameters,’’ Neurocomputing, vol. 143, pp. 27–43, Nov. 2014.

[33] M.Mohammadi, B. Raahemi, A. Akbari, and B. Nassersharif, ‘‘New class-
dependent feature transformation for intrusion detection systems,’’ Secur.
Commun. Netw., vol. 5, no. 12, pp. 1296–1311, 2012.

[34] J. C. Ortiz-Bayliss, H. Terashima-Marín, and S. E. Conant-Pablos, ‘‘Learn-
ing vector quantization for variable ordering in constraint satisfaction
problems,’’ Pattern Recognit. Lett., vol. 34, no. 4, pp. 423–432, 2013.

[35] C. R. Panigrahi, M. Tiwari, B. Pati, and R. Prasath, ‘‘Malware detection
in big data using fast pattern matching: A hadoop based comparison on
GPU,’’ inMining Intelligence and Knowledge Exploration (Lecture Notes
in Computer Science), vol. 8891, R. Prasath, P. O’Reilly, and
T. Kathirvalavakumar, Eds. Cham, Switzerland: Springer, 2014.

[36] M. Reif, F. Shafait, andA. Dengel, ‘‘Meta-learning for evolutionary param-
eter optimization of classifiers,’’Mach. Learn., vol. 87, no. 3, pp. 357–380,
Jun. 2012.

[37] A. Rosales-Pérez, J. A. Gonzalez, C. A. C. Coello, H. J. Escalante, and
C. A. Reyes-Garcia, ‘‘Surrogate-assisted multi-objective model selection
for support vector machines,’’ Neurocomputing, vol. 150, pp. 163–172,
Feb. 2015.

[38] N. R. Sabar, J. Abawajy, and J. Yearwood, ‘‘Heterogeneous cooperative co-
evolution memetic differential evolution algorithm for big data optimiza-
tion problems,’’ IEEE Trans. Evol. Comput., vol. 21, no. 2, pp. 315–327,
Apr. 2017.

[39] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, ‘‘A dynamic multiarmed
bandit-gene expression programming hyper-heuristic for combinatorial
optimization problems,’’ IEEE Trans. Cybern., vol. 45, no. 2, pp. 217–228,
Feb. 2015.

[40] B. Schölkopf and A. J. Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT press, 2002.

[41] S. Shaw, M. K. Gupta, and S. Chakraborty, ‘‘Cloud based malware
detection,’’ in Proc. 5th Int. Conf. Frontiers Intell. Comput., Theory
Appl. (FICTA), vol. 1. 2017, pp. 485–495.

[42] K. Sim, E. Hart, and B. Paechter, ‘‘A hyper-heuristic classifier for one
dimensional bin packing problems: Improving classification accuracy by
attribute evolution,’’ in Parallel Problem Solving from Nature—PPSN XII
(Lecture Notes in Computer Science), vol. 7492, C. A. C. Coello,
V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone, Eds. Berlin,
Germany: Springer, 2012.

[43] C. Soares, P. B. Brazdil, and P. Kuba, ‘‘A meta-learning method to select
the kernel width in support vector regression,’’Mach. Learn., vol. 54, no. 3,
pp. 195–209, 2004.

[44] D. Song et al., ‘‘BitBlaze: A new approach to computer security via binary
analysis,’’ in Information Systems Security. 2008, pp. 1–25.

[45] S. Suthaharan, ‘‘Big data classification: Problems and challenges in net-
work intrusion prediction with machine learning,’’ SIGMETRICS Perform.
Eval. Rev., vol. 41, no. 4, pp. 70–73, Apr. 2014.

[46] T. Suttorp and C. Igel, ‘‘Multi-objective optimization of support vector
machines,’’ in Multi-Objective Machine Learning, 2006, pp. 199–220.

[47] C. Tankard, ‘‘Big data security,’’ Netw. Secur., vol. 2012, no. 7, pp. 5–8,
2012.

[48] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl. (CISDA), Jul. 2009, pp. 1–6.

[49] C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos, ‘‘Big data analytics:
A survey,’’ J. Big Data, vol. 2, no. 1, p. 21, 2015.

[50] V. Vapnik, The Nature of Statistical Learning Theory. Springer, 2013.
[51] A. Vella, D. Corne, and C. Murphy, ‘‘Hyper-heuristic decision tree induc-

tion,’’ in Proc. World Congr. Nature Biol. Inspired Comput. (NaBIC),
Dec. 2009, pp. 409–414.

[52] R. Vilalta and Y. Drissi, ‘‘A perspective view and survey of meta-learning,’’
Artif. Intell. Rev., vol. 18, no. 2, pp. 77–95, 2002.

[53] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, ‘‘A survey onmalware detection
using data mining techniques,’’ ACM Comput. Surv., vol. 50, no. 3, 2017,
Art. no. 41.

[54] Y. Ye et al., ‘‘Combining file content and file relations for cloud based mal-
ware detection,’’ in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2011, pp. 222–230.

[55] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
‘‘Autoencoder-based feature learning for cyber security applications,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 3854–3861.

[56] J. Zhang et al., ‘‘Evolutionary computation meets machine learning:
A survey,’’ IEEE Comput. Intell. Mag., vol. 6, no. 4, pp. 68–75, Apr. 2011.

[57] Q. Zhang and H. Li, ‘‘MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

NASSER R. SABAR is a Lecturer with the Computer Science and IT
Department, La Trobe University, Australia. He has published over 55 papers
in international journals and peer-reviewed conferences. His current research
interests include design and development of hyper-heuristic frameworks,
deep learning, machine learning, evolutionary computation and hybrid algo-
rithms with a specific interest in big data optimisation problems, cloud
computing, dynamic optimisation and data-mining problems.

XUN YI is currently a Professor with the School of Computer Sci-
ence and IT, RMIT University, Australia. His research interests include
applied cryptography, computer and network security, mobile and wire-
less communication security, and privacy-preserving data mining. He has
published over 150 research papers in international journals, such as the
IEEE TRANSACTIONKNOWLEDGEANDDATA ENGINEERING, the IEEE TRANSACTION

WIRELESS COMMUNICATION, the IEEE TRANSACTION DEPENDABLE AND SECURE

COMPUTING, the IEEE TRANSACTION CIRCUIT AND SYSTEMS, and conference
proceedings. He has ever undertaken program committee members for over
20 international conferences. Since 2014, he has been an Associate Editor
for the IEEE TRANSACTION DEPENDABLE AND SECURE COMPUTING.

ANDY SONG is a Senior Lecturer with the Computer Science and ITDepart-
ment, School of Science, RMIT University, Australia. His research interests
include machine learning especially evolutionary computing-based learning
on solving complex real-world problems, including texture analysis, motion
detection, activity recognition, event detection, and optimization. Recently,
he has been active in establishing cutting-edge techniques, which integrate
machine intelligence, mobile and crowd sensing, to benefit transportation,
logistics and warehouse industry. He collaborates with a range of industry
partners.

VOLUME 6, 2018 10431


	INTRODUCTION
	RELATED WORK
	MALWARE DETECTION METHODS
	META-LEARNING APPROACHES
	HYPER-HEURISTICS

	PROBLEM DESCRIPTION
	SUPPORT VECTOR MACHINES
	SVM CONFIGURATION FORMULATION
	MULTI-OBJECTIVE FORMULATION

	METHODOLOGY
	THE PROPOSED HYPER-HEURISTIC FRAMEWORK
	SOLUTION REPRESENTATION
	POPULATION INITIALISATION
	FITNESS CALCULATION
	HIGH-LEVEL STRATEGY
	SELECT
	APPLY
	ACCEPT SOLUTION
	TERMINATE

	LOW-LEVEL HEURISTICS
	ARCHIVE

	EXPERIMENTAL SETUP
	BENCHMARK INSTANCES
	MICROSOFT MALWARE BIG DATA CLASSIFICATION
	ANOMALY INTRUSION DETECTION

	PARAMETER SETTINGS

	RESULTS AND COMPARISONS
	HH-SVM COMPARED WITH INDIVIDUAL LOW-LEVEL HEURISTICS
	HH-SVM COMPARED WITH OTHER ALGORITHMS

	CONCLUSION
	REFERENCES
	Biographies
	NASSER R. SABAR
	XUN YI
	ANDY SONG


