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ABSTRACT Optimization of deep learning is no longer an imminent problem, due to various gradient
descent methods and the improvements of network structure, including activation functions, the connectivity
style, and so on. Then the actual application depends on the generalization ability, which determines whether
a network is effective. Regularization is an efficient way to improve the generalization ability of deep CNN,
because it makes it possible to train more complex models while maintaining a lower overfitting. In this
paper, we propose to optimize the feature boundary of deep CNN through a two-stage training method
(pre-training process and implicit regularization training process) to reduce the overfitting problem. In the
pre-training stage, we train a network model to extract the image representation for anomaly detection.
In the implicit regularization training stage, we re-train the network based on the anomaly detection results
to regularize the feature boundary and make it converge in the proper position. Experimental results on
five image classification benchmarks show that the two-stage training method achieves a state-of-the-art
performance and that it, in conjunction with more complicated anomaly detection algorithm, obtains better
results. Finally, we use a variety of strategies to explore and analyze how implicit regularization plays a role
in the two-stage training process. Furthermore, we explain how implicit regularization can be interpreted as
data augmentation and model ensemble.

INDEX TERMS Deep CNN, image classification, overfitting, generalization, anomaly detection, implicit
regularization.

I. INTRODUCTION
Is data omnipotent in the era of Big Data? Or the success of
AlphaGo Zero [1] means that the data is not as important as
we thought?

The flourishing development of applications based on deep
learning is inseparable from the massive data support, espe-
cially in image classification [2], behavior recognition [3],
object detection [4], and so on. As a widely used regulariza-
tion method, the data augmentation [2], [20] expands datasets
in various ways to improve the generalization ability of
deep CNN, such as horizontal flip, translation transformation,
noise disturbance, etc. It is in line with people’s intuition
to approximate the real and natural sample distribution by
increasing the amount of training data. But the overfitting

problem of deep CNN still exists. The data-driven training
method makes us start thinking about the impact of data
distribution in high dimensional space on the training process.
In other words, the necessary reduction of dataset under
the trend of big data is more consistent with our intuition,
i.e., the effective expansion of the dataset is a more reasonable
way to approximate the natural sample distribution, rather
than a reckless expansion of the data.

Therefore, we plan to regularize the feature boundaries of
deep CNN in a two-stage training process from the point of
view of data punishment so as to improve the generaliza-
tion ability of the network. The initial sample distribution
is obtained in the pre-training stage, and the implicit reg-
ularization phase is used to optimize the feature boundary
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TABLE 1. Comparison with different CNN regularization techniques.

by punishing samples. Regularization in the training process
plays a role in the parameters adjustment of deep CNN, which
is similar to some earlier regularization methods, such as
weight decay, which can be interpreted as a way of con-
straining the parameters by l2-regularization and has been
widely adopted. But the l2-regularization term plays a very
different role in deep learning, and it seems to be more of a
tuning parameter. As reported in [2], l2-regularization (weight
decay [5]) sometimes even helps optimization, illustrating its
poorly understood nature.

Currently, avoiding overfitting problem is a significant
challenge to train effective and robust deep CNNs. Early
solutions include constraining the network complexity by
using fewer weights or sharing weights [6], and using
l1-regularization method. Some new activation function such
as Parametric ReLU [7] and Swish [8] achieve the same
goal through sparse representation property. The sparse fea-
tures are more likely to be linearly separable and have
a smaller dependence on non-linear mapping mechanisms.
There are also many regularization methods for network
structure design that have been developed to prevent over-
fitting. Dropout [9] randomly discards the output of some
hidden neurons in the training process and only updates the
remaining weights in each mini-batch iteration. Similarly,
DropConnect [10] just updates a randomly selected subset
of the network parameters. Both of these two tricks intro-
duce randomicity to the network and play a role of bag-
ging by combining multiple models, avoiding the increase
of computation time and storage costs. The auxiliary classi-
fication nodes in the GoogLeNet [11] can also play a role
of the model ensemble. There are also some methods to
avoid overfitting by introducing randomicity to the network.
Stochastic Pooling [12] changes the deterministic pooling
operation and randomly selects one input as the output in
probability in the training process. Similarly, Probabilistic
Maxout [13] turns the Maxout operation [14] to stochastic.
SoftLabel [15] randomly adds noise to the sample label, and

DisturbLabel [16] regularizes the loss layer of the network
by randomly replacing the labels of some training samples.
Although they are not directly presented as regularizers, there
are other strategies to reduce the overfitting such as Batch
Normalization [17], which decreases the overfitting by low-
ering the internal covariance shift.

Regarding model initialization, Mishkin and Matas [18]
proposed that a proper initialization avoids the network
converging to a poorer local minimum and can also bring
the regularization effect. In the natural image classification
task, the commonly used method is to build a good ini-
tialization model by pre-training on the ImageNet dataset.
OrthoReg [19] eliminates interferences between negatively
correlated features by imposing local constraints in fea-
ture decorrelation, allowing the regularizer to achieve higher
decorrelation boundaries, and decreasing the overfitting
problem more efficiently. In the experimental part, we intro-
duce and compare different initialization methods, including
LSUV initialization [18], orthogonal initialization, Xavier
initialization [65] and other ways to observe the influence on
the generalization ability.

A comparison of different regularization methods is sum-
marized in Table 1. Instead of adding noise to input nodes,
our work is to establish an optimized feature boundary by
punishing the loss function of outliers that may be disturbed
by the severe noise due to data transmission, strange collec-
tion or production methods, etc. The adjustment of decision
boundary means that only the classifier is optimized and the
sample distribution is fixed. While the adjustment of feature
boundary means that both the sample distribution and the
classifier are optimized. The rest of this paper is organized as
follows. Section II briefly introduces related work. The two-
stage training method is presented in Section III. Experimen-
tal settings and results are shown in Section IV. Discussions
and conclusions are presented in Sections V and VI, respec-
tively. The Appendix section shows some of the anomalous
samples in MNIST, SVHN, USPS, and CIFAR10/100.
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II. RELATED WORK
The extensive use of deep CNN in dealing with image classi-
fication problem has benefitted from and inspired a variety
of research efforts, including designing deeper and wider
network architectures [11], [21], studying more suitable
non-linear activation functions [7], [14], exploring advanced
pooling operations [12], [22], using better optimization
methods [23], regularization techniques [16], [17] preventing
deep CNN from overfitting problem, etc. In this section,
we introduce the work related to the two-stage training pro-
cess (pre-training and implicit regularization training).

A. PRE-TRAINING PROCESS
The first stage of the training process is the pre-training phase,
which is used to obtain initial distribution of samples. At this
stage, the deep convolution activation features (DeCAFs) [29]
of samples are extracted by the trained model, which has been
applied in a lot of work. Zhang and Zhang [24] discussed the
classification results of various classifiers on the deep convo-
lution activation features. Gehler and Nowozin [25] reported
that the fusion of deep convolution activation features and
artificial features could improve the classification accuracy.
Gong et al. [26] constructed multi-scale features as the image
representation by extracting the activations of different layers
and obtained the state-of-the-art classification result with
fisher coding. Shi et al. [27] used the deep convolution
activation features for ground-based cloud classification,
and it outperformed conventional artificial features con-
siderably without using any tricks in the training process.
Zhong et al. [28] improved classification results on the
Caltech-UCSD birds dataset and SVHN dataset by apply-
ing PCA and stretching operation to change the dimensions
of DeCAFs. A lot of work has shown that the deep con-
volution activation features based on deep CNN achieved
excellent results in various fields. It is the foundation of our
work.

B. IMPLICIT REGULARIZATION TRAINING PROCESS
The second stage of the training process is the implicit regu-
larization. In this step, the primary task is to detect and punish
anomalous samples to achieve the purpose of optimizing the
feature boundaries. The sample punishment is equivalent to
reducing the size of the dataset, which preserves the valid data
to fit the real sample distribution. Detection of the anomalous
sample is the basis of this step, which is very similar to the
outlier detection task in data mining.

Outliers are samples that are significantly different from
other data objects as if they were produced by different
mechanisms. Therefore, automatically removing outliers can
help us build large-scale datasets, or at least greatly reduce the
required labeling costs. For example, as shown in Fig. 1a, the
image retrieval results from a search engine which typically
contains a number of anomalous samples that are irrelevant
to the intent of the query. In our proposed regularization
training process, our ideal outliers are the unnatural natu-
ral samples due to noise, different production methods and

FIGURE 1. Example samples returned by an image search engine when
querying ‘‘dog’’. The outliers shown in (a) are dog-independent samples
while the outliers shown in (b) are dog-related but abnormal samples.

different production time. Unnatural means that the objects’
pose or color in the image is not natural, resulting in an
unnatural sample distribution. Natural represents a natural
production method, compared to the adversarial samples.
The outlier detection during implicit regularization training
process is shown in Fig. 1b. The anomalous samples are
strangely shaped and illegible dogs. For this problem, most
methods [36]–[38] explicitly or implicitly assumed that the
positive samples are in the dense area while the outliers are
not, which have the same foundation with anomalous sample
detection in the implicit regularization process.

The reconstruction errors [31] of autoencoder are good
indicator of outlier detection. When data are reconstructed
from low-dimensional representations, the positives and the
outliers can be well separated according to the reconstruction
errors. Xia et al. [30] made the positive samples and outliers
more separable by adding discriminative information in the
training process of autoencoder. The method in [32] and [42]
calculated the PCA projection of the data, and the sample
with large projection variance is determined as the outlier.
Ju et al. [33] designed an l1-norm based probabilistic PCA
model, in which the introduced hidden variables in the super-
position can be used as a valid indicator for outlier detection.
Rahmani and Atia [34] explored two randomized designs of
robust PCAusing low dimensional sample sketching. The sta-
tistical methods [35] fitted the parameter distribution over the
training data, and the outliers are identified as those with low
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FIGURE 2. The decision boundary of a slightly overfitted deep CNN model
and the sample distribution.

probability under the learned distribution. Neighbor-based
methods [36], [43] assumed that positive samples have close
neighbors while outliers are far apart from each other. One-
class SVMmethod [39] learned a maximummargin classifier
to arbitrate outliers. Liu et al. [40] proposed an unsupervised
one-class learning (UOCL) method that is superior to the
above methods. With the inspiration of Gao and Li [41],
we integrate the outlier detection into the image classification
process instead of dealing with it independently. However,
we do not need to make outlier judgment on the data in the
testing set. We will further compare the influence of different
outlier detection methods in the experimental section.

III. TWO-STAGE TRAINING METHOD
A. THE HYPOTHESIS AND IDEA
We first empirically describe the hypothesis and ideas of
two-stage training method for improving generalization abil-
ity of deep CNN.
Hypothesis: a fully trained, slightly overfitted network

model and sample distribution are shown in Fig. 2. The circle
and triangle represent image representations of two kinds of
samples, respectively. The dotted green line and the solid red
line represent the real and the trained decision boundaries,
respectively. The black shadow area is the misclassified area
of the trained model on the testing set, which represents
the generalization error. Theoretically, the larger the shadow
area is, the higher the generalization error and the lower the
classification accuracy of the testing set will be.
Idea: the feature boundary of the model can be adjusted

by punishing the anomalous samples in the shadow area,
which can regularize the network and reduce the overfitting.
So the key solution is how to effectively detect the anomalous
samples and establish an appropriate punishment mechanism.
However, detection of anomalous samples depends on the
image representation ability of the network, and the image
representation ability of the network is adversely affected
by anomalous samples. This looks like a chicken-and-egg

FIGURE 3. The two-stage training process of deep CNN.

Algorithm 1 Pre-Training Process

Input: D = {(xn, yn)}Nn=1.
Initialization: network modelM : f(x;ω) ∈ RC ,

learning rate αt , momentum ψ , mini-batch sizeM .
for each mini-batch Dt = {(xm, ym)}Mm=1 do
for each sample (xm, ym) do
forward-propagation:
compute the output of layer i:
ai = σ ((ωi)Tai−1 + bi);
compute the loss function: l(x, y);

end for
back-propagation:

Vt = ψVt−1 + (1− ψ) ·
1
|Dt |

∑
(x,y)∈Dt

∇ωt [l(x, y)];

ωt+1 = ωt − αtVt ;
end for

Output: Updated modelM′ : f(x;ω′) ∈ RC .

problem. Actually, we can use a two-stage training process to
detect anomalous samples and optimize the feature boundary.

Our proposed two-stage training method for decreasing
overfitting problem of deep CNN consists of the following
steps. The first stage is a pre-training process for determining
sample distribution. The second stage is the implicit regular-
ization process for optimizing the feature boundary. The pro-
cedure of two-stage training method is shown in Fig. 3. In this
part, we only give the details of the training method; the
specific network structure and hyper-parameters are given in
the experimental setup section.

B. PRE-TRAINING PROCESS
The pre-training process is carried out on the whole training
dataset, using mini-batch stochastic gradient descent (SGD)
algorithm with momentum [44]. The training set is defined
as D = {(xn, yn)}Nn=1 where the sample is a D-dimensional
vector xn ∈ RD, and its label is a C-dimensional vector yn =
(0, · · · , 0, 1, 0, · · · , 0)T with the input of the correspond-ing
category being 1 and the rest being 0. The goal is to train an
initialized CNN modelM : f(x;ω) ∈ RC to a convergent one
M′ : f(x;ω′) ∈ RC for extracting the image representation,
whereω represents theweights. In order to observe the impact
of different initialization on data distribution and network
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generalization ability, we compare the classification accuracy
of different initialized network in experiments.

In the pre-training process, the t-th iteration of mini-batch
SGD updates the current weighs ωt as:

Vt = ψVt−1 + (1− ψ) ·
1
|Dt |

∑
(x,y)∈Dt

∇ωt [l(x, y)] (1)

ωt+1 = ωt − αtVt (2)

where l(x, y) represents the loss function, e.g., cross-entropy
function or log-likelihood function.∇ωt [l(x, y)] is calculated
by gradient back-propagation.Dt represents a mini-batch that
randomly extracted from the whole training set D. αt is the
learning rate and ψ is the momentum. We give the pseudo
codes of the pre-training process as shown in Algorithm 1 to
facilitate the readers’ understanding of the algorithm. Finally,
we output the updated CNN modelM′ : f(x;ω′) ∈ RC .

In order to make the pre-training network obtain accurate
image representation ability as much as possible, we use data
augmentation method in the image preprocessing stage, and
we expand the training set by flipping, translating and scaling
without using noise disturbance, color transform and contrast
transform.

C. ANOMALY DETECTION
In this part, we introduce a simple density based anomaly
detection method. The underlying assumption of density
based anomaly detection method is that the density around
positive samples is similar to the density of their neighbors,
while the density around outliers is significantly different
from them. In the big data environment, the dataset presents
a more complex structure, and the sample may be regarded
as outlier considering its local neighborhood rather than the
whole dataset. Therefore, the density based anomaly detec-
tion is more appropriate than the distance based anomaly
detection.

1) DENSITY BASED ANOMALY DETECTION ALGORITHM
For a subset D′ ∈ D under the same label, the k-distance of
sample x is defined as dk (x), which is the distance d(x, p)
from the sample x and another sample p. It satisfies:
• There are at least k samples x′ ∈ D′-{x} make d(x, x′) ≤
d(x, p).

• There are at most k-1 samples x′′ ∈ D’-{x} make
d(x, x′′) < d(x, p).

In this paper, we propose to use the cosine similarity
between feature vectors to express the distance between them,
as shown in equation 3.

d(x, p) =
〈θ1, θ2〉

||θ1||||θ2||
(3)

where θ1 and θ2 represent the DeCAF feature vectors of
samples x and p, respectively. Note that the cosine similarity
is equivalent to the Pearson correlation for mean-centered
normalized vectors. The Euclidean distance between two
samples in high-dimensional feature space can no longer

reflect the actual relationship between them. As the feature
dimension increases, the distance between samples can be
severely affected by noise, so the data in high-dimensional
spaces are often sparse. Empirically, principal components
with lower variance in feature vectors are preferable; because
in these dimensions, positive samples may be closer to each
other, while outliers usually deviate from the most.

This means that dk (x) is the distance between sample x and
its k-th nearest neighbor. Therefore, the k-distance neighbor
of x contains all samples whose distance to x is no more
than dk (x), which is denoted as

Nk (x) =
{
x′|x′ ∈ D, d(x, x′) ≤ dk (x)

}
(4)

There may be more than k samples in Nk (x), because there
may be multiple samples at the same distance from x.
For two samples x and x′, if d(x, x ′) > dk (x), then the

reachable distance rdk (x ← x′) from x′ to x is d(x, x’),
otherwise it is dk (x). i.e.,

rdk (x← x′) = max
{
dk (x), d(x, x′)

}
+ ε (5)

where k is a hyper-parameter that is used to control smooth-
ness. ε is a very small constant (e.g., ε = 0.001) that used
to avoid reachable distance being equal to zero. In general,
the reachable distance is asymmetric, i.e., rdk (x←x′) 6=
rdk (x′←x).

Then the locally reachable density lrdk (x) of the sample x
can be defined as

lrdk (x) =
||Nk (x)||∑

x′∈Nk (x)
rdk (x′← x)

(6)

So the anomalous degree µk (x) of the sample x is

µk (x) =

∑
x′∈Nk (x)

lrdk (x′)
lrdk (x)

||Nk (x)||
(7)

Then we perform min-max normalization operation on the
anomalous degree µk (x) of the sample x in each class as
equation 8, which is linear transformations of initial data, and
results are mapped to (0, 1).

µk (x) =
1.05µk (x)− µmin

1.1µmax − µmin
∈ (0, 1) (8)

where µmin and µmax are the smallest and largest anomalous
degree, respectively. The anomalous degree reflects the aver-
age ratio of the reachable density of sample x to the reachable
density of the k-nearest neighbor of x. i.e., it reflects the
uniqueness of sample in the training set. The more unique
a sample is, the higher the anomalous degree will be. The
algorithm complexity is O(dnk + nklog(n)), in which n rep-
resents the size of training set, d is the dimension of image
representation, and k is the number of neighbors.
Anomaly detection mainly consists of four stages: data

transmission, distance calculation, k-nearest neighbor search
and calculation of anomalous degree. Most of the anomaly
detection time is spent in the distance calculation and the
k-nearest neighbor search stage, which accounts for more
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FIGURE 4. An example used to illustrate the property of density-based
anomaly detection algorithm.

than 90% of the total execution time. So we calculate the
distance in parallel using heterogeneous platforms based on
CPU and GPU, and use cell method [45] to accelerate the
k-nearest neighbor search process. In fact, we also use the
block vector approximation algorithm [46] to test Euclidean
distance based anomaly detection method, but the classifica-
tion results are unsatisfactory.

Finally, we do not need to set the threshold to judge
whether a sample is anomalous or not. We just need to output
the anomalous degree of each sample for the implicit regu-
larization training stage. i.e., the dataset D = {(xn, yn)}Nn=1
is updated to D = {(xn, yn, µn)}Nn=1. In experiments, we will
compare the impact of different outlier detection algorithms
in the implicit regularization training process.

2) PROOF OF ALGORITHM PROPERTY
We use an example to analyze the property of density-
based anomaly detection algorithm. For a sample x as shown
in Fig. 4, let

directmin(x) = min
{
rdk (x′← x)|x′ ∈ Nk (x)

}
(9)

which represents the smallest reachable distance between
sample x and its k-nearest neighbor. Similarly, let

directmax(x) = max
{
rdk (x′← x)|x′ ∈ Nk (x)

}
(10)

Then, consider the k-nearest neighbor of sample x, let

indirectmin(x)

= min
{
rdk (x′← x)|x′ ∈ Nk (x) and x′′ ∈ Nk (x′)

}
(11)

indirectmax(x)

= max
{
rdk (x′← x)|x′ ∈ Nk (x) and x′′ ∈ Nk (x′)

}
(12)

Then we can prove

directmin(x)
indirectmax(x)

≤ µ(x) ≤
directmax(x)
indirectmin(x)

(13)

This means that the anomalous degree µ(x) captures the
relative density of sample x. The lower the relative density
is, the higher the anomalous degree will be.

Algorithm 2 Implicit Regularization Training Process

Input: D = {(xn, yn, µn)}Nn=1
Initialization: network modelM : f(x;ω) ∈ RC ,
learning rate αt , momentum ψ , mini-batch sizeM .

for each mini-batch Dt = {(xm, ym, µm)}Mm=1 do
for each sample (xm, ym, µm) do
forward-propagation:
compute the output of layer i:
ai = σ ((ωi)Tai−1 + bi);
compute the loss function :l(x, y);
compute regularization factor:

ηn =

[
U
(
1−

logµn
β logU

)]
∗ ε(µn − U );

update loss function:
l†n = (1− ηn)ln;

end for
back-propagation:

Vt = ψVt−1 + (1− ψ) ·
1
|Dt |

∑
(x,y)∈Dt

∇ωt

[
l†(x, y)

]
;

ωt+1 = ωt − αtVt ;
end for

Output: Updated modelM′′ : f(x;ω′′) ∈ RC .

D. IMPLICIT REGULARIZATION PROCESS
Based on the idea of transfer learning, we re-initialize the
parameters of fully connected layers and some high-level
convolution layers and start a new training process. This
process is considered as an implicit regularization work.

1) REGULARIZATION METHOD
We first set a threshold U ∈ (0, 1) to prevent the case
that the network cannot be effectively optimized due to the
excessive punishment of samples. It determines whether a
sample will be punished during the training process, and
participates in controlling the intensity of punishment. Then
the regularization factor can be defined as

ηn =

[
U
(
1−

logµn
β logU

)]
∗ ε(µn − U ) (14)

where ε and ∗ represent the step function and the convolu-
tion operation, respectively. β is a manually defined weight-
ing factor that determines subjective regularization intensity.
Experiments showed that the best effect was obtained when
β belongs to [4, 7].

Then the updated loss function is

l†n = (1− ηn)ln (15)

where ln is the original loss of sample (xn, yn). In this step,
the forward propagation of the implicit regularization training
process is completed. Then we continue using the mini-batch
SGD algorithm to train the network to converge. The pseudo
code for this training stage is shown in Algorithm 2. The
convergent model is used to complete the classification of
the testing set and to observe the generalization performance.
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Some studies [47] show that the mini-batch SGD algorithm
itself has an implicit regularization effect on the network.
We think that mini-batch SGD algorithm is a regularization
method at the data level. Most normal data in a mini-batch
decide the descent direction of gradient. Our method is to
improve the regularization effect of mini-batch SGD training
method through data intervention.

2) ANALYSIS OF ALGORITHM PROPERTY
We analyze the properties of regularization factor by mathe-
matical derivation and function curves. The graph of regular-
ization factor η is shown in Fig. 5a. The partial derivatives of
regularization factor η to anomalous degree µ is

∂η

∂µ
= −

1
β logU

·
1
µ
> 0 (16)

The partial derivative of loss function l†n to anomalous
degree µ is

∂l†n
∂µ
=

ln
β logU

·
1
µ
< 0 (17)

In each iteration, the expectation of regularization factor is

EDt (η) =

∫ 1
U U

(
1− logµ

β logU

)
dµ

1− U

= U +
U

β logU
+

U2

β(1− U )
(18)

∂EDt (η)
∂U

= 1+
logU − 1

β log2 U
+

U (2− U )
β(1− U )2

> 0 (19)

The graph of equation 16 and 19 are shown in Fig. 5b and
Fig. 5c, respectively. We can observe that the regularization
factor has the following properties:

1.If keep U constant (-) and make µ increases (↑), then we
can get η ↑, l†n ↓. i.e., U -, µ ↑, β-⇒ η ↑, l†n ↓.

2. µ-, U ↑, β-⇒ EDt (η) ↑, EDt (l
†) ↓.

3. µ-, U -, β ↑⇒ η ↑, l†n ↓.
4. U ≈ 0⇒ η ≈ 0⇒ l†n ≈ ln.

The first property ensures that the higher the anomalous
degree of a sample is, the smaller role it will play in the
training process. The second property allows us to control
the number of punished samples by increasing the threshold.
As the thresholdU becomes higher, the number of anomalous
samples will decrease; the average punishment on a subset
Dt will be more severe; and remaining anomalous samples
will play a smaller role in the training process. Anomalous
degree µ and threshold U are a pair of trade-off parameters,
which can avoid the adverse effect caused by improper setting
of hyper-parameters. And the threshold prevents the network
from overfitting to normal samples. The third property means
that one can control the regularization intensity of training
process by adjusting the value of β. The fourth property
guarantees that even a minimal threshold does not cause the
under-fitting problem. In this case, the loss function is almost
unchanged. These properties guarantee the effectiveness of
the implicit regularization training process.

FIGURE 5. Graph (a) shows the relationship between regularization
factor η, anomaly degree µ and threshold U under different β. The solid
and the dotted lines represent the case of β = 4 and β = 7, respectively.
(b) shows the partial derivative of loss function to anomalous degree µ
under different U (β = 4). (c) shows the relationship between the
expectation of anomalous degree with threshold U .

IV. EXPERIMENTAL SETTINGS AND RESULTS
The experimental process is displayed following the training
steps and is organized as follows. In section A, we intro-
duce the experimental datasets, the corresponding deep
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FIGURE 6. Training samples of MNIST, USPS, SVHN, CIFAR10, CIFAR100, and ILSVRC2012.

CNN structures and the parameters set. In section B, we com-
pare the classification results of the testing sets of each
dataset. Section C shows the influence of various outlier
detection algorithms on samples and implicit regularization
training process. Section D reports the effect of different

initialization methods on the generalization of deep CNN
during the two-stage training process. In section E , we verify
the regularization effect of the proposed method by changing
the structure of deep CNN. In section F , we use exten-
sive experiments to test the sensitivity of the algorithm to
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TABLE 2. The deep CNN architectures used in experiments.

hyper-parameters. Finally, we visualize the implicit regular-
ization training process on a toy dataset in section G.

A. DATASETS AND EXPERIMENT SETTINGS
We evaluate two-stage training method on six popular image
classification datasets, i.e., MNIST [6], SVHN [48] and
US Postal Service (USPS) [49] for digit classification,
CIFAR10 and CIFAR100 [5] for natural image classification,
and ILSCRV2012 [50] for large-scale image classification.
MNIST is one of the most widely used datasets for digital

classification, which contains 60000 training samples and
10000 testing samples, uniformly distributed on ten cate-
gories (0–9). All of them are 28 × 28 grayscale images.
For data augmentation (DA), we randomly crop the training
samples into 24× 24 pixels.
SVHN is a larger collection of digital samples, i.e.,

73257 training images, 26032 testing images, and
531131 extra training images. All the samples are
32×32 RGB images. We preprocess The training data is pre-
processed according to the method in [48], i.e., 600 images
per class from the training set and 400 images per class from
the extra training set are taken out as validation set (including
10,000 samples), and the remaining 594388 images are used
as training samples.
USPS dataset is one of the most popular datasets for hand-

written digit classification and allows for rapid verification
due to its small size. There are 7291 images for training,

and 2007 images for testing. All the samples are 16 × 16
pixels and are scaled between 0 and 1. The dataset contains a
large amount of image variability and is considered as a hard
classification task. The difference in the size of each category
is a bit notable. So we expand the training set to 21873 by
using scale transformation.
CIFAR10 and CIFAR100 are both subsets extracted from

the 80-million tiny image dataset [51]. The datasets both
consist of 50000 training samples and 10000 testing sam-
ples. And all the samples are 32 × 32 RGB images.
CIFAR10 includes 10 basic classes and CIFAR100 divides
each of them into a finer level (100 classes). In both datasets,
training and testing samples are uniformly distributed across
all classes.
ILSVRC2012 dataset [50] is used to evaluate the large-scale

image classification performance of our method. It is a subset
of the ImageNet dataset which includes 1000 classes. There
are 1.3M images for training, 100K images for validation and
200K images for testing. We show some sample images of
these six datasets in Fig. 6.

For the structures of deep CNN used in the experiments
(see Table 2), we select the FitNet-1 architecture [52] for
MNIST and SVHN dataset, and train it with the proposed
two-stage method. Non-linearity in the network are set as
follows: maxout with 2 linear units in convolution layers and
maxout with 5 linear units in the fully connected layer. The
initialization of network parameters is set by default (Hints).
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TABLE 3. Comparison with other methods on MNIST, SVHN and USPS.

The initial learning rate is set to 0.001 and decreased by a
factor of 10 after the 30th, 50th and 70th epoch. Another ver-
sion of the LeNet (ALNet) [53] is used for the USPS dataset.
The FitNet-4 network [52] that used for CIFAR10/100 is
trained with the mini-batch SGD with momentum set to 0.6;
the initial learning rate set to 0.01 and reduced by a factor
of 10 after the 60th, 80th and 100th epoch, finishing at 120th
epoch. Schmidhuber [54] trained the very deep CNN for
200 epochs. But too much training is more likely to lead
to overfitting problem. For ILSVRC2012 classification task,
we test the performance of the algorithm on three widely
used network architectures: Alexnet, VGG-16 and Network
in Network (NIN). The network parameters and the learning
rate are set by default. The activation functions of all network
use the Swish [8] due to its good experimental results and
smoothness nature.

B. CLASSIFICATION RESULTS OF THE TESTING SET
1) NUMERICAL IMAGE CLASSIFICATION
The classification results of MNIST, SVHN and USPS
datasets under different algorithms are shown in Table 3.
In the following sections, to make the results easy to read,
we boldface all results that are close to the best result on each
dataset.

The two-stage training method achieved surprising results
on FitNet1 and ALeNet. i.e., 99.80% on MINST, 98.39% on
SVHNand 98.96%onUSPSwith data augmentation, 99.78%
on MINST, 98.28% on SVHN and 98.87% on USPS without
data augmentation. Compared to the general training meth-
ods (Number 14 in Table 3), the classification accuracy of
both three datasets has been improved. Compared with other
regularization methods, the performance of implicit regular-
ization training was able to outperform DisturbLabel (Num-
ber 17), and the classification accuracy of MNIST, SVHN
and USPS increased by 0.13%, 0.59% and 0.64% (with data
augmentation) and 0.14%, 0.54%, 0.62% (without data aug-
mentation), respectively. Since our method does not conflict
with dropout in the training process, we do not compare
the classification results of these two regularization methods.
Although the network adopts the default initial weights, the
classification accuracy of the three datasets is still higher
than that of the network with advanced LSUV initialization
method (Number 15 and 16). Our performance even exceeds
the classification results of some more advanced network
structures, such as Highway network (Number 5 and 6),
DSN (Number 7 and 8) and BigNet (Number 12 and 13).

As a reference, we compare the best classification results
on three datasets (Number 1 and 9 inMNIST, Number 2 and 5
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TABLE 4. Comparison with other methods on CIFAR10, CIFAR100 and ILSVRC2012.

in SVHN and Number 16 in USPS) to illustrate the
excellent performance of two-stage training method. For
MNIST, the neural network using DropConnect method
had the highest classification accuracy on the augmented
dataset; MIN established a state-of-the-art on MNIST with-
out data augmentation through a combination of maxout,
batch normalization and NIN nonlinearities. We improved
the classification results of the current state-of-the-art by
0.01% and 0.02%, respectively. Wide ResNet and RCNN
achieved the best performance on SVHN dataset before
and after data augmentation, respectively. We improved
the classification results of the current state-of-the-art by
0.03% and 0.05%, respectively. For USPS dataset, fea-
tures of images are extracted by the ALeNet structure
with LSUV initialization method and are classified by
SVM, and the best results are 98.94% (with DA) and
98.85% (without DA). Our classification results are also very
competitive.

We even adopted an extreme data augmentation method
that generated a number of digital samples on MNIST and
USPS using a single Generative Adversarial Net (GAN).
From the classification accuracy of the testing set (Num-
ber 19), the addition of generated samples further enhanced
the generalization ability of the network though implicit reg-
ularization training process and increased the classification
results from 99.80%/98.96% to 99.82%/98.99%. The exper-
imental results show that the implicit regularization stage
makes the data augmentation more efficient, in which the
anomaly detection is crucial to the effective use of generated
samples. In part 3, we will analyze the importance of anomaly
detection.

2) NATURAL IMAGE CLASSIFICATION
The classification results of CIFAR10, CIFAR100 and
ILSVRC2012 datasets under different algorithms are shown
in Table 4.

In CIFAR10 and CIFAR100, the FitNet4 structure
achieved a new state-of-the-art under two-stage training
method. It improved the classification accuracy before
and after data augmentation from 91.61%/95.63% and
68.96%/76.60% to 93.28%/95.69% and 71.88%/76.64%,
respectively. Compared to the past training methods
(Number 14 in Table 4), the classification accuracy
under two-stage training method on both datasets was
improved. Compared with other regularization methods, the
performance of implicit regularization training was able to
outperform DisturbLabel (Number 16), and the classifica-
tion accuracy of CIFAR10 and CIFAR100 increased by
2.42%, 5.10% (with DA) and 1.67%, 2.92% (without DA),
respectively. The performance of natural image datasets also
exceeds some more advanced network structures, such as
Wide ResNet (Number 5), maxout network (Number 6) and
MIN (Number 7).

The classification results on ILSVRC2012 dataset are also
quite competitive. The classification accuracy of Alexnet,
VGG-16 and NIN are 62.29%, 76.35% and 75.32%, respec-
tively. Compared with traditional training methods, their
results were increased by 1.11%, 0.18% and 0.62%, respec-
tively. However, we found that the classification accuracy of
three networks on ILSVRC2012 dataset was only marginally
improved compared with the improvement of classifica-
tion results of CIFAR10 and CIFAR100. We believe that
the large noisy area in the image and the complex shape
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TABLE 5. Classification results of different regularization methods with or without anomaly detection.

of objects have a bad influence on the anomaly detection
in high-dimensional space, which affects the optimization
of feature boundary. Actually, the accuracy improvements
on ILSVRC2012 are remarkable given that one year of
architectural tuning and enlarging yielded 1.89% accuracy
gain going from GoogLeNet (Number 6) to Inception-V3
(Number 5). It can be seen that under Alexnet
(Number 10 and 11), VGG-16 (Number 13 and 14) and
NIN (Number 16 and 17), the two-stage training method
has a similar classification accuracy with the DisturbLabel
method. This confirms our guess that when the anomaly
detection is no longer valid, the implicit regularization train-
ing process is equivalent to punishing samples randomly,
which is also equivalent to randomly adding noise to sample
labels. Although our method did not achieve state-of-the-art
on ILSVRC2012, better classification results can be obtained
if we use the two-stage training method on a more advanced
network structure.

For these three natural image datasets, the simple
GAN is difficult to converge due to the complex background
and object structure, so we did not test the influence of
extreme data augmentation.

3) IMPACT OF ANOMALY DETECTION
The classification results of six datasets demonstrate the
effectiveness of proposed two-stage training method for
improving the generalization ability of deep CNNs, espe-
cially the implicit regularization training process. In this part,
we report the contribution of anomaly detection to the implicit
regularization process through experiments. In the implicit
regularization training process, we adopt two ways of ran-
dom selection and anomaly detection to select the punished
samples and compare the three punishment methods, includ-
ing DisturbLabel, SoftLabel and our proposed regularization
factor.

For the DisturbLabel method, a disturbed label ỹ =
(̃y1, ỹ2, · · · , ỹC )T is randomly generated for each sample
(x, y) from a Categorical distribution (a genera-lization of the
Bernoulli distribution) P(α):̃r ∼ P(α),

ỹ̃r = 1,
ỹi = 0, ∀i 6= r̃

(20)

The Categorical distribution P(α) is defined as Pr = 1 −
C−1
C · α and Pi = 1

C · α fori 6= r , in which α represents the

noise level and r represents the true label (i.e., in the ground-
truth label y of sample x, yr = 1). It is equivalent to disturb
the label of each training sample with a probability α. In the
case of random selection, the noise level is set to 20%. In the
case of anomaly detection, each sample has a different noise
level, which equals to their anomalous degree. In other words,
samples with higher anomalous degree are given a disturbed
label with higher probability.

For the SoftLabel method, a random label z =

(z1, z2, . . . , zC )T is generated for each of the punished sam-
ples from a uniform distribution:{

zi ∼ U (0, 1)
z = (z1, z2, . . . , zC )T

(21)

Then the label is normalized as

z =
z
||z||

(22)

Finally, the soft label ˜̃y = (̃̃y1,˜̃y2, · · · ,˜̃yC)T of sample (x, y)
is generated by ˜̃y = (1− α)y+ αz (23)

In the case of random selection, the noise level is set to 20%.
In the case of anomaly detection, each sample has a differ-
ent noise level, which equals to their corresponding anoma-
lous degree. In other words, samples with higher anomalous
degree are disturbed by more severe noise.

In view of our proposed regularization factor, in the case
of random selection, 20% samples are randomly selected to
be outliers and the regularization factor is 0.2. In the case of
anomaly detection, the processing is referred to the above
description. Finally, we consider an extreme regularization
operation that dropouts all the anomalous samples according
to the thresholdU , i.e., they have no contribution to the train-
ing of network. This operation can be achieved by replacing
the regularization factor by

ηn =

{
1, µn ≥ U
0, µn < U

(24)

The classification results of five datasets are shown
in Table 5. Comparing the experimental results of 1 and 2,
3 and 4, 5 and 6, we can see that the anomaly detec-
tion improves the classification accuracy of all the regular-
ization methods on MNIST, SVHN, USPS, CIFAR10 and
CIFAR100. This validates our hypothesis that anomaly
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TABLE 6. Classification results of six datasets under different anomaly detection algorithms.

detection favors the optimization of feature boundary, i.e.,
the sample distribution is adjusted and the decision boundary
is optimized. Moreover, we find that the extreme regular-
ization operation (Number 7), i.e., sample dropout, has an
adverse impact on the generalization ability of the network,
resulting in a significant decrease in the classification accu-
racy on both six datasets. We think there are two possible
reasons for the poor performance of sample dropout. The
first is that the feature boundary is overfitted to normal
samples, leading to a lack of generalization ability. In other
words, the trained network is not robust enough. Another
reason is that sample dropout makes the network underfit
to the real sample distribution. Comparing all the results
of the six datasets, the implicit training method based on
anomaly detection outperforms DisturbLabel and SoftLabel
method. The regularization way of our algorithm is similar to
l2-regularization, but the difference is tht the l2-regularization
aims at the network structure.

Experiments with ILSCVRC2012 are performed on the
VGG-16 network. As mentioned above, the anomaly detec-
tion method is invalidated on ILSVRC2012 dataset, and the
result of anomaly detection is equivalent to random sampling.
The classification accuracy of ILSVRC2012 in each regular-
ization method is similar, which confirms our inference.

C. COMPARISON OF DIFFERENT ANOMALY
DETECTION ALGORITHMS
Aiming at the failure problem of anomaly detection in high
dimensional space, we compare some more advanced and of
course more complicated anomaly detection algorithms.

The first thing we need to do is to normalize the anomalous
degree obtained by each anomaly detection algorithm for the
implicit regularization process. Take autoencoder as an exam-
ple, the anomalous degree is defined as the reconstruction
error according to

µn = ||xn − f (xn)||2 (25)

where xn represent the DeCAF feature vector, f (xn) is the
reconstructed copy. Then the anomalous degree is normalized
by Equation 8, and the updated samples are then fed into the
network for implicit regularization training.

The classification results based on the various anomaly
detection algorithms are shown in Table 6. On SVHN
and ILSVRC2012 datasets, the anomaly detection algorithm
based on the discriminative autoencoder (Boost-autoencoder)
achieves the classification accuracy of 98.44% and 76.96%
respectively, which is 0.05% and 0.73% higher than our
method. Compared to the general autoencoder, they further
enhance this tool by learning more discriminative recon-
structions. OC-SVM gets the same classification results on
SVHN dataset. On MNIST and USPS datasets, our den-
sity based anomaly detection algorithm achieves the best
performance. With no background noise interference, den-
sity based anomaly analysis is more effective than sam-
ple reconstruction. Without the interference of background
noise, density based anomaly analysis can well describe
the relationship between samples in high-dimensional space.
On CIFAR10 and CIFAR100, the unsupervised one-class
learning (UOCL) method achieves the best classification
accuracy of 95.77% and 77.13%, respectively. In the UOCL
method, an alternate optimization algorithm is designed
to refine the classifiers and labels during the iteration.
On ILSVRC2012, boost-autoencoder has the best perfor-
mance because of the support of massive data. However, com-
pared with the autoencoder requires an additional training of
a neural network, the classification performance of density
based anomaly detection algorithm is still competitive, while
it has a lower algorithm complexity and needs less time.

In order to observe the effect of anomaly detection on
the training process, we collect anomalous degrees of all the
original training samples in five datasets (MINST, SVHN,
USPS, CIFAR10 and CIFAR100), as shown in Fig. 7. In order
to intuitively compare the regularization effect of different
algorithms, the anomalous degrees are drawn in ascending
order. Due to properties of regularization factor, only samples
above the horizontal line η = U are penalized, which we
show with dotted lines. It can be seen that only a small
percentage of samples in MNIST and USPS datasets is penal-
ized, while a larger percentage of samples is punished in
SVHN, CIFAR10 and CIFAR100 datasets. An interesting
phenomenon is that UOCL algorithm punishes more sam-
ples than Boost-autoencoder in the natural image datasets
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FIGURE 7. Anomaly analysis results of MNIST, SVHN, USPS, CIFAR10 and CIFAR100 datasets.
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TABLE 7. Classification results of different initialization methods on MNIST, CIFAR10 and CIFAR100.

CIFAR10 and CIFAR100, but punishes fewer samples in the
digit datasets MNIST, SVHN and USPS. The anomaly detec-
tion algorithm based on robust PCA reconstruction is almost
invalid in CIFAR10 and CIFAR100. It almost uniformly pun-
ishes more than half of the samples and does not play the
role of regularization. Meanwhile, it hinders the optimization
of deep CNN. It can be seen from the experimental results
that an accurate and efficient anomaly detection algorithm is
crucial for the implicit regularization training process.

In the Appendix, we show some image samples with high
anomalous degrees in five datasets to observe the property
of sample distribution and the difference between implicit
regularization training process and general training process.

D. INFLUENCE OF DIFFERENT INITIALIZATION
Mishkin andMatas [18] considered that a proper initialization
strategy can bring the same regularization effect; it can avoid
the network converging to the poor local extreme and achieve
a good generalization ability. In this part, we compare the con-
vergence and generalization ability of the deep CNN under
different initialization methods and analyze the influence
of different initialization on implicit regularization training
process.

Orthogonal initialization makes the weight matrix orthog-
onal to each other by using singular value decomposition.
Layer-sequential unit-variance (LSUV) initialization [18]
consists of two steps. It pre-initializes weights of each con-
volution layer with orthonormal matrices first and then nor-
malizes the variance of the output of each layer to 1. The
initialization method based on Gaussian function sets the
weight matrix to Gaussian filter. Xavier Initialization [65]
further makes the variance of input and output consistent. The
mean value is 0, and the standard deviation is generally set to

stddev =

√
2

m+ q
(26)

where m and q are the number of inputs and outputs, respec-
tively. MSRA initialization [7] is a variant of the Xavier, and
the standard deviation is generally set to

stddev =

√
2
m

(27)

The main idea of Sparse initialization is to initialize each
layer exactly with k non-zero weights, which makes the total
number of neurons in this layer independent of the number
of inputs. Hints [52] is the default initialization of the FitNet
structure, and it is also the default initialization method in this
paper.

We conduct two sets of experiments on MNIST,
CIFAR10 and CIFAR100 datasets. In the first group of exper-
iments, all the networks are trained by traditional training
methods. In the second group of experiments, we train all the
different initialized networks by using the two-stage training
method. The final classification results of different initialized
networks are shown in Table 7. Compare the results of
three datasets under two training methods, the classification
accuracy of the two-stage trainingmethod is higher than those
of the general training method under almost all initialization.
Comparing the results of all initialization methods under
every dataset, an interesting phenomenon is that the classi-
fication accuracy of networks with different initialization are
very close after two-stage training process. The difference
between the classification accuracy of different initialization
methods on MNIST is not more than 0.1%, and the dif-
ference between the classification results of CIFAR10 and
CIFAR100 is not more than 1%. Empirically, we think
that the implicit regularization training process based on
anomaly detection changes the sample distribution in high-
dimensional space and the form of loss function; different
initializationmethods eventually converge to the approximate
local optimum.

The convergence curves of the implicit regularization train-
ing process of three datasets under different initialization
conditions are shown in Fig. 8. It can be seen that the clas-
sification error rates of training set in the final convergence
of different initialized networks are very close; the dominant
difference is the convergence speed. LSUV has the fastest
convergence rate, which is about 8 epochs, 12 epochs and
11 epochs ahead of orthogonal initialization on MNIST,
CIFAR10 and CIFAR100, respectively. Gaussian kernel ini-
tialization is generally very slow on three datasets, and there
are almost no differences in convergence rate betweenMSRA
initialization and Hints initialization. If the training efficiency
is not considered, the classification results of deep CNNs
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FIGURE 8. Convergence curves of each initialized network on MNIST, CIFAR10 and CIFAR100.

FIGURE 9. Relationship between the number of convolution kernels per layer and the classification accuracy of FitNet1.

based on the two-stage training method are almost unaffected
by the initialization, and of course, some extreme initializa-
tion conditions are excluded.

E. CHALLENGING THE IMPLICIT REGULARIZATION
HYPOTHESIS
Aprominent characteristic of regularizer [66] is that the effec-
tiveness of regularization increases as the network capacity
(e.g., the number of convolution kernels and hidden nodes)
increases, effectively converting the restriction on the net-
work complexity to another. So we explore the relationship
between the number of convolution kernels of each layer
and the generalization performance of deep CNN under two
training methods. The hypothesis that sample punishment

acts as an implicit regularizer would suggest that we could
see an increasing trend of the classification accuracy on the
testing set as the number of convolution kernels of each layer
is increased.

We do extensive systematic experiments on the digital
image dataset and the natural image dataset to verify the
hypothesis. The relationships between the number of con-
volution kernels per layer and the classification accuracy
of MNIST and CIFAR10 are shown in Fig. 9 and Fig. 10,
respectively. With the increase of the number of convolution
kernels per layer, the generalization error of the network
is gradually reduced. When the number of filters exceeds
a threshold, the generalization error of the network begins
to increase. There are individual oscillations throughout the
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FIGURE 10. Relationship between the number of convolution kernels per layer and the classification accuracy of FitNet4.

process (e.g., FitNet4-layer10 and FitNet4-layer15), which
we think that they may be related to the order of samples
entering the network. Compared with the implicit regulariza-
tion trainingmethod, the classification accuracy of deep CNN
under general training method drops earlier. The experimen-
tal results re-verify our implicit regularization hypothesis.
As the number of convolution kernels per layer increases,
the generalization ability of FitNet4 increases more than that
of FitNet1. Small networks have a limited capacity already
so that further restricting (or introducing an additional bias)
can be harmful to generalization. Such a result seems incom-
patible with a pure optimization effect. This is also a more
systematic result we observed: the two-stage training process
is more helpful for deep CNN (like FitNet4), but it is easy to
cause damage to the shallow network (like FitNet1).

F. HYPER-PARAMETERS SENSITIVITY
In order to test the practicality of the algorithm, we observe
the influence of hyper-parameters on the classification abil-
ity. The two-stage training process includes three additional
hyper-parameters that need to be artificially set: the number
of neighbors k in the anomaly detection process, the weight β
in regularization factor, and the threshold U . The classifica-
tion results of six datasets under different hyper-parameters
are shown in Fig.11, Fig.12 and Fig.13.

The classification accuracy of six datasets under different
k is shown in Fig. 11. It can be seen that the difference
in the classification accuracy of different k is not obvious.
Especially in the ILSVRC2012, the classification accuracy
is basically unrelated to the choice of k , and it oscillates
with the change of k . In CIFAR10 and CIFAR100, the clas-
sification accuracy increases as the value of k increases and

eventually tends to be stable. In MNIST, USPS and SVHN,
the extremely small and excessively large value of k lead to
a decline in classification accuracy. Overall, the fluctuation
of the classification accuracy is not significant. The results
show that the algorithm is robust to the choice of hyper-
parameter k , and the classification performance of the model
does not depend too much on the value of k . Moreover,
we observed that in MNIST, SVHN, USPS, CIFAR10 and
CIFAR100, the network achieved the highest classification
accuracy at k = 10, 15, 10 (or 15), 20 and 90, respectively.
It seems that the appropriate value of k is related to the
number of dataset categories, which can serve as a guide to
the choice of hyper-parameters.

The classification accuracy of six datasets under different
β is shown in Fig. 12. β is the weight of regularization
factor, which is used to manually adjust the regularization
intensity. It can be seen that at the beginning, with the
increase of β, the classification accuracy increases gradually.
But a too large β leads to an under-fitting problem. Com-
pared with CIFAR10 and CIFAR100, the network trained on
ILSVRC2012 is more robust and the classification accuracy
is almost unaffected by implicit regularization due to themass
data (even when β is increased from 8 to 13, the classification
accuracy is reduced by about 0.2%).

The classification accuracy of six datasets under different
U is shown in Fig. 13. U represents the outlier threshold and
is responsible for controlling the number of punished sam-
ples. The generalization performance of deep CNN is not sen-
sitive to the value ofU , which is related to the property of the
regularization factor (introduced in section 3). An appropriate
U can improve the generalization ability of the network, too
large or too small values do not have a terrible effect. A large
U makes few samples punished, and a small U makes most
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FIGURE 11. Relationship between the classification accuracy and the neighbour k .

FIGURE 12. Relationship between the classification accuracy and the weight β.

of the samples punished with a minimal regularization factor
(close to 0). However, a small U (0.1 ≤ U ≤ 0.4) means that
there are a large number of samples are punished, which influ-
ences the network optimization. Experiments show that the
network has an excellent generalization performance when
U belongs to (0.4, 0.8).

In this section, experiments show that these three extra
hyper-parameters, unlike the learning rate, have little

influence on the optimization process and classification abil-
ity of deep CNN. And experiments also provide some guid-
ance for the choice of three hyper-parameters.

G. VISUALIZATION ANALYSIS
In order to observe the influence of implicit regularization on
decision boundary, we build a two-dimensional toy dataset
Dtoy = {(xn, yn)}171n=1 containing three categories to observe
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FIGURE 13. Relationship between the classification accuracy and the threshold U .

the change of decision boundary. The input xn = (xn1, xn2)
is the coordinate of each point, in which xn1, xn2 ∈ (0, 600).
Then we use the general training method and the two-stage
training method to train a small neural network separately,
and draw the decision area of the trained network model,
as shown in Fig. 14. In the coordinate system, ◦, + and
∗ represent the respective samples of the three categories
in the toy dataset. The red, green and blue areas represent
decision areas of the three types of samples respectively.
Fig. 14a shows the classification result of the model obtained
by general training method. Fig. 14b illustrates the anomaly
detection results. We use the circumcircle of each sample
reflects the anomalous degree. The larger the circle area is,
the higher the anomalous degree will be. The Fig. (c), Fig. (d),
Fig. (e) and Fig. (f) are the classification results of the network
model based on implicit regularization training, in which
β = 4, 5, 6, and 7. Comparing the decision boundaries
of (a), (c), (d), (e) and (f), it can be seen that the two-stage
training method plays a regularized role in the convergence
of the model and can prevent the network from overfitting
to outliers. As β increases, the regularization effect becomes
stronger and the decision boundary becomes more smooth
and natural, which is consistent with human cognition.

V. DISCUSSIONS
A. DIFFERENCE FROM L2-REGULARIZATION
The l2-regularization is equivalent to weight decay in deep
learning, which is an effective regularization method. From
the learning theory perspective, it reduces the network over-
fitting by constraining model complexity. From the optimiza-
tion or numerical calculation perspective, l2-norm helps to

deal with the inversion problem of ill-conditioned matrix.
However, as the number of data increases, the effect of
standard l2-regularization diminishes. It is also a regular-
ization way at the loss function level. For the dataset
D = {(xn, yn)}Nn=1, the loss function of network with
l2-regularization is updated as

l†n = ln +
λ

2
||ω||22 (28)

where λ is the regularization factor that determines the regu-
larization intensity. The implicit regularization method based
on anomaly detection updates the loss function to

l†n = (1− ηn)ln = ln − ηnln (29)

Both of these two methods regularize the network at
the loss layer, but the regularization objects are different.
The l2-regularization aims at the network structure, while
implicit regularization process aims at training samples. From
the optimization perspective, unlike the damping effect of
l2-regularization, our proposed method has an additional
momentum.

B. INTERPRETATION AS DATA AUGMENTATION
The real goal of parameter updating during training process
is to minimize the expected loss, but in fact, we just update
the parameters with a minimization of the empirical loss
(the average loss for all training samples). If the sample
distribution of training set is not reasonable, the empirical
loss and expected loss are quite different. The description
of the probability space may be incomplete due to lack of
samples, so it is easy to lead to overfitting in the training set.
The expansion of training set can help the sample distribution
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FIGURE 14. The decision areas of neural network on the toy datasets. (a) shows the network model obtained by traditional training method.
(b) shows the anomaly detection results. (c), (d), (e) and (f) show the network models obtained by implicit regularization training method with
different β.

to approximate the real distribution, and it is a manual way
to guide the establishment of decision boundary; this is an
effective but unnatural way.

Our implicit regularization training process can also be
interpreted as a method of data augmentation. Consider a
sample (x, y, µ), the log-likelihood loss function in the pre-
training process is

l(x, y) = −
C∑
k=1

yk log[fk (x)] (30)

where f (x) is the output of deep CNN. And the updated loss
function in the implicit regularization training process is

l†(x, y) = (1− η)l(x, y)

= −

C∑
k=1

yk log[fk (x)](1−η)

= −

C∑
k=1

yk log[̃fk (x)] (31)

where f̃k (x) = fk (x)(1−η) can be seen as a noisy component.
The noisy output vector is f̃ (x) = [f1(x), f̃2(x), . . . , f̃C (x)]T .
The noise intensity is related to the characteristics of sample
and the sample distribution of training set. In fact, the noisy

output f̃ (x) can be projected back into the sample space by
minimizing the squared error ||̃f (x) − f (̃x)||22 [67], in which
x̃ represent the augmented sample. In other words, the anoma-
lous sample (x, y, µ) can be seen as the augmented sample
(̃x, y) with noise disturbance.

C. INTERPRETATION AS MODEL ENSEMBLE
In this part, we show that the implicit regularization
process can be explained as implicit model ensemble. Hin-
ton et al. [68] reports that the combination of deep CNNs
trained on different noisy datasets is helpful to improve
the classification performance. However, it is prohibitively
expensive to train each neural network alone, considering that
it requires a large number of noisy datasets.

Consider a dataset after an anomaly detection D =

{(xn, yn, µn)}Nn=1, which is equivalent to a noisy dataset
D̃ = {(̃xn, yn)}Nn=1. Each iteration in the implicit regular-
ization training process is similar to the network training on
different noisy set D̃t , which is a mini-batch of the noisy
dataset D̃. Therefore, the implicit regularization training pro-
cess can be viewed as training many networks that have sub-
stantial sharing weights but different training samples. In fact,
the dropout can be explained as an efficient way to approxi-
mately combine numerous CNNs with different architecture

VOLUME 6, 2018 15863



Q. Zheng et al.: Improvement of Generalization Ability of Deep CNN via Implicit Regularization in Two-Stage Training Process

that trained on the same data, while the implicit regularization
training process can be interpreted as an efficient method
to approximately combine a large number of identical CNN
structures but trained on different noisy datasets.

D. IMPACT ON THE OPTIMIZATION PROCESS
In this part, we analyze and illustrate the impact of implicit
regularization on the network optimization process. The
updated loss function l† : RC

→ R is continuously differen-
tiable, so the gradient of l†, i.e., ∇l† : RC

→ RC is Lipschitz
continuous with Lipschitz constant L > 0, namely,

||∇l†(ω)−∇l†(ω)||2 ≤ L||ω − ω||2 for all {ω,ω} ⊂ RC

(32)

Then we can prove

l†(ω) = l†(ω)+
∫ 1

0

∂l†(ω + t(ω − ω))
∂t

dt

= l†(ω)+
∫ 1

0
∇l†(ω + t(ω − ω))T (ω − ω)dt

= l†(ω)+∇l†(ω)T (ω − ω)

+

∫ 1

0
[∇l†(ω + t(ω − ω))−∇l†(ω)]T (ω − ω)dt

≤ l†(ω)+∇l†(ω)T (ω − ω)

+

∫ 1

0
L||t(ω − ω)||2||ω − ω||2dt

= l†(ω)+∇l†(ω)T (ω − ω)+
1
2
L||ω − ω||22 (33)

Then,

l†(ωt+1)− l†(ωt )

≤ ∇l†(ωt )T (ωt+1 − ωt )+
1
2
L||ωt+1 − ωt ||22

= −αt (1− ψ)ψ t [
1
|Dt |

∑
j∈Dt

(1− ηj)]g(ωt )
t∑
i=1

ψ−ig(ωi)

+
1
2
α2t L(1− ψ)

2ψ2t [
1
|Dt |

∑
j∈Dt

(1− ηj)]2[
t∑
i=1

ψ−ig(ωi)]2

≈ −αt (1− ψ)ψ t [
1
|Dt |

∑
j∈Dt

(1− ηj)]g(ωt )
t∑
i=1

ψ−ig(ωi)

(34)

where

g(ωt ) =
1
|Dt |

∑
(x,y)∈Dt

∇ωt [l(x, y)] (35)

Finally, we can get

EDt [l
†(ωt+1)]− EDt [l

†(ωt )]

≤ EDt [∇l
†(ωt )T (ωt+1 − ωt )]+ EDt (

1
2
L||ωt+1 − ωt ||22)

≈ −αt (1− ψ)ψ tEDt [
1
|Dt |

∑
j∈Dt

(1− ηj)]

·EDt [g(ωt )
t∑
i=1

ψ−ig(ωi)]

=

−αtEDt [
1
|Dt |

∑
j∈Dt

(1− ηj)]EDt [g
2(ωt )], if ψ = 0

0 (V0 = 0), ifψ = 1
= Boundaryt (36)

where Boundaryt is the upper bound of the decrease of loss
function after t th iteration. This shows that the optimization
process with momentum is continues in a Non-Markovian
manner in the sense that ωt+1 is a random variable related to
all ωi in the past t iterations. While the optimization process
without momentum (i.e., ψ = 0) is continues in a Markovian
manner in the sense that ωt+1 depends only on the iterate
ωt and not on any past iterates. The expected decrease of
loss function yielded by the t th iteration is bounded above by
a deterministic quantity involving: the expected directional
derivative of l(x, y) at ω in the past t iterations, the learning
rate α, the momentum ψ , and the regularization factor η. The
regularization factor has a linear influence on the optimiza-
tion of deep CNN. Similarly,

EDt−1[l
†(ωt )]− EDt−1 [l

†(ωt−1)]

≤ EDt−1 [∇l
†(ωt−1)T (ωt − ωt−1)]

+EDt−1 (
1
2
L||ωt − ωt−1||22)

≈ −αt−1(1− ψ)ψ t−1EDt−1[
1
|Dt−1|

∑
j∈Dt−1

(1− ηj)]

·EDt−1 [g(ωt−1)
t−1∑
i=1

ψ−ig(ωi)]

= Boundaryt−1 (37)

Then we can prove

Boundaryt
Boundaryt−1

=

ψ t
·EDt [

1
|Dt |

∑
j∈Dt

(1−ηj)]·EDt [g(ωt )
t∑
i=1
ψ−ig(ωi)]

ψ t−1·EDt−1[
1
|Dt−1|

∑
j∈Dt−1

(1−ηj)]·EDt−1[g(ωt−1)
t−1∑
i=1
ψ−ig(ωi)]

= ψ ·
αt

αt−1
·

EDt [g(ωt )
t∑
i=1
ψ−ig(ωi)]

EDt−1 [g(ωt−1)
t−1∑
i=1
ψ−ig(ωi)]

=

EDt [g(ωt )
t∑
i=1
ψ1−ig(ωi)]

EDt−1 [g(ωt−1)
t−1∑
i=1
ψ−ig(ωi)]

, if αt−1 = αt (38)

This illustrates that the changing rate of the upper bound
of decreasing loss has nothing to do with the regularization
factor. In other words, the implicit regularization factor has
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FIGURE 15. Sample images with high anomalous degrees in MNIST and SVHN.
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FIGURE 16. Sample images with high anomalous degrees in USPS and CIFAR10/100.
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no influence on the change of convergence rate. Moreover,
the intermediate process of equation 38 also explains why a
decreasing learning rate in the iterations can help with the
network optimization.

VI. CONCLUSION
In this paper, we present the two-stage training method,
a novel algorithm that first regularizes deep CNNs from
the data decay perspective. The two-stage training method
includes three parts: pre-training stage, anomaly detection
and implicit regularization training stage. It first completes
the anomaly detection based on the pre-training model and
then sets a regularization factor for the implicit regularization
training process. To verify the algorithm, we do extensive
experiments to show that the algorithm improves the gen-
eralization ability of deep CNN by optimizing the feature
boundary, and is robust to the choice of hyper-parameters.
Moreover, the classification ability of the convergent net-
work model is hardly affected by initialization. The clas-
sification results show that our method achieves the best
performances in MNIST, SVHN and USPS, CIFAR10/100.
Even in ILSVRC2012, we also achieve a fairly competitive
performance. And the two-stage training method consistently
outperforms other regularization methods on deep CNNs,
such as weight decay, SoftLabel and DisturbLabel. In theory,
the two-stage training method based on more advanced net-
workmodels can perform better classification results. Andwe
believe that the implicit regularization approach at the data
level provides a new way for AI learning, which is applicable
to all machine learning algorithms (e.g., deep forests and
support vector machine).

At the same time, the experience points out a few lessons
and future directions, which we summarize as follows:

• Density-based anomaly detection algorithm is not reli-
able in high dimensional space due to the sparse sample
distribution and the influence of noise.

• The two-stage training method is time-consuming. How
to integrate the two stages into an end-to-end pattern
remains to be studied.

• Whether the regularization method at the data level is
valid for other machine learning algorithms needs to be
verified.

These questions will be further explored in future research.

APPENDIX
In this appendix, we show some sample images with
high anomalous degrees in MNIST, SVHN, USPS, and
CIFAR10/100 datasets, as shown in Fig. 15 and Fig. 16.
In MNIST and USPS, most of the outliers have odd shapes,
which are very different from samples of the same category.
In SVHN, we even detected many mislabeled training sam-
ples, i.e., the samples in red borders. Their sample number
are 5739, 61494, 6292, 9303, 8120, 20091, 40130, 63554,
71383, 25491, 12807, 9328, 37661, 6291, 33793, 66859 in
sequence, whichmay be caused by the carelessness during the

crowdsourcing annotation process. In CIFAR10/100, most
anomalous samples are images with too small objects, lying
on similar and complex backgrounds. These outliers have
same characteristics that the object features are difficult to
extract and the sample distribution is unnatural.
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