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ABSTRACT Cognitive radios (CRs) mainly aim to reuse the spectrum holes in order to efficiently utilize
the available scarce radio spectrum. However, current CRs techniques have a throughput limitation problem
which ultimately limits telecommunication applications horizons nowadays. Moreover, achieving high
throughput will overcome the bottleneck of CRs application limitations to the reporting and browsing
applications only. To tackle this emerging throughput limitation issue in the CRs, this paper proposes the
online greedy throughput maximization (OGTM) algorithm which overcomes the throughput limitations.
OGTM allows the sensing cycle frame to have a variable length according to the assumed decision validity
interval. Then, OGTM varies the decision validity interval of secondary users (SUs) based on the primary
users (PUs) historical behavior. As a proof of concept, we developed a simulator in order to evaluate the
performance of the proposedOGTM technique. The simulation results show that SUs benefit from the limited
PU historical behavior learning, which resultantly increases the throughput up to 95% and at the same time
decreases the miss detection probability by 50%.

INDEX TERMS Behavior learning, cognitive radios, primary users, secondary users, miss detection, ogtm,
throughput limitation.

I. INTRODUCTION
Cognitive Radios (CRs) are capable of changing their param-
eters such as operating frequency and power in order to
benefit from the opportunistic spectrum access to licensed
channels [1]. Such opportunistic spectrum access allows
new telecommunication applications to share the overbooked
under-utilized spectrum with the existing applications and
hence increases the spectrum utilization efficiency.

In order to detect and utilize the under-utilized spec-
trum holes, CRs perform sensing cycles. The CR sensing
cycle is composed of three intervals; the spectrum sensing
interval to detect the spectrum holes, the detected spectrum
holes for reporting and CRs cooperation interval seeking the
refined spectrum decisions, and the payload data transmission
interval [2]. A further illustration of these three intervals is
discussed in the next paragraphs.

In the spectrum sensing interval, all secondary users (SUs)
sense the targeted primary users (PUs) channels searching for
spectrum holes. The sensing criterion is assumed to be an

energy detection because it is a simplemethodwhich does not
require any a priori information about PUs [3]. However, this
individual spectrum sensing process has a degraded perfor-
mance because of the shared channel effects, such as hidden
PU terminal problem, SU shadowing and multipath fading
between PUs and SUs. In other words, the individual spec-
trum sensing needs to be more reliable through cooperation.

In the cooperation interval, each SU sends its spectrum
holes information towards a centralized coordinator named
as group master or data fusion center (FC), which process
the final decision making. The received local sensing results
processing at FC is based on a fusion rule, such as AND rule,
OR rule, the linear combination rule, and the majority rule.
The final decision making output is then transmitted to all
SUs to start the payload data transmission.

In the payload data transmission interval, each SU selects
a spectrum hole and transmits a single data packet within
the hole. If no spectrum hole detected, the SU would keep
the data packet in its buffer for the next sensing cycle.
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Sending more than one packet will increase the throughput.
However, sending more than one packet will also increase
the sensing cycle frame size that leads to increased collision
probability with the PUs.

According to [4] and [5], throughput is one of the key lim-
itations which prevent the full realization of CR algorithms.
Moreover, in the CRs, among the major limitations such as
energy consumption, processing resources, cost, and quality
of service limitations, the throughput limitation is a key hur-
dle which prevents a wide range of telecommunication appli-
cations nowadays. These applications can be summarized in
four categories (1) reporting, (2) browsing, (3) live stream-
ing and (4) downloading (including non-live streaming) [6].
Furthermore, the CR, by definition, does not guarantee the
quality of services (i.e., no live streaming is supported).
Alternatively, achieving high throughput is important because
it is the key parameter in order to support the downloading
applications. Then achieving high throughput will overcome
the bottleneck of CR application limitations to the reporting
and browsing applications only.

By focusing on the throughput limitations in the CRs, this
paper proposes an online greedy algorithm to increase the
CR system throughput while maintaining the PU protected.
The proposed algorithm learns from the PU behavior in a
given window of sensing cycles to determine whether to
increase the transmission rate or not. The proposed algorithm
must be lightweight in the processing capacity, in order to
be compatible with the CR limited processing capacity. Our
simulation results show that the proposed algorithm achieves
a maximum throughput of 95% of the available spectrum
holes while increasing the PU protection by at least 50%.
Moreover, the majority of interferences probabilities on PU is
within the PU connection establishment interval, where such
interferences have lesser importance.

The organization of the remaining sections is as follows.
Section II describes the state-of-the-art on existing CR
approaches. Section III presents motivation behind the pro-
posed OGTM algorithm. The description of the system
model is presented in Section IV. The proposed OGTM
algorithm is presented in Section V. Details of simulation
setup, and performance analysis are given in Section VI.
Finally, Section VII draws conclusions.

II. STATE-OF-THE-ART
Nowadays, Cognitive Radio (CR) systems have achieved sig-
nificant attention from the research community. Researchers
have proposed several techniques in order to make the best
use of CR systems to optimally use the scarce radio spectrum.
For instance, Pratibha et al. [7] proposed a technique to opti-
mize the sensing intervals in order to balance between spec-
trum access and energy harvesting. Furthermore, the Pandit
and Singh [8] proposed a technique to improve the throughput
of the CR user while reducing the interference with the pri-
mary users. Besides, Pandit and Singh [9] studied the impact
of perfect and imperfect sensing on the performance of
throughput and energy efficiency in CR systems. Moreover,

the opportunities available for operating CR systems within
the radio frequency spectrum are characterized in [10].
Similarly, Suseela and Sivakumar [11] studied the impact
on CR throughput using channel optimization techniques.
They optimized channel using particle swarm optimization
technique and tree seed algorithm in CR systems.

Since CRs mainly focuses to increase system throughput,
therefore several techniques were proposed in the past in
order to achieve the maximum CRs throughput. The most
prominent of the available techniques achieve maximum
throughput by decreasing either the spectrum sensing inter-
val or the cooperation interval as proposed in [12]–[17].
The main approaches to increase the throughput in CRs
can be divided into three categories: (1) either reduce the
sensing interval through reducing the sensed channels or the
sensing period per channel. (2) by reducing the cooperation
interval through minimizing the needed reporting packets
before reaching the final decision, and (3) by increasing the
transmission interval by increasing the transmitted packet
size or the number of packets.

A. REDUCING THE SENSING INTERVAL
In order to reduce the sensing interval, [12] divides the
sensing interval into coarse and fine intervals. In the coarse
sensing interval, if a clear decision is reached, then SUs start
the cooperation interval. Otherwise, the SUs initiates the fine
sensing interval before starting the cooperation interval. Ergul
andAkan [13] propose only a coarse channel sensing interval.
In the case of no clear decision, they assume using any other
fine sensing algorithm in the literature to perform the final
decision. At very low SNR below−3 dB, this coarse channel
sensing performs well. However, it has a near PU detection
problem.

In [14], each channel sensing slot is reassigned for multiple
channels sensing in order to reduce the sensing interval.
In contrast, they ignore that reducing the number of samples
per channel leads to degraded performance of PU detection.
While Ali et al. [15] assume sensing only a subset of the
channels by each SU and count on the cooperation algorithm
for the needed information about other channels.

B. REDUCING THE COOPERATION INTERVAL
In order to reduce the cooperation interval, three major
algorithms available in the literature include sequential detec-
tion (SD), ordered transmission (OT), and implicit coopera-
tion (ImCo). In SD, SUs sequentially sends their individual
decisions to FC only if no clear final decision is reached
from the previously collected decisions [16], [17]. In other
words, FC performs aggregation after each decision recep-
tion, then decides either to continue or to stop and declare
the final decision. SD is not scalable because it requires a
delay proportional to the needed number of SU to reach
the final decision. In addition, SD requires the advanced FC
capability to perform aggregation after each new reception
from SUs.
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In contrast to SD where the next transmitting SU is
chosen randomly, OT sort the SUs by their probability of
detection (PD) or signal to noise ratio (SNR) [17]. In OT,
SUs sends their individual decisions in an order according to
aforementioned criterion. OT has the SD problems and a SU
sorting problem. In ImCo, the cooperation interval is reduced
by preventing some SU from sending their reports [10]. A cri-
terion is made to determine which SUs has no useful infor-
mation in order to silence them before reporting. The authors
also proposed slotted ImCo for the small fixed cooperation
interval.

C. INCREASING THE TRANSMISSION INTERVAL
To the best of the author’s knowledge, there is no research
available in the literature which study the effect of transmis-
sion interval in different situations. However, the majority
of the research work focuses on decreasing the collision
probability with PUs in order to increase the successfully
transmitted ratio.

III. MOTIVATION
Existing CR algorithms do not consider system throughput as
a primary criteria while improving the system performance.
Resultantly, existingCR algorithms have poor performance in
terms of system throughput. Moreover, in literature, the pri-
mary metrics being used to evaluate the performance of CR
algorithms include delay, energy efficiency, scalability, and
node required resources [18], [19]. Among these metrics,
the metric that affects the overall system throughput is the
decision making delay. It is either due to the spectrum sensing
interval (i.e., sequentially sensing N channels with NS sam-
ples for each) or reporting interval (i.e., sequentially reporting
M decisions with possible retransmissions). Furthermore,
increasing N orM up to a certain limit leads to a higher delay
than the decision validity interval.

The targeted transmission interval is the difference
between the decision validity interval and the decision mak-
ing delay. However, fixed frame interval does not support
the use of such intervals deference. In contrast, fixed frame
interval assigns the minimum guaranteed transmission inter-
val only for payload data transmission before starting the next
frame (which reduce the system throughput).

In this paper, the primary goal is to increase the sys-
tem throughput. The main idea is to achieve higher system
throughput by increasing the transmission interval within
the frame. This is achieved by varying the frame interval
while fixing the decision making delay intervals (i.e., sensing
and reporting intervals). In order to achieve high through-
put, the frame variation is assumed to be depending on the
variation in the decision validity interval. Since the deci-
sion validity interval is based on the historical behavior of
PUs, we try to implicitly estimate the PUs activity factor.
In other words, we assume that a longer period after the last
PU activity means lower PUs activity factor. This ultimately
leads to higher decision validity interval and consequently the
transmission interval.

FIGURE 1. ON-OFF transition Markov model.

IV. SYSTEM MODEL
A detailed description of the system model is presented in
this section. Particularly, topics such as energy detection
based spectrum sensing, spectrum sensing error probability,
reporting, and transmission interval aremainly covered in this
section.

A. MODEL DESCRIPTION
We consider geographical collocation between primary users

(PUs) and secondary users (SUs). PUs can only operate in
one of N separate channels. Furthermore, PUs are assumed
with connection-oriented communication (e.g., phone calls).
According to the proposed Markov model shown in Figure 1,
each PU state is either ON or OFF in each time slot. Moving
from time slot Xi to Xi+1 have four probabilities: p11 to
remain in ON state, p12 to move from ON to OFF state, p22
to remain in OFF state and p21 to move from OFF to ON
state. For connection-oriented communication, we assume
P11 � P12 and P22 � P21. The OFF interval means that the
PU is not occupying the channel, and then SUs can exploit
this channel until the PU switch to ON state. Moreover, FP
is defined as the percentage activity factor of PU channel
utilization, i.e., the ratio of the PU time in ON state to the
total time (i.e., in both ON and OFF states):

FP =
TON

TON + TOFF
(1)

Each SU can switch between any of the N channels. How-
ever, SU can only operate in one channel at a time. The
proposed SUs population is M nodes, uniformly distributed
in the targeted area. No mobility is assumed (i.e., SUs are
with static locations). Each SU has only one half-duplex
transceiver, which can operate in the ISM band in addition
to N PU channels, one at a time. Moreover, each SU is com-
putation resource constrained. Furthermore, all SUs hardware
is homogenous.

The reporting packets from SUs to FC cannot be in any of
the N channels because of no guaranteed availability for such
channels. In contrast, a common control channel (CCC) is
used for this cooperation task. The CCCmay be chosen over-
lay in the ISM band (i.e., unlicensed band) or underlay using
UWB spread spectrum. The individual decisions are taken
locally using energy detection [3], [20]. Among other detec-
tion methods, energy detection is mostly preferred because it
has low complexity and does not need a priori information
from PUs. In our proposed algorithm, the common CR syn-
chronous sensing frame is adopted. Each frame with interval
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FIGURE 2. The sensing frame.

TF carries the sensing, cooperation, and transmission tasks
sequentially in their subintervals as shown in Figure 2. The
individual decisions are taken during the spectrum sensing
intervalTS , the reporting packets are exchanged during the
cooperation interval TC , and the last duration is the payload
data transmission TX (i.e. TF = TS + TC + TX ).

B. SPECTRUM SENSING USING ENERGY DETECTION
PUs, in general, refuse to share their detailed information
with SUs. Even if SUs know the PUs information at any time,
PUs reserve the right to change their transmission parameters
without notifying the SUs. In such cases, energy detection
is the appropriate detection algorithm due to its feature of
not requiring any a priori information about the PUs. In this
detection algorithm, the accumulation of the received energy
for a given number of samples NS is computed. Then, using
a decision strategy, each SU reaches its local decision. There
are two strategies, soft decision, and hard decision. In soft
decision strategy, each SU convey the accumulated energy
samples into a number of bits representing the average energy
level.

In contrast, the hard decision strategy conveys the accu-
mulated energy samples into one bit representing whether
the average energy level of all samples is above or below a
threshold. If the average accumulated energy sample is above,
the channel decision is ON (i.e., busy). Otherwise, channel
decision is consideredOFF (i.e., spectrum hole). In this paper,
we adopt the hard decision strategy because it has less delay
and requires less computational resources [21].

C. SPECTRUM SENSING ERROR PROBABILITY
From the aforementioned sections, we conclude that the PU
may be ON or OFF while the SU may decide the channel
to be ON or OFF with a certain error probability. The four
probabilities are:

1) The probability of correctly detection a busy channel,
i.e., p(SUd=ON |PUON )

2) The probability of Miss-detection (MD), pMD, which is
the probability of falsely deciding the channel as free
given that it is busy, i.e., p(SUd=OFF |PUON )

3) The probability of false alarm (FA), pFA, which is the
probability of falsely deciding the channel as busy
given that it is free, i.e., p(SUd=ON |PUOFF )

4) The probability of correctly detection a spectrum hole,
i.e., p(SUd=OFF |PUOFF )

TABLE 1. Simulation parameters and settings.

A summary of the above mentioned probabilities is provided
in Table 1.

The effect of MD is allowing the SUs to transmit their
packets within the existence of PU, which results in a col-
lision. Such collisions are not acceptable by PUs. The MD
probability formula in energy detection is as follows [3].

pMD = Q

(√
N S

(
β −

(
σ 2
S + σ

2
n
))

σ 2
S + σ

2
n

)
(2)

Where Q (.) is the normal cumulative function, σ 2
S and σ 2

n
are the signal power and noise power respectively. On the
other hand, the effect of FA is not allowing the SUs to transmit
their packets within the absence of PU, which results in a
channel underutilization, i.e., degrade the throughput. The FA
probability formula in energy detection is as follows [3].

pFA = Q

(√
N S

(
β − σ 2

n
)

σ 2
n

)
(3)

D. REPORTING OR COOPERATION INTERVAL
The advantage of SUs cooperation is decreasing both the
probabilityMD pTMD and probability FA pTFA in the aggregated
decision. In cooperative sensing, each SU reports its sensing
information to the FC, which fuses all reports for an accurate
decision [22]. All reports transmissions are on CCC in the
cooperation interval using CSMA/CA as a contention-based
channel access. Unlike other SUs, the FC has advanced com-
putational resources in order to perform the reports fusion.
The FC fuses the reported individual decisions using statisti-
cal or logical algorithms. Themost widely used logical fusion
algorithms are AND, majority (MAJ.), and OR. Existing
techniques considered OR rule is the most suitable cooper-
ation fusion algorithm [23]. In this paper, we adopt the OR
rule as it has the lowest probability MD and probability FA.
In OR fusion algorithm, if at least one SU reports a decision
with PU existence, then the global FC decision is the same.
Then,

PTMD = (PMD)
M (4)

PTFA = (PFA)
M (5)

E. TRANSMISSION INTERVAL
After both the sensing and reporting intervals, each SU can
use the remaining interval of the frame for sending a payload
data packet. The probability of correctly using such interval
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is the fourthmentioned probability, i.e.,p(SUd=OFF)
/
PUOFF.

However, this probability depends on both the PUs activ-
ity factor FP and fused decisions FA probability pTFA.
SUs, by definition, do not know the PUs activity factor.
Conventionally, each SU assumes that the PU activity fac-
tor is constant at a certain high value, which degrades the
throughput performance.

V. ONLINE GREEDY THROUGHPUT MAXIMIZATION
In this paper, we propose a PU activity factor implicit esti-
mator based on the historical behavior of the PUs. The
proposed online greedy throughput maximization (OGTM)
algorithm aims to increase the SUs system throughput while
keeping the PUs protected. Moreover, due to the behavior
of PU connection oriented communication, the interference
in establishing the connection can withstand higher collision
ratio than within the connection itself. The algorithm process
starts with counting the frames with no PU activity in a given
channel Ni. Then, when the counter reaches the predefined
window W, SUs assumes lower PU activity factor.

A. THE MARKOV MODEL ADAPTATION
In this proposed model, we are going to set the values of the
general Markov model introduced in Section IV-A. However,
p21 depends on the PU activity factor and the probability of
ending the connection in the proposed connection oriented
communication. Because these two probabilities are indepen-
dent and identically distributed (i.i.d.) then the p21 probability
formulation may be written as,

p21 = ptrn × FP (6)

While p12 can be formulated as

p12 = ptrn × (1− FP) (7)

Where ptrn is the average probability of changing the
state. From the Markov model property, the sum of outgoing
probabilities in each state equals one, then

p11 + p12 = 1 (8)

p22 + p21 = 1 (9)

From Equation 6 to 9, the other two probabilities can be
formulated as

p22 = 1− (ptrn × FP) (10)

p11 = 1− (ptrn × (1− FP)) (11)

Which means that the four Markov model probabilities can
be fully described using the constant probability ptrn and the
variable activity factor FP.

B. ACTIVITY FACTOR IMPLICIT ESTIMATION
In order to estimate the PU activity factor, one can sense
the channel for a long period and calculate the activity fac-
tor according to Equation 1. However, the PU may change
its activity factor at any instance, and then the calculated
FP became no longer valid. On the other hand, we assume

FIGURE 3. The proposed algorithm flow chart.

OGTM as an online greedy algorithm for FP estimation as
shown in Figure 3. According to Equation 1, the activity
factor estimation for the next window (given that the first
window is sensed free) is 50% or less. Moreover, if both the
first and second windows are free, then the activity factor
estimation for the next window is 25% or less and so on.

On the other hand, the PU re-existence indicates a long
period of busy channel, as given in Equation 11. In other
words, OGTM assumes high activity factor as long as the
PU state is ON. However, when the PU state switched to
OFF, OGTM start decreasing the PU activity factor. Then,
the algorithm decides to increase the validity interval of
the spectrum sensing decision. Moreover, the transmission
interval increases based on the increased validity.

In contrast, the PU burst traffic contains some gaps within
the same connection. However, assuming decreased activ-
ity factor after each single free spectrum hole may lead to
higher collision probability. Then, we propose increasing the
transmission interval only after a certain number of frames
denoted byW . Figure 3 illustrates the OGTM algorithm flow
chart.

Figure 4 shows five sensing frames in order to illustrate the
algorithm i.e.,

1) The first and second frames found the PU channel free
then, the transmission interval is doubled at the third
frame (i.e., for W = 2)

2) As the third frame found the PU channel free, then the
fourth frame has the same length (i.e., 2TXmin)

3) Due to the collision, the fifth frame transmission
interval length is reset to TXmin.
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FIGURE 4. Five sensing frames versus the PU activity.

VI. SIMULATION SETUP AND RESULTS
We build a custom-made simulation code using MATLAB
R2016b to evaluate the proposed algorithm performance. The
proposed system composed of one primary channel with
2 PUs communicating with each other. Moreover, 10 SUs
sensing the primary channel and cooperate on CCC using
CSMA/CA. All factors that may affect the channel is con-
sidered (e.g., shadowing, Rayleigh fading and hidden node
problem).

A. PERFORMANCE METRICS
The proposed performance metrics are:
• Performance probabilities (i.e., MD, FA) as percentages.
• The percentage overhead caused by the sensing and
reporting intervals compared to the entire SUs activities.

• The throughput percentage compared to the entire sim-
ulation interval.

In each PU activity factor FP scenario, the performance met-
rics are computed for the proposed algorithm OGTM and a
system with fixed transmission interval at both the minimum
and maximum transmission interval allocated for OGTM.
The chosen metrics in the chosen scenarios are meant to
illustrate the OGTM advantages over the fixed transmission
interval algorithms.

FIGURE 5. The FA percentage versus the PU activity factor.

B. RELATED PROBABILITIES
According to Equation 5 and 3, the probabilities of MD and
FA are computed in the aforementioned scenarios. Figure 5
Shows that the OGTM has low FA performance nearly equal

FIGURE 6. The MD percentage at different PU activity factor.

to the fixed transmission interval algorithm at high trans-
mission interval assignment. In contrast, at low transmission
interval assignment, the fixed interval has high recurrence
ratio with high probability to false sense the background noise
as PU existence. However, as the PU activity factor increases
the SUs become more aware of distinguishing between the
background noise and PU existence. Hence, the FA percent-
age decreases as the activity factor increases.

On the other hand, Figure 6 shows the MD performance.
The PU half activity factor means the highest PU ON OFF
transition probability. However, increasing such transitions
leads to sense PU as OFF during the sensing interval, then the
PU change its state to ONwithin the reporting or transmission
intervals. For a low transmission interval, Figure 6 shows
small MD probability. In contrast, higher transmission inter-
vals show MD up to 1.5%. The proposed OGTM represents
a superposition between the two above mentioned intervals.
OGTM not only reduce the MD probability to 50%. Nev-
ertheless, it also limits the majority of those MDs at the
beginning of PU connections where MD represents lesser
importance.

C. OVERHEAD PERCENTAGE
One of the main important factors in CR is the overhead
percentage among SUs. We call the sensing and reporting
intervals as the sensing cycle overhead because they con-
sume energy and delay without transmission of payload data.
Moreover, reducing such intervals will result in increasing the
system efficiency and throughput. Figure 7 shows the over-
head percentage versus the PU activity factor. OGTM has an
average overhead, while the fixed high transmission interval
shows lower overhead compared to OGTM. However, this
drawback can be ignored compared to the other advantages.

D. THROUGHPUT PERCENTAGE
Figure 8 shows the throughput percentage as a function of
PU activity factor. OGTM shows a competitive performance
compared to the high fixed transmission interval with 95%
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FIGURE 7. Increasing SUs overhead due to increased activity factor.

FIGURE 8. Competitive throughput performance for OGTM.

throughput at no PU existence. Moreover, OGTM has a lesser
collision ratio with PU, which leads to increased successful
packet reception.

VII. CONCLUSIONS
In this paper, we have introduced the online greedy through-
put maximization algorithm for CR. OGTM is proposed to
overcome the throughput limitations in CRs. OGTM allow
the sensing cycle frame to have a variable length according
to the assumed decision validity interval. OGTM increases
the decision validity interval based on the PU historical
behavior. Our simulations have proven that SUs benefit from
the limited PU historical behavior learning to increase the
throughput up to 95%. Furthermore, OGTM decreases the
MD probability by 50% and limit most of the collision
probabilities to be within the PU connection establishment
phase, where the PUs can tolerate such collisions through
retransmission.
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