
Received December 13, 2017, accepted March 2, 2018, date of publication March 6, 2018, date of current version March 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2812764

A Method for Construction of Software
Protection Technology Application Sequence
Based on Petri Net With Inhibitor Arcs
QING SU 1, FAN HE1, NAIQI WU 2, (Senior Member, IEEE), AND ZHIYI LIN1
1School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
2Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China

Corresponding authors: Qing Su (sqsavage@qq.com) and Zhiyi Lin (lzy291@gdut.edu.cn)

This work was supported in part by the Natural Science Foundation of China under Grant 61273118, in part by the Guangdong Science and
Technology Program of China under Grant 2017A040405050, and in part by the Guangzhou High-Tech Developmental
Plan under Grant 201604016041.

ABSTRACT In the field of software protection, when there is a dependence between the various software
protection technologies, the application order of these technologiesmust be arranged in a correct way in order
to maximize the protection effect. When applying these technologies in a random way as the traditional
methods do, an unexpected consequence may be produced, such as weakening the software protection
effect and causing the protected software malfunction. To solve this problem, in this paper, a Petri net
model is developed to describe the dependence behavior of applying multiple protection technologies. Then,
algorithm is proposed to generate the reachable marking graph for the obtained Petri model. In considering
different user requirements, based on the reachable marking graph, a method is presented to obtain a user-
required and correct sequence of applying multiple protection technologies. The correctness of the obtained
sequence is verified by a finite state automaton model. Experimental results show that the proposed method
outperforms the traditional ones.

INDEX TERMS Code obfuscation, Petri nets, software protection, software protection technology.

I. INTRODUCTION
Software plays a vitally important role and is one of the
core components of industrial control systems. Due to more
and more malicious behaviors against software products,
software security has become an important aspect for the
implementation of industry 4.0 [37]. There are three primary
threats aiming at software security named as reverse engi-
neering, piracy, and tampering [8]. They threaten software
in a dangerous ‘‘white-box attack environment’’ [34]. Cur-
rently, the major software protection technologies for coun-
tering these threats include code obfuscation [3], software
watermark [18], and tamper resistance [1]. Code obfuscation
is mainly used to defend against the reverse analysis of a
program. This technology essentially converts the original
program into a new one such that the semantics of the code
is preserved while the converted program is more difficult
to understand by an attacker. By software watermark, iden-
tification information (i.e., watermark) is embedded into a
software product. When the software is run, if it is necessary,
the embedded identification information can be extracted

for software copyright attribution and integrity verification.
Tamper resistance prevents the illegal modification of the
normal operations of the program via the hardware-and-
software-based measures. It has been proved that a single
software protection technique is unable to ensure the absolute
security [4]. Also, software watermark and tamper resistance
can only be used as a means for reducing the loss when a
software is compromised. Therefore, to improve the security
of a software, the above three categories of technologies
are usually applied simultaneously in a practical software
protection system.

However, there may exist dependencies among these pro-
tection technologies, i.e., the use of one technique may affect
the effect of the other techniques, or the effect of multiple
techniques is sequence dependent. For example, the role of
loop fusion and loop split is opposite in code obfuscation.
Therefore, it is necessary to analyze the dependencies among
these technologies such that one can determine a reasonable
order of them and ensure the effect of code protection and
the equivalence of original program when applying these

11988
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-6595-783X
https://orcid.org/0000-0001-6782-458X


Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

technologies; otherwise, the protective effect may be off-
set or even though the software is damaged by the reaction.

With multiple software protection technologies being
applied in a same code, for the first time, Collberg et al. [9]
present a sequence such that when these technologies are
applied, it should be done according to the given sequence.
However, they do not point out why it should be done in
such a sequence and do not present a method to determine
a proper sequence. Wrorblewski [38] use hard-coded soft-
ware protection technology for protecting x86 machine code.
Lacey and Moor [20] show that two code transform tech-
niques cannot be simultaneously applied to the same piece of
code and present an algorithm that selects the technology to
be applied according to the characteristics of the code being
protected. Zhang et al. [49] propose a software protection
method for multi-watermark embedding, which can embed
a number of sub-watermarking into the program that can
be confused by certain strategies. To a certain degree, they
notice the dependencies of software protection technologies.
However, these methods are not applicable when the number
of software protection technologies is large and the interde-
pendence is complicated. For the case of complex depen-
dencies, Gaurav and Pieprzyk [12] summarize three types
of dependencies among the protection technologies by using
weighted finite state automata (WFSA) [25]. The statements
accepted byWFSA are the practicable ones. The weakness of
this method is that it suffers from the state explosion problem.

In practice, since the diversity of the multiple software
protection technologies and the complexity of their depen-
dencies, it is impossible to manually determine the order
in which the various technologies are applied to meet the
user-specified criteria. Therefore, an automated and low-
cost method that can be used to determine the sequence
of applying multiple technologies for software protection is
necessary. This motivates us to conduct this study.

The objective of this paper is to search for a method that
can automatically determine the sequence of the technologies
applied for protecting a software product. Due to that Petri
nets are powerful for modeling concurrency and conflict
control, they are widely used for modeling, analysis, con-
trol, and scheduling [2], [15], [39]–[45], [48], we use Petri
nets to model the dependencies of the software protection
technologies. It is a kind of Petri net with inhibitor arcs.
With the built models, methods are proposed to determine the
appropriate sequence of technologies applied for protecting
a software product. In this paper, we make the following
contributions:
• Petri net model with inhibitor arcs is developed to

describe the behavior of dependencies of currently
applying multiple software protection technologies.
• An algorithm is presented to generate a reachable mark-

ing graph for the obtained Petri net model.
• Based on the reachable marking graph, a method

is proposed to obtain a user-required and correct
sequence for applying multiple software protection
technologies.

II. PETRI NET WITH INHIBITOR ARCS
With rigorous mathematical theory, Petri nets are powerful
in modeling, analysis, and control for discrete event systems
and hybrid systems [2], [6], [15], [39]–[45], [48]. Petri nets
are also applied to the field of system security and soft-
ware protection. Jasiul et al. [17] establish a mechanism
for tracking malware behavior by using Colored Petri Net.
Dunaev and Lengyel [10] use Petri net to confuse control-
flow chart in a multithreaded environment. Wang et al. [35]
use Petri net to create a model for evaluating code obfuscation
from the attacker’s perspective. Zhang et al. [47] use Petri
net to simulate the attack process for detecting weaknesses in
code protection schemes for mobile applications.

A sequence of technologies applied for protecting software
is essentially a method of combing a number of software pro-
tection technologies for practical application requirements.
With rigorous mathematical reasoning and graphically intu-
itive representation, Petri nets are a good choice for studying
dependence issue of software protection technologies.

Petri nets with inhibitor arcs are an expansion prototype of
the original Petri nets, which has zero-test capability [28], and
its simulation capability is equivalent to Turing machine [23].
By taking these advantages, this paper proposes a method to
model the dependence of the software protection technologies
by using Petri nets with inhibitor arc. Based on the developed
models, the problem of determining the right sequence of
applied technologies is solved according to the user-specified
requirement.

A Petri net with inhibitor arcs is formed by adding some
inhibitor arcs that connecting a place and a transition to
an ordinary Petri net. In an ordinary Petri net, whether a
transition is enabled to fire depends on whether all the places
in its pre-set have a token. An inhibitor arc is a kind of arc
from a place s to a transition t , where s is one of the places in
the pre-set of t If there is at least one token in s at markingM ,
i.e. M (s) ≥ 1, even if all other spaces in the pre-set of t
have tokens, t is disabled and cannot fire. When the inhibitor
arc is ineffective, i.e. M (s) = 0, t is enabled to fire.
Once t fired, the inhibitor arc no longer affects the changes
of tokens any more.
Definition 1: Petri net with inhibitor arcs is a

quintuple [46]:

6 = (S,T ;F, I ,M ) (1)

• N = (S,T ;F) is the basic petri net;
� S is the place set;
� T is the transition set;
� F = (S × T ) ∪ (T × S) is the arc set;

• I ⊂ S×T is the inhibitor arc sets. Where I ∩F = ∅, i.e.

∀s ∈ S ∧ ∀t ∈ T : (s, t) ∈ F → (s, t) /∈ I (2)

• M is the initial marking of the net.
• All the transitions in 6 have the following firing rules:
� For t ∈ T , if

a)∀s ∈ S : (s, t) ∈ F → M (s) ≥ 1 (3)

b)∀s ∈ S : (s, t) ∈ I → M (s) = 0 (4)

VOLUME 6, 2018 11989



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

FIGURE 1. An example of Petri net with inhibitor arcs.

Then t is allowed to fires at M , represented as M [t >.
� IfM [t >, thent fires atM . A new markingM ′ is reached

from M once t fires. For ∀s ∈ S:

M (s) =


M (s)− 1, if (s, t) ∈ F ∧ (t, s) /∈ F
M (s)+ 1, if (t, s) ∈ F ∧ (s, t) /∈ F
M (s) , otherwise

(5)

When a Petri net with inhibitor arcs is shown graphically,
an inhibitor arc looks like ‘‘(’’, which is a normal directed
edge replacing the arrow ‘‘ I’’ with a small circle ‘‘ © ’’.
For any place s and any transition t , the arc froms to t and the
inhibitor arc from s to t cannot exist at the same time.
Fig. 1 shows an example of Petri net with inhibitor

arcs, marked as N1. There are two inhibitor arcs in N1,
i.e. I = {(s2, t4) , (s4, t1)}. The initial marking is M0 =

[2, 0, 0, 1, 0, 0]T . At the initial marking M0, for t1 and t4:

∀s ∈ • ti : M (s) ≥ 1, i ∈ {1, 4} (6)

According to Definition 1, (s4, t1) is an inhibitor arc that
controls whether t1 can fire or not. SinceM0 (s4) = 1, (s4, t1)
acts so that t1 is not allowed to fire at M0. On the other
side, although (s2, t4) is an inhibitor arc which controls t4,
M0 (s2) = 0 negates the effects of (s2, t4) so that t2 is allowed
to fire at M0. Once t2 fires, a new marking M1 is obtained
with M1 = [1, 1, 0, 0, 0, 0]T .

III. MODELING DEPENDENCIES OF SOFTWARE
PROTECTION TECHNOLOGIES BY PETRI NETS
For software protection, in the literature, the existing tech-
nologies include all kinds of anti-privacy technologies,
tamper-proof technologies, and code obfuscation technolo-
gies. With the applications of these technologies, we can
sum up four types of dependencies of software protection
technologies. They are pre-requirements, post-requirements,
pre-prohibitions, and post-prohibitions [25]. In the follows,
we introduce all these four types of dependencies and develop
Petri net models to describe them.

FIGURE 2. The Petri net model for pre-requirements dependency.

A. REQUIREMENT DEPENDENCY
There exists a kind of requirement dependency among some
software protection technologies. That is to say that if pro-
tection technology A relies on protection technology B,
then A and B should be applied in accordance with a certain
order; otherwise, the protected software by applying A only
would has obviously weaknesses and can be cracked easily.

1) PRE-REQUIREMENT DEPENDENCY
If a protection technology B must be applied at least once
before A is applied, then we say that A pre-requires B,
which is denoted as A

r
←− B. For example, when inserting

false branch into a program that is to be protected [5], it is
necessary to apply the opaque predicate technology before
enhancing the confusion potency of false branch [29].

A Petri net model is built to describe the behavior of pre-
requirement dependency as shown in Fig. 2 with the initial
mark M0 = [1, 0, 0, n,m]T , where
• s1 : the place giving the initial status of the process for

controlling the dependency;
• t1 : represents that technology A is applied when it fires;
• t2 : represents that technology B is applied when it fires;
• s4 : a control place that controls A such that A can apply

n times at most;
• s5 : a control place that controls B such that B can be

applied m times at most.
At the initial status of this Petri net,M (s2) = 0. The tokens

in s2 are generated by firing t2. Hence, once t2 fires (which
means that B is applied), we have

M ′ (s2) = M (s2)+ 1 ≥ 1 (7)

When M (s2) ≥ 1, t1 is allowed to fire (that means A is
allowed to apply). Once t1 fires, a token is returned to s2, i.e.

M ′ (s2) = M (s2)+ 1 (8)

Since s2 cannot be emptied once there is a token in it,
the firing of t1 is no longer dependent on t2. That is to say,
Bmust be applied at least once beforeA can be applied. In this
way, the pre-requirement is well modeled.

2) POST-REQUIREMENT DEPENDENCY
If protection technology B must be applied at least once
after technology A is applied one or multiple times, then we
say that A post-requires B, which is denoted by A

r
−→ B.

11990 VOLUME 6, 2018



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

FIGURE 3. The Petri net model for post-requirements dependency.

For example, after applying the serial number protection tech-
nology [11], the encryption technology [16] must be applied
for preventing dynamic debugging attack of crawling serial
number in memory [12].

The Petri net model for describing the post-requirement
dependency is shown in Fig. 3 with the initial marking
M0 = [1, 0, 0, n,m− 1, 1]T , where
• s1 : the place giving the initial status of the process for

controlling the dependency;
• t1 : represents that technology A is applied when it fires;
• t2 : represents that technology B is applied when it fires;
• s4 : a control place that controls A such that A can be

applied n times at most;
• s5 : a control place that controls B such that B must be

applied once at least and can be applied m − 1 times at
most.

When there are tokens in s4, i.e. M (s4) ≥ 1, the inhibitor
arc (s4, t3) disables the firing of t3. Only when t1 fires n times
(which means that A is applied repeatedly n times), is then
M (s4) emptied so that the inhibitor arc (s4, t3) is invalidated.
At this time, t2 is enabled and can fire (that meansB is allowed
to be applied), and a token is added into M (s5), i.e.:

M ′ (s5) = M (s5)+ 1 = m− 1+ 1 = m (9)

At M ′, M ′ (s5) = m means that s5 controls t2 such that it
can fire m times at most consecutively.

B. PROHIBITION DEPENDENCY
There exists a prohibition dependency between certain pro-
tection technologies. For example, array merging and array
splitting are mutually-exclusive in terms of implementation.
When there is a prohibition dependency between protection
technologies A and B, A and B cannot be applied to the
same software to be protected in violation of the dependency.
Otherwise, the protection effect of the software being pro-
tected would be diminished. Moreover, in the worst case,
the functions of the protected software are not equivalent to
the original one any more, or even the protected software is
corrupted.

1) PRE-PROHIBITION DEPENDENCY
If the application of protection technology B is prohibited
before A is applied, then we say that A pre-prohibits B, which

FIGURE 4. The Petri net model for pre-prohibition dependency.

is denoted by A
p
←− B. For example, alias analysis technol-

ogy that is used to locate the convertible parts of a program
is often called by other software protection technologies [21].
However, any technology that may disturb alias analysis, such
as an opaque predicate technology [32], should be prohibited
before the alias analysis technology is applied.

To describe the behavior for the pre-prohibition depen-
dency, we develop the Petri net model as shown in Fig. 4 with
its initial marking M0 = [1, 0, 0, n,m]T , where
• s1 : the place giving the initial status of the process for

controlling the dependency;
• t1 : represents that technology A is applied when it fires;
• t2 : represents that technology B is applied when it fires;
• s4 : a control place that controls A such that A can be

applied n times at most;
• s5 : a control place that controls B such that B can be

applied m− 1 times at most.
When there are tokens in s4, i.e. M (s4) ≥ 1, the inhibitor arc
(s4, t2) disables t2. Only when t1 fires n times consecutively
(which means that A is applied n times without a firing of t2),
is thenM (s4) equal to zero such that the inhibitor arc (s4, t2)
is invalidated. At this time, t2 is enabled (which means that
B is firable). S5 controls the firing of t2 such that it can fire
consecutively at mostm times. In this way, the pre-prohibition
dependency is ensured as required, i.e., the behavior is well
modeled.

2) POST-PROHIBITION DEPENDENCY
In the application of software protection technologies, it may
requires that if the technology B is prohibited after A is
applied, then we say A post-prohibits B, which is denoted by
A

p
−→ B. For example, if a watermark has been embedded

into a program execution path [22], any path-diversity tech-
nology [19] should not be applied.

A Petri net model for post-prohibition dependency is
developed as shown in Fig. 5 with the initial mark
M0 = [1, 0, 0, n,m]T , where
• s1 : the place giving the initial status of the process for

controlling the dependency;
• t1 : represents that technology A is applied when it fires;
• t2 : represents that technology B is applied when it fires;
• s4 : a control place that controls A such that A can be

applied n times at most;
• s5 : a control place that controls B such that B can be

applied m times at most.
For this model, at the initial status of Petri net,M (s2) = 0.

At this marking, oncet1 fires (which means that A is applied),

VOLUME 6, 2018 11991



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

FIGURE 5. The Petri net model for post-prohibition dependency.

a token is added to s2, i.e.

M ′ (s2) = M (s2)+ 1 ≥ 1 (10)

S4 controls t1 such that it can fire n times at most. When
there are tokens in s2, i.e.,M (s2) ≥ 1, the inhibitor arc (s2, t2)
disables t2. At this time, even though M (s5) = m ≥ 1, t2 is
not allowed to fire, which means that B cannot be applied
after A is applied. Thus, the behavior of post-prohibition
dependency is accurately described.

Up to now, we have developed Petri net models for the
dependency of two types of technologies. With these models,
we discuss Petri net model for the dependency of more than
two types of technologies.

C. COMBINATION DEPENDENCY
When three or more protection technologies are dependent
on each other, the behavior for applying these technologies
is much more complicated and such a kind of dependency
is called a combination dependency. It is necessary to model
such a complicated dependency. To do so, we combine the
Petri net models for the dependency of two types of tech-
nologies to model the behavior of a combination dependency.
Notice that, in the above four Petri net models, a token in
t’s input place s is consumed when t fires. However, at the
same time, a token is returned to s immediately after the
firing of transition t (which represents the application of a
software protection technology). This structure makes the
model scalable.

1) MODELING METHOD
Note that, in the above four Petri net models for a dependency
for two types of technologies, there is a place that gives
the initial state of the model, i.e., initially only this place
has tokens. The general idea for describing the combination
dependency for more than two types of technologies is to
combine the Petri net models for the dependencies for two
technologies such that these models share the place that gives
the initial state. In this way, we can integrate them as one
model. To do so, Algorithm 1 given below is presented for
this purpose.

2) AN EXAMPLE OF COMBINATION DEPENDENCY
MODELING
Assume that there are dependences among technologies A,
B, and C with the dependencies for two types of technologies

Algorithm 1 Modeling the Combination Dependency
Step 1. For each pair of software protection technologies,
define and model the dependencies by using the mod-
els for the four different dependencies. Assume that we
obtain n such Petri net models. These models are named
as N1, N2, . . . ,Nn such that a set of Petri net models
N1,N2, . . . ,Nn is obtained.
Step 2. Combine N1,N2, . . . ,Nn into one Petri net model
named as N , i.e.,

N =
n⋃
i=1

Ni (11)

According to the following sub-steps:
Step 2.1 Choose Nk ∈ {N1,N2, . . . ,Nn} randomly as the
first Petri net model to be integrated to N .
Step 2.2 Let place s1 be the place that presents the initial
status of the process for controlling the dependencies in
applying the technologies. Then,6 is formed such that any
Ni ∈ {N1,N2, . . . ,Nn, 1 ≤ i ≤ n, shares s1 as the place that
gives the initial state atM0 that is the initial marking of N .
Step 2.3 Reduce 6 and re-number all its places.
Step 3. Draw the reachable marking graph of N , denoted
by D(N ). There are two sub-steps:
Step 3.1 Assume that the current marking of N is M .
Then, fire every transition t atM and a new markingM ′ is
obtained. This is done by starting from the initial marking
M0 at the beginning.
• IfM ′ is equal to an existing markingM ′′ inD(N ), then

draw the arc from M to M ′′.
• Or else, a new node is created to denoteM ′, and draw

an arc fromM toM ′. After that, makeM ′as the current
marking.

Step 3.2 Repeat Step 3.1 until marking M is reached such
that there is no transition t that can fire at M or no any
new marking can be generated. By doing so, the process of
drawing D(N ) is completed.
Step 4. Locate the marking M that satisfies the user-
specified requirement. Then, find a simple path 0 from
the initial marking M0 to M . All transitions in 0 form a
transition sequence T . Sequence T consists of two parts,
one is a set of control transitions and the other is a set of
non-control transitions that present the applied software
protection technologies (each non-control transition rep-
resents one type of technologies). A transition sequence
T ′ can be obtained by removing all the control transitions
from T . As each transition in T ′ represents a software
protection technology, therefore T ′ is exactly a satisfactory
software protection technology application sequence.

being A
r
←− B and B

p
−→ C . Then, by using Algorithm 1,

we first obtain the Petri net model N as shown in Fig. 6 with
the initial mark M0 = [1, 0, 0, n,m, 0, k]T , where:
• s1 : the place that gives the initial status of the process

for controlling the dependency;

11992 VOLUME 6, 2018



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

FIGURE 6. Petri net model of a combination dependency for Example 1.

• t1 : represents that technology A is applied when it fires;
• t2 : represents that technology B is applied when it fires;
• t3 : represents that technologyC is applied when it fires;
• s4 : a control place that controls A such that A can be

applied n times at most;
• s5 : a control place that controls B such that B can be

applied m times at most;
• s7 : a control place that controls C such that C can be

applied k times at most.
In Fig. 6, the subnets that model the dependencies of

A
r
←− B and B

p
−→ C share place s1 that gives the

initial tokens at initial markingM0. Place s2 controls whether
Transitions t1 and t3 can fire or not. Transition t1 is enabled
when t2 fires such that M (s2) ≥ 0, but t3 is disabled due to
the inhibitor arc (s2, t3).

IV. DETERMINATION OF SOFTWARE PROTECTION
TECHNOLOGY APPLICATION SEQUENCE
Different users have different requirements for software pro-
tection technology applications. In general, the most common
requirements are:
• Some users want to apply software protection technol-

ogy as many times as possible;
• Some users want to apply software protection technol-

ogy as many types as possible;
• Some users want to specify a technique that applied as

much as possible.
Thus, we need to determine the application sequence of

multiple technologies for different requirements. We discuss
this issue next.

A. THE SOLUTION METHOD
In the follow, with the Petri net model for the dependencies
of technologies and its reachable marking graph, we present a
method to determine the application sequence of technologies
for the above requirements by using an example.

Assume that seven kinds of technologies are to be applied
and they are denoted by A, B, C ,D, E , F , andG, respectively.
For these technologies, we have the following dependency
relations:

FIGURE 7. Petri net Model for the combination dependency among A ∼ G.

• A
r
−→ B;

• B
p
←− C;

• D
r
←− A;

• E
p
−→ F;

• G can be applied independently of others.
Assume that the maximal applying times for these tech-

nologies are 2, 3, 2, 2, 4, 3, and 2, respectively. Obvi-
ously, these dependencies form a kind of a combination
dependency.

By using Algorithm 1, we obtain the Petri net model
denoted by 6 for this combination dependency and it is
showed in Fig. 7, where
• s1 : the place that gives the initial status of the

system;
• t1 ∼ t7 : transitions representing technology A, B, C , D,

E , F , and G are applied when they fire, respectively;
• s1 : the control place that controls A such that A can be

applied two times at most;
• The subnet formed by s2, t8, and s3: for controlling B

such that B can be applied two times at most;
• s4 ∼ s8 : control places that control C , D, E , F , and G

such that they can be applied two, two, four, three, and
two times at most, respectively.

There are two following spaces in each t: one is the initial
space s0; another is used to count the firing times of t , which
is counting space. For example, we will find that s9 in Fig. 7 is
the counting space of t1, a token will be added to s9 while t1
fires.
By Algorithm 1, reachable marking graph D(N ) of 6

is obtained and there are totally 2339 markings. Due to
that D(N ) is very large, a part of it is shown Fig. 8 for
illustration.
The reachable marking set [50], R (M0), collects all the

marks of D(N ). All these marks is generated in the execution
of Petri net N .

VOLUME 6, 2018 11993



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

FIGURE 8. Part of the reachable marking graph of N .

1) MAXIMIZING THE TOTAL APPLIED TIMES OF
TECHNOLOGIES
Maximizing the total applied times of technologies requires
that the total number of times for firing Transitions t1 ∼ t7
is maximized. The firing of any transition t results in that a
token is added to the output places of t . For example, Place
s9 is an output place of t1, a token goes into s9 when t1 fires.
As can be seen in Fig. 7, the spaces s9 ∼ s15 are the counting
spaces of t1 ∼ t7 respectively. Let F (M , t i) denote the
number of ti’s firing times via a transition firing sequence that
makes the system evolve fromM0 toM ∈ R (M0). Then, if we
find a transition firing sequence and marking M ∈ R (M0)

such that
∑15

i=9 F (M , t i) is maximized, then the obtained
transition firing sequence must be the required sequence.
Note that, by Algorithm 1, during process for generating the
reachable marking graph, we can count

∑15
i=9 F (M , t i) for

every sequence. Thus, we can find the required M ∈ R (M0)

and the sequence. Then, by Step 4 of Algorithm 1, we can find
the corresponding non-control transition sequence T ′. For the
example, as shown in Fig. 8, MarkingM19 is such a marking
and it is given as

M19 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 2, 2, 4, 3, 2]T . (12)

and the corresponding non-control transition sequence is Ti
and it is given as

T1 = (t7t7t6t6t6t5t5t5t5t2t2t1t4t4t1t8t2t3t3). (13)

With M19 and T1 being found, we have∑15

i=9
F (M19, t i) = 2+ 3+ 2+ 2+ 4+ 3+ 2 = 18. (14)

Thus, the software protection technology application
sequence S1 corresponding to the transition sequence T1 is

S1 = (GGFFFEEEEBBADDABCC). (15)

2) MAXIMIZING THE VARIETY OF APPLIED TECHNOLOGIES
Maximizing the variety of applied technologies requires that
the number of transitions in t1 ∼ t7 that fire is maximized.
For such an objective, for any marking M ∈ R (M0), define
f (M) as

f (M ) =
∑15

i=9
g(M (i)), (16)

where

g (x) =
{
1 x > 0, 9 ≤ i ≤ 15
0 otherwise.

(17)

Then, we need to maximize f (M).

11994 VOLUME 6, 2018



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

To maximize f (M) is to find a marking M ∈ R (M0)

such that f (M) ≥ f
(
M ′
)
for any marking M ′ ∈ R (M0)

with M 6= M ′. We can record f (M) when we generate the
reachable marking graph such thatM is found. WithM being
found, the transition sequence from the initial markM0 toM
is the required one. For the example, M18 is such a marking
as shown in Fig. 8 and M18 is given as

M18 = [1, 0, 0, 0, 1, 1, 3, 2, 1, 2, 3, 1, 1, 1, 1, 1]T . (18)

Then, according to Step 4 of Algorithm 1, we can obtain
the non-control transition sequence from initial mark M0 to
M18 and it is denoted by T2 and it is given as

T2 = (t7t7t6t6t6t5t5t5t5t2t2t1t4t4t1t8t2t3). (19)

Note that T2 contains all transitions t1 ∼ t7, implying
that it is the optimal one. The software protection tech-
nology application sequence S2 corresponding to the tran-
sition sequence T2 can be easily obtained and it is given
as

S2 = (GGFFFEEEEBBADDABC). (20)

3) MAXIMIZING THE APPLIED TIMES OF A SPECIFIC
TECHNOLOGY
Maximizing the applied times of a specific technology
requires that that the number of times for a transition ti repre-
senting Technology i the specific technology, is maximized.
For this objective, if we find a marking M ∈ R (M0) and
a transition firing sequence such that for any M ′ ∈ R (M0)

we have F (M , ti) ≥ F
(
M ′, t i

)
, then the obtained transition

firing sequence that makes the system evolve from M0 to M
is the required sequence.

For the example, assume that t5 corresponds to the specific
technology appointed by the user. Then, by Algorithm 1, we
find the required marking M119 as shown in Fig. 8 and it is
given as

M119 = [1, 0, 2, 1, 2, 1, 0, 0, 0, 2, 0, 0, 1, 4, 3, 2]T . (21)

The required transition firing sequence is T3 and it is given
as

T3 = (t7t7t6t6t6t5t5t5t5t1t1t4). (22)

With the obtained M119 and T3, the software protection
technology application sequence S3 corresponding to transi-
tion sequence T3 is

S3 = (GGFFFEEEEAD). (23)

B. VERIFICATION BY FSA
In this section, to show the correctness of the results obtained
by the proposed method, we verify the obtained results by
using a finite state automaton (FSA) model [32]. To do so,
we first model the dependencies of the software protection
technologies as regular expressions [24]. Then, we build the
FSA model base on these regular expressions. With the built

FIGURE 9. FSA for dependencies { A
r
−→ BB

p
←− CD

r
←− AE

p
−→ F, and G}.

TABLE 1. Reached Stat sequences of S1, S2 and S3.

model, if an input sequence can make the model evolve from
the initial state to the acceptable state, then this sequence
is the required software protection technology application
sequence.

The regular expressions that present the dependencies
among A ∼ G are as follows:
• (B|

(
A+B

)
)∗;

• B∗A∗;
• D(A|D)∗;
• F∗E∗;
• G∗.
With these expressions, the FSA model for the example

is built and is shown in Fig. 9. In building the automaton
model, since the software protection technology G it has
no dependency on any other software protection technology,
it should be attached in every arcs in the FSAmodel to ensure
it can be applied in any case.

Now, with the built FSA model, we take S1, S2, and S3
that are given in Equations (15), (20), and (23), respec-
tively, as input sequences of the FSA. For each of these
inputs, we examine the evolution of the FSA model and
the state sequence obtained by each input is obtained as
shown in Table 1. From Table 1, it can be seen that, for
every input, the system finally evolves to an acceptable
state.

It follows from the above verification results that S1, S2,
and S3 are all legal software protection technology applica-
tion sequences with the FSAmodel, i.e., the proposedmethod
is correct and effective.

VOLUME 6, 2018 11995



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

TABLE 2. The seven software protection technologies.

V. EXPERIMENTAL RESULTS
Normally, the most commonly traditional methods for gen-
erating software protection technology application sequence
are those that obtain a sequence in a random way. To com-
pare the proposed method with the traditional methods,
in this section, we use experiments to test the perfor-
mance of proposed method and the traditional methods.
To do so, in the experiments, we generate two types of
sequences for the applied technologies. One is obtained
by randomly generating the application sequence denoted
by S4 to represent the traditional methods. The other type
of sequence denoted by S5 is obtained by the proposed
method.

Both types of sequences are applied to the same testcase
base on Sandmark [32]. With different sequences are applied,
we test the software complexity, i.e., the complexity to be
attacked. In the experiments, watermark is one of the pro-
tection technologies to be applied. Thus, beside the soft-
ware complexity, we also test the effectiveness of watermark
to examine the effect of other technologies on watermark.
By doing so, it is meaningful to test the performance of the
proposed method.

A. THE TEST CASE
Take a Java program DES as a test case. It is a common
program for data encryption and decryption. To protect this
program, seven technologies are to be applied as listed in
table 2. We then carry out experiments on DES to test the
performance for randomly generated application sequence S4
and S5 that is obtained by the proposed method.
For the seven technologies, between two technologies,

we have the following dependencies:
• A

p
←− B;

• C
r
←− D;

• E
r
−→ F;

• G is no dependency to others.

FIGURE 10. Petri net Model for the dependencies among A ∼ G.

According the traditional method, we randomly generate
an application sequence S4 of these technologies as

S4 = (FBACDEBGFG). (24)

Observe S4, we can find that the dependences A
p
←− B

and C
r
←− D listed above are violated. We will see the

performance for this sequence.
To determine the application sequence of the technologies

by the proposed method, we assume that the maximal applied
times of these seven technologies are one, two, one, one,
one, two, and two, respectively. Then, based on the Petri net
models developed in Section III for dependencies A

p
←− B,

C
r
←− D, and E

r
−→ F , we obtain the Petri net model

6 for the combination dependency of the seven technolo-
gies as shown in Fig. 10, where the firings of Transitions
t1 ∼ t7 correspond to the application of Technologies A ∼ G,
respectively.

Then, by using Algorithm 1, the reachable marking graph
of 6 is generated as shown in Fig.11.
Without loss of generality, in the experiments, we assume

that, in applying these protection technologies, the objective
is to maximize the total number of times of applying these
technologies. By Algorithm 1, when the reachable marking
graph is generated, we find marking M9 and a non-control
transition firing sequence fromM0 toM9 such that the objec-
tive is maximized. As shown in Fig. 10, M9 is

M9 = [1, 1, 2, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 0]T . (25)

With M9 and the non-control transition firing sequence,
the total number of times of applying these technologies is
calculated as∑

F (M9, t i) = 1+ 2+ 2+ 1+ 1+ 1 = 8. (26)

The software protection technology application sequence
S5 corresponding to the non-control transition firing sequence
is

S5 = (GADCBEFBGF). (27)

11996 VOLUME 6, 2018



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

FIGURE 11. The reachable marking graph of 6.

For the dependences of { A
p
←− B, C

r
←− DE

r
−→ F ,

andG}, an FSAmodel is built as shown in Fig. 12. The initial
state of this FSA model is s0.
Now we take S5 as the input sequence of this FSA model.

The output sequence, s0s2s2s1s1s4s5s3s4s5s3, is evaluated
with this FSA model. From the output sequence, we find that
the last state, s3, is an acceptable state, so S5 is verified as a
legal software protection technology application sequence of
this FSA model.

B. EXPRIMENTAL PROCEDURES
The experiments are carried out on platform Sandmark [7].
Sandmark is a famous platform built for studying code obfus-
cation, software watermarking and tamper proofing. To facil-
ity such studies, software protection technologies A ∼ G are
integrated in it.

In the experiments, we use the test program DES as
the input of Sandmark and the original program without
any protection technology being applied is denoted as P.
Then, Sandmark calls the software protection technolo-
gies sequentially according to the sequence specified by S4
and S5, respectively. The resulting programs with protection
sequences S4 and S5 being applied are denoted as P1 and P2,
respectively.

As examples, Fig. 13 illustrates the Sandmark’s interface
for the situation of applying the software protection tech-
nology G (Overload Names), while Fig. 14 illustrates the
situation of applying the software protection technology E
(Static Watermark).

C. EXPRIMENTAL RESULTS
1) SOFTWARE COMPLEXITY
As an important index for applying protection technology,
we consider the software complexity to be compromised.
We use Sandmark to calculate the software complexity
indices of P, P1 and P2 and the results are shown in Table 3,
where commonly recognized indices are used.

As shown in Table 3, for indices Halstead Measure [27],
Harrison Measure [13], Munson Measure [26], and McCabe
Cyclomatic [33] compared with P, the complexity of both P1
and P2 are increased. However, obviously the increase rate of
the indices for P2 is greater than that of P1. The reason is that
there is a dependency requirement: C

r
←− D, which requires

thatD should be applied before C . However, this dependency
is violated in S4. Note thatD stands for branch inverter and it
is an important pre-process before C . Thus, the violation of
dependency C

r
←− D in S4 results such a result.

VOLUME 6, 2018 11997



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

FIGURE 12. FSA for dependencies { A
p
←− B,C

r
←− D,E

p
−→ FandG }.

FIGURE 13. Code obfuscation panel of Sandmark (Overload Names).

TABLE 3. The complexity indices of P , P1 and P2.

The index Kafura measure [36] measures the fan-in/out
complexity. All the seven technologies have no impact on this
index. Thus, for Kafura Measure, both P1 and P2 have the
same complexity.

The CK measure [30] is used to evaluate the complexity of
object-oriented features. In this experiment, since the object-
oriented features of DES remain intact when these seven
technologies are applied. Hence, for the CK measure, the
complexity of both P1 and P2 is equal to that of P.

Figs.15 and 16 show the control-flow graph of P1 and P2
drawing by Sandmark, denoted by G1 and G2, respectively.
The detail of control-flow graph can be revealed by using the
zoom out function in Sandmark. According to the statistics,
the number of basic block is 171 and the number of branches
is 46 in P1, while they are 236 and 62 in P2, respectively.

FIGURE 14. Watermarking panel of Sandmark (Static Watermark).

FIGURE 15. The control-flow graph of P1.

Since G2 is far more complex than G1, we can conclude that
the protection effect of applying these technologies accord-
ing to sequence S5 is much better than that according to
sequence S4.

2) WATERMARK EXTRACTION
Among the seven technologies in this experiment,B andE are
both watermarking technologies, which are applied twice and
once, respectively in both sequences S4 and S5. Thus, three
watermarks should be extracted out in both P1 and P2 if they
work. By experiment, we present the number of watermarks
that are extracted out in P1 and P2, as shown in Table 4.

It follows from Table 4 that, all three watermarks are
successfully extracted out in P2, while only two are extracted
out in P1 with the first try being failed. The reason is that
the pre-prohibition dependency A

p
←− B is violated in S4.

DependencyA
p
←− Bmeans thatB is prohibited to be applied

11998 VOLUME 6, 2018



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

FIGURE 16. The control-flow graph of P2.

TABLE 4. The results of watermarks extracted from P1 and P2.

before A, which also means that once B is applied, A should
not be applied thereafter. By analyzing P1, it can be found
that the watermark embedded by applying B earlier is then
corrupted when A is applied after B.

VI. CONCLUSION
Nowadays, software security is a vitally important issue and
various technologies are applied concurrently to protect a
software product. It is known that, to make the application
of multiple technologies to a software product, these tech-
nologies should be applied according to a certain sequence.
However, there is no effective method to determine such
a sequence. To solve this problem, in this paper, we use
Petri nets to model the dependency of two technologies and
develop Petri net models for four basic software protec-
tion technology dependencies. With these models, we then
develop a Petri net model for the combination dependency
for multiple technology application. Then, based on the Petri
net model, we propose a method to generate the reachable
marking graph such that a required and correct sequence of
applying multiple protection technologies can be obtained.
The feasibility of the proposed method has been verified by
experiments.

In the future, we will study how to improve the per-
formance of software protection as much as possible.

Practice shows that the simple superposition of software
protection technologies cannot achieve the expected results.
Although, by this work, some achievements have been made,
the obtained results need to be further refined and optimized.

REFERENCES
[1] B. Anckaert, M. H. Jakubowski, and R. Venkatesar, ‘‘Virtualization for

diversified tamper resistance,’’ U.S. Patent 8 584 109 B2, Nov. 12, 2013.
[2] L. Bai, N. Wu, Z. Li, and M. Zhou, ‘‘Optimal one-wafer cyclic schedul-

ing and buffer space configuration for single-arm multicluster tools with
linear topology,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 10,
pp. 1456–1467, Oct. 2016.

[3] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
‘‘Code obfuscation against symbolic execution attacks,’’ in Proc. ACM
Conf. Comput. Secur. Appl. (CSA), Los Angeles, CA, USA, 2016,
pp. 189–200.

[4] B. Barak et al., ‘‘On the (im)possibility of obfuscating programs,’’ J. ACM,
vol. 59, no. 2, 2001, Art. no. 6.

[5] N. Chaussade, F. Begon, M. Teyssier, R. Teyssier, and J. F. O. Jaubert,
‘‘Checkpointing long latency instruction as fake branch in branch predic-
tion mechanism,’’ U.S. Patent 8 578 139 B2, Nov. 5, 2013.

[6] H. Chen, N. Wu, and M. Zhou, ‘‘A novel method for deadlock preven-
tion of AMS by using resource-oriented Petri nets,’’ Inf. Sci., vol. 363,
pp. 178–189, Oct. 2016.

[7] C. Collberg. (2012). A Tool for the Study of Software Protection Algo-
rithms. [Online]. Available: http://sandmark.cs.arizona.edu

[8] C. S. Collberg and C. Thomborson, ‘‘Watermarking, tamper-proofing, and
obfuscation—Tools for software protection,’’ IEEE Softw. Eng., vol. 28,
no. 8, pp. 735–746, Aug. 2015.

[9] C. Collberg, C. D. Thomborson, and D. Low, ‘‘A taxonomy of obfus-
cating transformations,’’ Dept. Comput. Sci., Univ. Auckland, Auckland,
New Zealand, Tech. Rep. #148, 1997.

[10] D. Dunaev and L. Lengyel, ‘‘Method of software obfuscation using Petri
nets,’’ in Proc. 24th Central Eur. Conf. Inf. Intell. Syst. (CECIIS), 2013,
pp. 242–296.

[11] A. Edelsten, F. Fomichev, J. Huang, and T. Lottes, ‘‘Code protection
using online authentication and encrypted code execution,’’ U.S. Patent
9 177 121 B2, Nov. 3, 2015.

[12] G. Gupta and J. Pieprzyk, ‘‘Software watermarking resilient to debugging
attacks,’’ J. Multimed., vol. 2, no. 2, pp. 10–16, 2007.

[13] W. A. Harrison and K. I. Magel, ‘‘A complexity measure based on nesting
level,’’ ACM SIGPLAN Notices, vol. 16, no. 3, pp. 63–74, 1981.

[14] K. Heffner and C. Collberg, ‘‘The obfuscation executive,’’ in Proc. Inf.
Secur. Conf. (ISC), 2004, pp. 428–440.

[15] Y. Hou, N.Wu,M. Zhou, and Z. Li, ‘‘Pareto-optimization for scheduling of
crude oil operations in refinery via genetic algorithm,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 47, no. 3, pp. 517–530, Mar. 2017.

[16] S. Ilić and S. Ðukić, ‘‘Protection of Android applications from decompila-
tion using class encryption and native code,’’ inProc. IEEE Zooming Innov.
Consum. Electron. Int. Conf. (ZICEIC), Jun. 2016, pp. 10–11.

[17] B. Jasiul, M. Szpyrka, and J. Śliwa, ‘‘Malware behavior modeling with
colored Petri nets,’’ in Proc. Int. Conf. Comput. Inf. Syst. Ind. Man-
age. (CISIM), 2014, pp. 667–679.

[18] D. D. Karale, A. A. Tapase, and B. S. Chaudhari, ‘‘Software protection
against piracy and reverse engineering using software watermarking tech-
nique,’’ Int. J. Emerg. Trends Sci. Technol., vol. 1, no. 7, pp. 1205–1210,
2014.

[19] A. Kulkarni, ‘‘Software protection through code obfuscation,’’ M.S. thesis,
Dept. Comput. Eng. Inf. Technol., College Eng., Pune, India, 2012.

[20] D. Lacey and O. de Moor, ‘‘Detecting disabling interference between
program transformations,’’ Comput. Lab., Oxford Univ., Oxford, U.K.,
Tech. Rep., 2001.

[21] S.-H. Lin, ‘‘Alias analysis in LLVM,’’ M.S. thesis, Dept. Comput. Sci.,
Lehigh Univ., Bethlehem, PA, USA, 2015.

[22] H. Lin, X. Zhang, M. Yong, and B. Wang, ‘‘Branch obfuscation using
binary code side effects,’’ in Proc. Int. Conf. Comput. Netw. Commun.
Eng. (ICCNCE), Beijing, China, 2013, pp. 152–157.

[23] M. Llorens and J. Oliver, ‘‘Structural and dynamic changes in concurrent
systems: Reconfigurable Petri nets,’’ IEEE Trans. Comput., vol. 53, no. 9,
pp. 1147–1158, Sep. 2004.

VOLUME 6, 2018 11999



Q. SU et al.: Method for Construction of Software Protection Technology Application Sequence Based on Petri Net With Inhibitor Arcs

[24] M. Becchi and P. Crowley, ‘‘Efficient regular expression evaluation: The-
ory to practice,’’ in Proc. 4th ACM/IEEE Symp. Archit. Netw. Commun.
Syst., Nov. 2008, pp. 50–59.

[25] M. Mohri and M.-J. Nederhof, ‘‘Systems and methods for generat-
ing weighted finite-state automata representing grammars,’’ U.S. Patent
0 120 480 A1, Jun. 26, 2013.

[26] J. C. Munson and T. M. Kohshgoftaar, ‘‘Measurement of data structure
complexity,’’ J. Syst. Softw., vol. 20, no. 3, pp. 217–225, 1993.

[27] A. E. Okeyinka and O. M. Bamigbola, ‘‘Numerical study of depth of
recursion in complexity measurement using Halstead measure,’’ Int. J.
Appl. Sci. Technol., vol. 2, no. 6, pp. 106–111, 2012.

[28] K. Reinhardt, ‘‘Reachability in Petri nets with inhibitor arcs,’’ Electron.
Notes Theor. Comput. Sci., vol. 223, pp. 239–264, Dec. 2008.

[29] R. Senthilkumar and A. Thangavelu, ‘‘Code security using control flow
obfuscation with opaque predicate,’’ Int. J. Appl. Eng. Res., vol. 10, no. 2,
pp. 3239–3250, 2015.

[30] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[31] Q. Su, Z.-Y. Wang, W.-M. Wu, J.-L. Li, and Z.-W. Huang, ‘‘Technique
of source code obfuscation based on data flow and control flow tans-
formations,’’ in Proc. 7th Int. Conf. Comput. Sci. Edu. (ICCSE), 2012,
pp. 1093–1097.

[32] Y.-S. Han and D. Wood, ‘‘Obtaining shorter regular expressions
from finite-state automata,’’ Theor. Comput. Sci., vol. 370, nos. 1–3,
pp. 110–120, 2007.

[33] J. J. Vinju and M. W. Godfrey, ‘‘What does control flow really look like?
Eyeballing the cyclomatic complexity metric,’’ in Proc. IEEE Int. Working
Conf. Source Code Anal. Manipulation, Sep. 2012, pp. 154–163.

[34] W. H. Jun, F. D. Yi, W. Ni, and G. Y. Xiang, ‘‘Effectiveness evaluation of
software protection based on MPN,’’ in Proc. 2nd Int. Conf. Adv. Comput.
Sci. Eng. (ACSE), 2013, pp. 83–86.

[35] H. Wang, D. Fang, N. Wang, Z. Tang, F. Chen, and Y. Gu, ‘‘Method to
evaluate software protection based on attack modeling,’’ in Proc. IEEE
10th Int. Conf. High-Perform. Comput. Commun., Int. Conf. Embedded
Ubiquitous Comput. (ICHPCC/ICEUC), Nov. 2014, pp. 837–844.

[36] Y.-Y. Wang, Q.-S. Li, P. Chen, and C.-D. Ren, ‘‘Dynamic fan-in and fan-
out metrics for program comprehension,’’ J. Shanghai Univ., vol. 11, no. 5,
pp. 474–479, Oct. 2007.

[37] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, ‘‘Towards smart fac-
tory for industry 4.0: A self-organized multi-agent system with big data
based feedback and coordination,’’ Comput. Netw., vol. 101, pp. 158–168,
Jun. 2016.

[38] G. Wroblewski, ‘‘General method of program code obfuscation,’’ Ph.D.
dissertation, Inst. Eng. Cybern., Wrocław Univ. Technol., Wrocław,
Poland, 2002.

[39] N. Wu, F. Chu, C. Chu, and M. Zhou, ‘‘Petri net modeling and cycle-time
analysis of dual-arm cluster tools with wafer revisiting,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 43, no. 1, pp. 196–207, Jan. 2013.

[40] N. Wu, Z. Li, and T. Qu, ‘‘Energy efficiency optimization in scheduling
crude oil operations of refinery based on linear programming,’’ J. Cleaner
Prod., vol. 166, pp. 49–57, Nov. 2017.

[41] N. Q.Wu andM.C. Zhou, ‘‘Schedulability analysis and optimal scheduling
of dual-arm cluster tools with residency time constraint and activity time
variation,’’ IEEE Trans. Autom. Sci. Eng., vol. 9, no. 1, pp. 203–209,
Jan. 2012.

[42] N. Q. Wu and M. C. Zhou, ‘‘Modeling, analysis and control of dual-
arm cluster tools with residency time constraint and activity time vari-
ation based on Petri nets,’’ IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2,
pp. 446–454, Apr. 2012.

[43] N. Wu, M. Zhu, L. Bai, and Z. Li, ‘‘Short-term scheduling of crude oil
operations in refinery with high-fusion-point oil and two transportation
pipelines,’’ Enterprise Inf. Syst., vol. 10, no. 6, pp. 581–610, May 2016.

[44] N. Wu, M. Zhou, and Z. Li, ‘‘Short-term scheduling of crude-oil opera-
tions: Enhancement of crude-oil operations scheduling using a Petri net-
based control-theoretic approach,’’ IEEE Robot. Autom. Mag., vol. 22,
no. 2, pp. 64–76, Jun. 2015.

[45] F. Yang, N. Wu, Y. Qiao, M. Zhou, and Z. Li, ‘‘Scheduling of single-
arm cluster tools for an atomic layer deposition process with residency
time constraints,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3,
pp. 502–516, Mar. 2017.

[46] J. Ye, Z. Li, and X. Chen, ‘‘An algorithm for the minimum initial marking
problem of a structurally live Petri net with inhibitor arcs,’’ IEEJ Trans.
Elect. Electron. Eng., vol. 11, no. 5, pp. 586–592, 2016.

[47] G. Zhang et al., ‘‘Attack simulation based software protection assess-
ment method,’’ in Proc. Int. Conf. Cyber Secur. Protection Digit. Ser-
vices (CSPDS), 2016, vol. 1. no. 1, pp. 1–8.

[48] S. Zhang, N. Wu, Z. Li, T. Qu, and C. Li, ‘‘Petri net-based approach to
short-term scheduling of crude oil operations with less tank requirement,’’
Inf. Sci., vol. 417, pp. 247–261, Nov. 2017.

[49] S. Zhang, G. Zhu, and Y. Wang, ‘‘A strategy of software protection based
on multi-watermarking embedding,’’ in Proc. 2nd Int. Conf. Intell. Syst.
Appl. Mater. (ISAM), 2013, pp. 444–447.

[50] J. Q. Zhang, L. N. Ni, and C. J. Jiang, ‘‘An algorithm to construct
concurrent reachability graph of Petri nets,’’ (in Chinese) J. Donghua
Univ., vol. 21, no. 3, pp. 180–184, 2004. [Online]. Available: http://www.
airitilibrary.com/Publication/alDetailedMesh?docid=16725220-200406-
21-3-180-184-a

QING SU received the B.S. and M.S. degrees
from the School of Computer Science and Tech-
nology, Guangdong University of Technology,
Guangzhou, China. He is currently an Associate
Professor with the School of Computer Science
and Technology, Guangdong University of Tech-
nology. His research interests include software
security and protection, discrete event systems,
and Petri net theory and applications.

FAN HE received the B.S. degree in computer
science and technology from the Jingchu Univer-
sity of Technology in 2014. He is currently pur-
suing the master’s degree in computer science and
technology with the School of Computer Science
and Technology, Guangdong University of Tech-
nology, Guangzhou, China. His research interests
include software security and protection.

NAIQI WU (M’04–SM’05) received the B.S.
degree in electrical engineering from the Anhui
University of Technology, Huainan, China,
in 1982, and the M.S. and Ph.D. degrees in sys-
tems engineering from Xi’an Jiaotong University,
Xi’an, China, in 1985 and 1988, respectively. From
1988 to 1995, he was with the Shenyang Institute
of Automation, Chinese Academy of Sciences,
Shenyang, China, and from 1995 to 1998, he
was with Shantou University, Shantou, China. He

moved to the Guangdong University of Technology, Guangzhou, China,
in 1998. He joined the Macau University of Science and Technology, Macau,
China, in 2013, where he is currently a Professor with the Institute of
Systems Engineering. His research interests include production planning
and scheduling, manufacturing system modeling and control, discrete event
systems, Petri net theory and applications, intelligent transportation systems,
and energy systems. He has authored or co-authored one book, five book
chapters, and over 130 peer-reviewed journal papers. He was an Associate
Editor of the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—
PART C, the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING,
the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, and the
Editor-in-Chief of the Industrial Engineering Journal. He is an Associate
Editor of Information Sciences and the IEEE/CAA JOURNAL OF AUTOMATICA

SINICA.
ZHIYI LIN received the M.S. degree in computer
science and technology from the Wuhan Univer-
sity of Technology, Wuhan, China, in 2006, and
the Ph.D. degree in computer software and theory
from the State Key Laboratory of Software Engi-
neering, Wuhan University, Wuhan, in 2009. He is
currently a Teacher with the School of Computer
Science and Technology, Guangdong University
of Technology, Guangzhou, China. His research
interests include evolutionary computation, pat-

tern recognition, and software security and protection.

12000 VOLUME 6, 2018


	INTRODUCTION
	PETRI NET WITH INHIBITOR ARCS
	MODELING DEPENDENCIES OF SOFTWARE PROTECTION TECHNOLOGIES BY PETRI NETS
	REQUIREMENT DEPENDENCY
	PRE-REQUIREMENT DEPENDENCY
	POST-REQUIREMENT DEPENDENCY

	PROHIBITION DEPENDENCY
	PRE-PROHIBITION DEPENDENCY
	POST-PROHIBITION DEPENDENCY

	COMBINATION DEPENDENCY
	MODELING METHOD
	AN EXAMPLE OF COMBINATION DEPENDENCY MODELING


	DETERMINATION OF SOFTWARE PROTECTION TECHNOLOGY APPLICATION SEQUENCE
	THE SOLUTION METHOD
	MAXIMIZING THE TOTAL APPLIED TIMES OF TECHNOLOGIES
	MAXIMIZING THE VARIETY OF APPLIED TECHNOLOGIES
	MAXIMIZING THE APPLIED TIMES OF A SPECIFIC TECHNOLOGY

	VERIFICATION BY FSA

	EXPERIMENTAL RESULTS
	THE TEST CASE
	EXPRIMENTAL PROCEDURES
	EXPRIMENTAL RESULTS
	SOFTWARE COMPLEXITY
	WATERMARK EXTRACTION


	CONCLUSION
	REFERENCES
	Biographies
	QING SU
	FAN HE
	NAIQI WU
	ZHIYI LIN


