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ABSTRACT Least mean squares (LMS) adaptive algorithms are attractive for distributed environment
parameter estimation problems in a smart city due to the benefits of cooperation, adaptation, and rapid
convergence. To obtain a reliable estimate of the network-wide parameter vector, local results can be further
fused by intermediate agents in a distributed incremental way. In this paper, we propose an intelligent variable
step size incremental LMS (VSS-ILMS) algorithm to solve the dilemma between fast convergence rate and
low mean-square deviation (MSD) in conventional incremental LMS (ILMS) algorithms. The main idea
behind our proposal is that the local step-size is adaptively updated byminimizing theMSD in every iteration,
where Tikhonov regularization and time-averaging estimation methods are adopted. A theoretical analysis
of proposed algorithm is presented in terms of mean square performance and mean step size in a closed form.
Simulation results show that VSS-ILMS algorithm outperforms the constant step size ILMS algorithm and
several classical variable step-size LMS algorithms. The derived theoretical results shows good agreement
with those based on simulated data. For a practical consideration, the proposed algorithm is also verified by
the model of target localization in sensor networks.

INDEX TERMS Smart city, distributed estimation, LMS adaptive algorithm, variable step-size.

I. INTRODUCTION
A typical application in smart cities is to sense and collect the
global environmental parameters such as local temperature,
humidity or PM2.5 over the observed area [1], [2]. Due to the
impact of the geographical position and ambient noise, how-
ever, it is inherently difficult for different agents in the net-
work to reach consensus on a unknown estimated parameter
vector [3]. It has become a problem that needs to be urgently
solved for improving the performance of the network. One
of the main challenges is that each agent access only local
data instead of the network-wide information due to the
restriction on the range of communication. In the traditional
centralized algorithms, the fusion agent performs a parameter
estimate task by collecting global observations from other
agents and broadcasts the result back to them. The centralized
fusion has the advantages of simple implementation and high-
performance because the global knowledge is available, but it
leads tomore communication cost and suffers from the failure

of fusion center due to the excessive concentration of data
processing.

As a better solution to achieving the data consistency,
distributed processing receives much attention due to the
benefits of cooperation and interaction between neighbor-
ing agents. In future, it may be a primary mode of data
acquisition, control, and information processing. By dis-
tributing a specific stochastic gradient method into different
mode of cooperation, two distributed estimation algorithms
referred to as incremental algorithm [4]–[7] and diffusion
algorithm [8], [9], have recently been proposed. In the diffu-
sion mode, each agent of the network share information with
its neighboring agents to estimate the unknown parameter by
implementing two phases: an adaptation stage in which the
estimate is updated by using a LMS-type replacement for
the second-order moments and a combination stage in which
the information from the neighbors is aggregated. According
the implementation order of the two stages, new versions
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of diffusion algorithm called as Adapt-then-Combine (ATC)
diffusion LMS algorithm and Combine-then-Adapt (CTA)
diffusion LMS algorithm are proposed in [8]. In the incre-
mental mode, the network is organized into a Hamiltonian
cycle, where each agent is visited only once in any iteration
such that local information from agent is only sent to one
of its immediate neighbor agents. Under such a cooperation
mode, at any time step the estimate of current agent can be
achieved based on the local measurements and the results
from previous agent on cycle path, such that the real time
information of the entire network can be passed to every
agent and used to obtain an accurate estimate. Several variants
of ILMS algorithm are proposed, for example, incremental
RLS (recursive least-squares) [10], incremental APA (affine
projection algorithm) [5] and incremental parallel projection
techniques [11].

In this work, we focus on the incremental strategy
based on the following two considerations. First, it is well-
known that ILMS algorithm can achieve the performance of
the centralized-like solution, which cannot be achieved by
diffusion-based algorithms. Although the diffusion strategies
by adopting the optimized combination rules can outperform
incremental strategies [12], they rely heavily on prior knowl-
edge of the noise statistics at the different agents. Second,
the incremental cooperation requires less communication
cost than centralized strategies and diffusion strategies as
well.

The single stand-alone LMS adaptive filters have been
widely studied by the researchers in the field of signal pro-
cessing. It is generally known that the step size plays a vital
role to improve the performance of standard LMS algorithms.
To solve the conflict of fast early convergence and low steady
state deviation, numerous variable step-size algorithms have
been proposed in [13]–[22]. Although they provide good per-
formances under various scenarios (e.g., traditional adaptive
filtering and acoustic echo cancellation), the main problem in
directly applying them on distributed estimation is that spa-
tial diversity is not being considered because of stand-alone
filters. In other words, the conventional LMS algorithms have
not been adequately allowed for distributed estimation in
the context of multi-agent networks. In this case, our vari-
able step-size ILMS algorithm is designed for incremental
adaptive networks, in which unknown parameter vector is
estimated in a distributed and cooperative way with improved
robustness against the variation of statistics information on
different agent.

The researches for ILMS algorithm are carried out from
different perspectives to improve its performances. In [23],
the estimated parameters are classified into three categories:
local interest, global interest to the whole network and com-
mon interest to a subset of agents. Thus, standard LMS algo-
rithm is implemented individually by three kinds of network
agents based on above classification. Since the obvious dif-
ference of observation quality between agents will result in
the performance degradation of ILMS algorithm, the step-
sizes are allotted on the base of the quality of measurement

information by solving a constrained optimization prob-
lem [24]. Thus, small step-sizes are allocated for agents
presenting high noise level and vice versa. However, a pre-
requisite for the optimum step-size assignment is that
observation noise variance for each agent is available.
Performance analysis of ILMS algorithm considering
noisy links and finite precision arithmetic are presented
in [25] and [26], respectively.

In this paper, we propose a new variable step size
ILMS algorithm which overcome the tradeoff between fast
convergence rate and low steady state error for constant step
size by tracking the network profile resulting from the statis-
tical variation of measurements and noise levels. An optimal
step size expression for ILMS algorithm is derived by
minimizing the MSD in every iteration. For practical
implementation, we estimate the unknown quantities in
derived expression by using time-averaging method. More-
over, we analyze the mean square performance of the
proposed algorithm and confirm the theoretical results by
simulations.

The rest of this paper is organized as follows. In Section II,
we introduce distributed estimation problem for incremen-
tal network and LMS solution. In Section III, we derive
the optimal variable step size for ILMS and propose the
VSS-ILMS algorithm in detail for practical usage.
In Section IV, we provide the theoretical analysis of the mean
square performance and steady state step size. Simulation
results are presented in Section V. We conclude this paper
and points out future work in Section VI.
Notations: Let us follow the idiomatic symbol adopted

in [4], [6]. That is, boldface letters and normal font are used to
refer to random quantities and nonrandom quantities, respec-
tively. Matrices and vectors are denoted by Capital letters
and small letters, respectively. E(·) represents mathematical
expectation. The complex-conjugate transposition for matri-
ces are denoted with the notation (·)∗. The Euclidean norm
of a vector and the trace of a matrix are denoted by ‖ · ‖ and
Tr(·), respectively.

II. DISTRIBUTED PARAMETER ESTIMATION AND
INCREMENTAL LMS ALGORITHM
Consider a distributed network with N agents deployed in
a sensing area of smart city via a predefined topology.
At each time instant i, each agent k obtains a time realization
{dk (i), uk,i} of zero-mean spatial data {dk ,uk}, where dk is a
noisy measurement and uk is a 1 × M row regressor vector.
The time realization {dk (i), uk,i} follow the customary model
given by:

dk (i) = uk,iwo + vk (i), (1)

where vk (i) represents background noise which is zero mean
with variance σ 2

v,k and independent of regression data spa-
tially and temporally, and wo is the estimated vector parame-
ter with sizeM × 1. Then, a global cost function is described
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FIGURE 1. An example for centralized and distributed incremental
cooperative networks.

as follow:

Jglob(w) =
N∑
k=1

Jk (w), (2)

where Jk (w) = E|dk − ukw|2 denotes the mean-square error
for individual agent k .

Thus, the original problem is converted to the following
optimization problem

argmin
w

N∑
k=1

E|dk − ukw|2. (3)

The optimal solution wo of (3) is given in [27] by

wo = (
N∑
k=1

Ru,k )−1(
N∑
k=1

Rdu,k ), (4)

where Ru,k = Eu∗kuk and Rdu,k = Edku∗k . It is known
that the local data {dk (i), uk,i} from any agent in the network
can be used to produce a local instantaneous approximation
of wo since the exact second-order moments {Ru,k ,Rdu,k} are
unavailable.

In the LMS adaptive algorithms based on the traditional
iterative steepest-descent method, the update equation for
determining the solution wo is given by [6], [7]

wi = wi−1 + µ
N∑
k=1

u∗k,i(dk (i)− uk,iwi−1), (5)

where wi is an estimate of wo at the time i, a positive step-
size parameter µ is used to guarantee the convergence of
LMS algorithm. The centralized or distributed scheme can
be considered in the implementation of Equation (5).

In a centralized scheme, a fusion center collects the data
{dk (i), uk,i} of all agents at time i to run iteration (5) as is
implied by the summation notation in (5). The updated esti-
matewi is obtained by the fusion center and sent back to every
agent by using broadcast method. In a distributed manner,
on the other hand, the summation notation is implemented
in a cooperation manner by passing the data between agents.
Especially in incremental mode, the estimate of current agent
is passed to its only immediate neighboring agent when
the network is organized into a Hamiltonian cycle, where
each agent is visited exactly once per iteration as shown
in Figure 1. This implementation leads to the known

distributed ILMS algorithm. Then, a set of coupled N equal-
ities implemented on N agents can be obtained as

ψ
(i)
1 = ψ

(i−1)
N + µ1u∗1,i(d1(i)− u1,iψ

(i−1)
N ),

...

ψ
(i)
k = ψ

(i)
k−1 + µku

∗
k,i(dk (i)− uk,iψ

(i)
k−1),

...

ψ
(i)
N = ψ

(i)
N−1 + µNu

∗
N ,i(dN (i)− uN ,iψ

(i)
N−1), (6)

where ψ (i)
k is a local estimate of wo for agent k at time i, µk is

the step size of agent k . After all agents on the cycle are visited
once, the local estimate ψ (i)

N of last agent N is regarded as the
global estimate wi at iteration i and the input of first agent for
the next iteration i+ 1.
Although the unknown vectorwo can be estimated by using

above two schemes, it is a well-known fact that ILMS adopts
the cooperative scheme since each individual agent shares the
results with its predefined neighbor. In the centralized algo-
rithm, only temporal dimension within an individual agent
indicated by variable i is used to obtain the local estimate.
Instead, ILMS exploits the spatio-temporal diversity as is
indicated by the variables i and k in (6).

Moreover, taking a simple one-hop network with N agents
as an example, a total of NM communicated scalars is
required for ILMS per iteration while the total number of
communications for traditional fusion-based implementa-
tions is 2NM + N . Thus, ILMS is noticeably more advan-
tageous since it requires less communication cost. It is useful
for reducing energy consumption to prolong the network
lifetime, particularly those with limited energy supply.

III. PROPOSED VSS-ILMS ALGORITHM
A. OPTIMAL VARIABLE STEP SIZE FOR ILMS
It is expected that LMS-type adaptive algorithms can obtain
rapid early convergence and low mean squares error at steady
state. In this senses, the step size has a significant impact
on both sides. In this section we tried to derive optimum
step-size µok (i) for every agent k per iteration i based on
incremental adaptive network, such that the expecting effect
can be attained.

A good indicator for measuring parameter estimation per-
formance is the mean-square deviation (MSD) which for each
agent k is defined as follows

MSDk , E‖ψ̃ (i)
k ‖

2, (7)

where

ψ̃
(i)
k , wo − ψ (i)

k (8)

is the weight error vector at time i and used to measure the
deviation between the estimate of agent k at time i and the
optimal solution wo.

In order to obtain the minimumMSD for agent k , the opti-
mal step size µok (i) can be regarded as a solution to the
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following minimization problem in a form of Tikhonov
regularization

min
µk (i)
{E‖ψ̃ (i)

k ‖
2
+ δµ2

k (i)}, (9)

where δ is a nonnegative regularization parameter. It is known
that above minimization problem will be much better condi-
tioned than the original leastMSD problemwhen δ has a good
choice [28].

Let the output error ek (i) for agent k at time i be denoted
by

ek (i) = dk (i)− uk,iψ
(i)
k−1. (10)

Substituting (10) into (6), we get

ψ
(i)
k = ψ

(i)
k−1 + µk (i)u

∗
k,iek (i), (11)

where µk (i) is the variable step size for agent k at time i.
Substituting (11) into (8), we get

ψ̃
(i)
k = ψ̃

(i)
k−1 − µk (i)u

∗
k,iek (i). (12)

Squaring both sides of (12) and taking expectations, we get

E‖ψ̃ (i)
k ‖

2
= E‖ψ̃ (i)

k−1‖
2
− 2µk (i)E[uk,iψ̃

(i)
k−1ek (i)]

+µ2
k (i)E[uk,iu

∗
k,ie

2
k (i)] (13)

Based on (9), we takes the derivative of the right side of
(13) and Tikhonov regularization cost with respect to µk (i),
the optimal variable step size is obtained in the form

µok (i) =
E[uk,iψ̃

(i)
k−1ek (i)]

E[uk,iu∗k,ie
2
k (i)]+ δ

. (14)

Combining (1) and (10), we get

ek (i) = uk,iψ̃
(i)
k−1 + vk (i). (15)

Considering the noise vk (i) which is zero mean and inde-
pendent of the input regressors, (14) becomes

µok (i) =
E‖uk,iψ̃

(i)
k−1‖

2

E‖uk,iek (i)‖2 + δ
. (16)

It can be seen that µok (i) can be obtained theoretically
from (16), however, the major obstacle is that the weight error
vector ψ̃ (i)

k is not available during the iterations, since wo is
unknown.

B. PROPOSED VSS-ILMS ALGORITHM
We notice from (15) that

uk,iψ̃
(i)
k−1 = ek (i)− vk (i), (17)

and consider the independence of the background noise vk (i).
Thus, (16) can be rewritten by

µok (i) =
σ 2
ek,i − σ

2
v,k

E‖uk,iek (i)‖2 + δ
, (18)

where σ 2
ek,i = E‖ek,i‖2 denotes the power of error.

It can be seen from (18) that, at the beginning, σ 2
ek,i is

considerably larger than σ 2
v,k . In this situation, a large step size

is used to quicken the convergence speed due to the excessive
system mismatch. Both σ 2

ek,i and µ
o
k (i) become smaller as

the algorithm starts to converge. When in the steady-state,
σ 2
ek,∞ ≈ σ

2
v,k leads to µ

o
k (∞) ≈ 0. Our algorithm can effec-

tively adjust step-size tomatch actual system behaviour.More
importantly, this algorithm obtains the minimum MSD per
iteration, resulting in the better performance compared to
other variable step size algorithms.
In practice, we adopt time averaging method to estimate

error variance and noise variance. First, the estimation σ̂ 2
ek,i

and σ̂ 2
vk,i of error variance σ

2
ek,i and noise variance σ

2
v,k can be

obtained by time averaging as below [19], [29]:

σ̂ 2
ek,i = α1σ̂

2
ek,i−1 + (1− α1)e2k (i) (19)

with a smoothing factor α1(0 < α1 < 1), and

σ̂ 2
vk,i = σ̂

2
ek,i −

1
σ̂ 2
uk,i

r̂u,e(i)∗r̂u,e(i), (20)

where σ̂ 2
uk,i and r̂u,e(i) are the estimation of input power

and the cross-correlation between the input regressor uk,i
and the error ek (i). And they can be obtained in the same
manner

σ̂ 2
uk,i = α2σ̂

2
uk,i−1 + (1− α2)uk,iu∗k,i, (21)

r̂u,e(i) = α3r̂u,e(i− 1)+ (1− α3)uk,iek (i), (22)

where 0 < α2, α3 < 1.
Using ‖r̂u,e(i)‖2, σ̂ 2

ek,i and σ̂
2
vk,i instead of E‖uk,iek (i)‖2,

σ 2
ek,i and σ

2
vk,i in (18), the proposed variable step-size µk (i)

for ILMS algorithm becomes

µk (i) =
σ̂ 2
ek,i − σ̂

2
vk,i

‖r̂u,e(i)‖2 + δ
. (23)

where σ̂ 2
ek,i , σ̂

2
vk,i and r̂u,e(i) are given by (19)-(22). Our analy-

sis in following section shows that only α3 has a great effect
on the steady state performance of the proposed algorithm
because steady state step-size is independent of α1 and α2.
Thus, a single smoothing factor α can be used to replace α1,
α2 and α3, and set to 1 − 1

kM where the value of k ranges
from 2-6.

C. CONVERGENCE OF MEAN WEIGHT VECTOR
To guarantee algorithm stability, another important consider-
ation is in determining the upper bound of µk (i), which will
be considered from the perspective of the convergence of the
mean weight vector. For tractable analysis, we first introduce
the following assumption:
Assumption 1: Step-sizes are independent of input regres-

sors uk,i, error component ek,i.
This assumption cannot really hold for the proposed algo-

rithm as we can see in (23) that the values of step-size per
iteration are affected by the instantaneous input regressors,
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error and noise. However, in steady state, step size µk (i) will
be very close to its mean value. By writing

E[µk (i)u∗k,iek (i)] = E[µk (i)]E[u∗k,iek (i)]

+E{[µk (i)− E[µk (i)]]u∗k,iek (i)}, (24)

it can be seen that the second term on the right-hand side
of (24) is much smaller than the first. Thus, we think the
following equation is approximately true.

E[µk (i)u∗k,iek (i)] = E[µk (i)]E[u∗k,iek (i)]. (25)

By (25), Assumption 1 is considered valid. Also, such an
assumption is adopted commonly in adaptive filtering [13]
and distributed estimation [29], in which the derived theoret-
ical results match empirical results well.

Taking expectations on both sides of (12) and using
Assumption 1, we obtain

E[ψ̃ (i)
k ] = E[ψ̃ (i)

k−1]− E[µk (i)]E[u
∗
k,iek (i)]

= E[ψ̃ (i)
k−1]− E[µk (i)]E[u

∗
k,i(uk,iψ̃

(i)
k−1 + vk (i))]

= E[ψ̃ (i)
k−1]− E[µk (i)]Ru,kE[ψ̃

(i)
k−1]

= (I − E[µk (i)]Ru,k )E[ψ̃
(i)
k−1]. (26)

The mean weight vector is convergent if and only if

∞∏
i=1

N∏
k=1

(I − E[µk (i)]Ru,k )→ 0. (27)

Under (27), the change of weights between two neigh-
bouring agents become small, thus ensuring the convergence
of E[ψ (i)

k ] to wo.
A sufficient condition for (27) to hold is

E[µk (i)] <
2

λmax(Ru,k )
, (28)

where λmax(Ru,k ) is the maximum eigenvalue of the covari-
ance matrix Ru,k . This result is consistent with findings
reported in the constant step size LMS algorithm [13].

A stronger but simpler sufficient condition for satisfy-
ing (28) is

µk,max(i) <
2

λmax(Ru,k )
, (29)

where µk,max(i) is the upper bound for the step-size for
agent k at time i.
Furthermore, for practical usage, we use instanta-

neous approximations to replace the actual second-order
moments Ru,k . As a result, µk,max(i) is set to

µk,max(i) =
2
σ̂ 2
uk,i

. (30)

Finally, the proposed VSS-ILMS algorithm is summarized
in Algorithm 1.

It can be seen from Algorithm 1 that each agent only needs
to communicate with its immediate neighbor agent, and the
total number of communications per iteration for each agent
is 2M (i.e., the size of received ψ (i)

k−1 and transmitted ψ (i)
k ).

Algorithm 1Variable Step Size Incremental LMS Algorithm

1: Start with w0 = ψ
(0)
N = 0 and µN (0) = 0

2: for every time i ≥ 1 do
3: for agents k = 1 to N do
4: if k = 1 then
5: ψ

(i)
k−1 = ψ

(i−1)
N

6: end if
7: receive ψ (i)

k−1 from agent k − 1
8: ek (i) = dk (i)− uk,iψ

(i)
k−1

9: σ̂ 2
ek,i = ασ̂

2
ek,i−1 + (1− α)e2k,i

10: σ̂ 2
uk,i = ασ̂

2
uk,i−1 + (1− α)uk,iu∗k,i

11: r̂u,e(i) = αr̂u,e(i− 1)+ (1− α)uk,iek (i)
12: σ̂ 2

vk,i = σ̂
2
ek,i −

1
σ̂ 2uk,i

r̂u,e(i)∗r̂u,e(i)

13: step size update µk (i) = min{
σ̂ 2ek,i
−σ̂ 2vk,i

‖r̂u,e(i)‖2+δ
, 2
σ̂ 2uk,i
}

14: weight update ψ (i)
k = ψ

(i)
k−1 + µk (i)u

∗
k,iek (i)

15: end for
16: wi = ψ

(i)
N

17: send ψ (i)
N to agent 1

18: end for

In other word, there are no growing communication cost com-
pared with the traditional algorithm. The additional require-
ment for our algorithm is computational cost for variable step
size. It is known that the energy consumed on communi-
cation is far more than that on computing for a cyber sys-
tem typically deployed with sensing, computing and wireless
communicating [30]. Various methods [31]–[33] have been
proposed to sacrifices reasonable amount of computational
cost for a longer network lifetime and the improvement of
performance. Therefore, our algorithm is acceptable in terms
of cost consumption.

Moreover, determining a Hamiltonian path in a connected
network is known to be NP-complete [34], [35]. However,
this problem can be solved by constructing an approximate
Hamiltonian path in a distributed way. Several distributed
methods have been proposed in [36] and [37] and perform
very well in practice. The idea behind them is that every agent
makes local decisions based on a heuristic approach, which
might cause a defect that not all agents are included in the
final path. This situation does not influence the performance
of algorithm since a typical sensor network is deployed with
much greater density than is needed [38], [39], mainly to sat-
isfy full network coverage requirements [40] and compensate
for the impact of agents failure [41]. Here, we assume that
the network can be organized in a Hamiltonian cycle in this
paper.

IV. STEADY-STATE PERFORMANCE ANALYSIS
In order to pursue the steady-state performance analysis for
the proposed VSS-ILMS LMS algorithm, we first consider
the following additional assumptions, which are commonly
done in distributed estimation algorithms [42], [43]:

VOLUME 6, 2018 23329



M. Wu et al.: Intelligent Adaptive Algorithm for Environment Parameter Estimation

Assumption 2: uk,i is independent of ul,i for k 6= l.
Assumption 3: uk,i is independent of uk,j for i 6= j.
Above assumptions suggest that all regressors are spatially

and temporally independent. With these the assumptions,
the performance analysis can be simplified without loss of
generality.

A. STEADY-STATE MSD AND EMSE
In this subsection, we are interested in evaluating key perfor-
mance indicators like the MSD, the MSE, the excess mean-
square error (EMSE) in steady-state for every agent k , which
are defined as follows:

ηk = E‖ψ̃ (∞)
k−1‖

2 (MSD), (31)

ζk = E‖uk,∞ψ̃
(∞)
k−1‖

2 (EMSE), (32)

ξk = E‖ek (∞)‖2 = E‖uk,∞ψ̃
(∞)
k−1 + vk,∞‖

2

= ζk + σ
2
v,k (MSE). (33)

The weighted norm notation ‖x‖26 , x∗6x is introduced
to obtain the expressions for these quantities, and 6 is a
Hermitian positive definite matrix that we are free to choose.
Under the assumed data conditions, we have

ηk = E‖ψ̃ (∞)
k−1‖

2
I , ζk = E‖ψ̃ (∞)

k−1‖
2
Ru,k . (34)

Therefore, the problems of steady state MSD and EMSE
are transformed to evaluate two weighted norms of ψ (∞)

k−1
in (34).

To do this, we take the squared weighted l2-norm of (12)
as follows:

‖ψ̃
(i)
k ‖

2
6 = ‖ψ̃

(i)
k−1 − µk (i)u

∗
k,iek (i)‖

2
6

= ‖ψ̃
(i)
k−1‖

2
6 − ψ̃

(i)∗
k−16µk (i)u

∗
k,iek (i)

− e∗k (i)uk,iµ
∗
k (i)6ψ̃

(i)
k−1

+ e∗k (i)uk,iµ
∗
k (i)6µk (i)u

∗
k,iek (i) (35)

Substituting (15) into (35) and taking the expectation of
both sides yields

E‖ψ̃ (i)
k ‖

2
6 = E‖ψ̃ (i)

k−1‖
2
6 − E[ψ̃

(i)∗
k−16µk (i)u

∗
k,iuk,iψ̃

(i)
k−1]

−E[ψ̃ (i)∗
k−1u

∗
k,iuk,iµ

∗
k (i)6ψ̃

(i)
k−1]

+E[ψ̃ (i)∗
k−1u

∗
k,iuk,iµ

∗
k (i)6µk (i)u

∗
k,iuk,iψ̃

(i)
k−1]

+E[v∗k (i)uk,iµ
∗
k (i)6µk (i)u

∗
k,ivk (i)]

= E‖ψ̃ (i)
k−1‖

2
6 − E‖ψ̃

(i)
k−1‖

2
6µk (i)u∗k,iuk,i

−E‖ψ̃ (i)
k−1‖

2
u∗k,iuk,iµ

∗
k (i)6

+E‖ψ̃ (i)
k−1‖

2
u∗k,iuk,iµ

∗
k (i)6µk (i)u

∗
k,iuk,i

+ σ 2
v,kE‖µk (i)u

∗
k,i‖

2
6 . (36)

Given ‖x‖2A + ‖x‖
2
B = ‖x‖

2
A+B, Equation (36) can be

rewritten as a comprehensive form

E‖ψ̃ (i)
k ‖

2
6 = E‖ψ̃ (i)

k−1‖
2
6
′ + σ

2
v,kE‖µk (i)u

∗
k,i‖

2
6, (37)

where

6
′

= 6 −6µk (i)u∗k,iuk,i − u
∗
k,iuk,iµ

∗
k (i)6

+‖µk (i)u∗k,i‖
2
6u
∗
k,iuk,i. (38)

On the basis of the assumed independence of the regression
data uk,i and step size µk (i), we have

E‖ψ̃ (i)
k−1‖

2
6
′ = E‖ψ̃ (i)

k−1‖
2
E6′

, (39)

so that (37) and (38) become

E‖ψ̃ (i)
k ‖

2
6 = E‖ψ̃ (i)

k−1‖
2
E6′
+ σ 2

v,kE‖µk (i)u
∗
k,i‖

2
6, (40)

where

E6
′

= 6 − E[µk (i)]E[6u∗k,iuk,i]− E[u
∗
k,iuk,i6]E[µ∗k (i)]

+E‖µk (i)u∗k,i‖
2
6u
∗
k,iuk,i. (41)

Recursion (40) is a spatial variance relation by which steady-
state performance measures of every agent can be evaluated.

In order to simplify the analysis, we assume that the regres-
sors uk arise from a source with circular Gaussian distribution
and introduce the eigendecomposition Ru,k = Uk3kU∗k ,
where Uk is unitary and 3k is a diagonal matrix with the
eigenvalues of Ru,k . We define the following relations

ψ
(i)
k = U∗k ψ̃

(i)
k , ψ

(i)
k−1 = U∗k ψ̃

(i)
k−1, uk,i = uk,iUk ,

6 = U∗k6Uk , 6
′
= U∗k E[6

′

]Uk ,

E[µk (i)] = µk (i),E[µ2
k (i)] = µ

2
k (i).

Thus, we have that ‖ψ̃ (i)
k−1‖

2
6 = ‖ψ

(i)
k−1‖

2
6

and ‖uk,i‖26 =

‖u(i)k ‖
2
6
. Consequently, (40) and (41) can be rewritten as

E‖ψ
(i)
k ‖

2
6
= E‖ψ

(i)
k−1‖

2
6
′
+ σ 2

v,kE‖µk (i)u
∗
k,i‖

2
6
, (42)

where

6
′
= 6 − µk (i)E(6u∗k,iuk,i + u

∗
k,iuk,i6)

+E‖µk (i)u∗k,i‖
2
6
u∗k,iuk,i. (43)

Since

E[u∗k,iuk,i] = E[U∗k u
∗
k,iuk,iUk ] = 3k , (44)

E‖µk (i)u∗k,i‖
2
6
= E[µk (i)uk,iUk6U∗k u

∗
k,iµk (i)]

= µ2
k (i)Tr(3k6), (45)

and

E‖µk (i)u∗k,i‖
2
6
u∗k,iuk,i = µ

2
k (i)(3kTr(63k )+ 23k63k ),

(46)

substituting (45) and (46) into (42) and (43), we have

E‖ψ
(i)
k ‖

2
6
= E‖ψ

(i)
k−1‖

2
6
′
+ µ2

k (i)Tr(3k6), (47)

and

6
′
= 6 − µk (i)(3k6 +63k )+ µ2

k (i)(3kTr(63k )

+ 23k63k ). (48)
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Note that Equations (47) and (48) are similar to the results
obtained in [4], however, the process to reach them is different
and there is a noticeable difference between variable step
size and static step size. This allows us to use the same
diagonalization method adopted in [4] for obtaining steady-
state (i → ∞) MSD and EMSE for agent k , which can be
described as follows:

ηk = E‖ψ (∞)
k−1‖

2
= ak (I −5k,1)−1q (MSD), (49)

and

ζk = E‖uk,∞ψ̃
(∞)
k−1‖

2
= ak (I −5k,1)−1λk (EMSE),

(50)

where

5k,l = Fk+l−1Fk+l · · ·FNF1 · · ·Fk−1, (51)

Fk = I−2µk3k+2µ2
k3

2
k+µ

2
kλkλ

T
k , (52)

ak = gk5k,2+gk+15k,3+· · ·+gk−25k,N+gk−1, (53)

gk = µ2
kσ

2
v,kλ

T
k , (54)

µk (∞) , µk , µ2
k (∞) , µ2

k , q and λk are two column
vectors containing the main diagonal of matrices I and 3k ,
respectively.

In steady state, σ 2
ek,∞ will tend to σ 2

vk,∞ as the algorithm

starts to converge (i.e., ψ∞k −→ wo). This leads to a
very small steady state step size by analyzing (23). Hence,
the approximation Fk ≈ I − 2µk3k is acceptable. From this,
we can rewrite 5k,1 as a diagonal matrix and approximate it
as follows:

5k,1 = 5 = F1F2 · · ·FN ,

= (I − 2µ131)(I − 2µ232) · · · (I − 2µN3N )

≈ I − 2(µ131 + µ232 + · · · + µN3N ), (55)

we have

I −5 ≈ 2(µ131 + µ232 + · · · + µN3N ), (56)

and ak ≈ 6N
k=1gk , in which 5 is further approximated by I .

Finally, the steady-state MSD, EMSE and MSE of each
agent are given by

ηk ≈ (µ2
1σ

2
v,1λ

T
1 + · · · + µ

2
Nσ

2
v,Nλ

T
N )

×(2µ131 + · · · + 2µN3N )−1q, (57)

ζk ≈ (µ2
1σ

2
v,1λ

T
1 + · · · + µ

2
Nσ

2
v,Nλ

T
N )

×(2µ131 + · · · + 2µN3N )−1λk , (58)

ξk ≈ ζk + σ
2
v,k . (59)

B. STEADY-STATE MEAN STEP SIZE
In this subsection, we will evaluate the steady state mean step
size that is required for ηk and ζk . Taking expectations on both
sides of Equation (23), and giving the following reasonable
approximation used widely in [29], [44], [45]:

E[µk (i)] ≈
E[σ̂ 2

ek,i ]− E[σ̂
2
vk,i ]

E‖r̂u,e(i)‖2 + δ
. (60)

From (19) and (21), the expectations of σ̂ 2
ek,i and σ̂

2
uk,i are

calculated as follows:

E[σ̂ 2
ek,i ]= α1E[σ̂

2
ek,i−1 ]+ (1− α1)E[e2k (i)]

= α1E[σ̂ 2
ek,i−1 ]+(1−α1)E‖ψ̃

i
k−1‖

2
Ru,k+(1−α1)σ

2
v,k ,

(61)

E[σ̂ 2
uk,i ] = α2E[σ̂

2
uk,i−1 ]+ (1− α2)Tr(Ru,k ). (62)

From (22), we have

‖r̂u,e(i)‖2 = α23‖r̂u,e(i− 1)‖2 + 2α3(1− α3)

×r̂∗u,e(i−1)uk,iek (i)+(1−α3)
2e∗k (i)u

∗
k,iuk,iek (i).

(63)

As i −→∞, we get

lim
i−→∞

E[σ̂ 2
ek,i ] = α1 lim

i−→∞
E[σ̂ 2

ek,i−1 ]

+ (1− α1) lim
i−→∞

(E‖ψ̃ i
k−1‖

2
Ru,k + σ

2
v,k ) (64)

and

lim
i−→∞

E[σ̂ 2
uk,i ] = α2 lim

i−→∞
E[σ̂ 2

uk,i−1 ]+ (1− α2)Tr(Ru,k ).

(65)

From (64) and (65), we find that two smoothing factors α1
and α2 are removed. As a result,

E[σ̂ 2
ek,∞ ] = E‖ψ̃∞k−1‖

2
Ru,k + σ

2
v,k , (66)

and

E[σ̂ 2
uk,∞ ] = Tr(Ru,k ). (67)

In order to evaluate E‖r̂u,e(∞)‖2, we need to deal with
the expectations in (63). For this purpose, we shall
rely on the following additional assumption used widely
in [46] and [29].
Assumption 4: At steady-state, uk,i is independent of ek,i

for all k .
Under Assumption 4 and (63), we have

E[‖r̂u,e(i)‖2]

= α23E[|r̂u,e(i− 1)‖2]+ (1− α3)2E[e∗k (i)u
∗
k,iuk,iek (i)]

= α23E[|r̂u,e(i−1)‖
2]+(1−α3)2Tr(Ru,k )E‖ek (i)‖2.

(68)

In a similar way as i −→∞, E‖r̂u,e(∞)‖2 can be obtained
by

E[‖r̂u,e(∞)‖2] =
1− α3
1+ α3

Tr(Ru,k )(E‖ψ̃∞k−1‖
2
Ru,k + σ

2
v,k ).

(69)

From (20), by using the following approximation

E[σ̂ 2
vk,i ] ≈ E[σ̂ 2

ek,i ]−
1

E[σ̂ 2
uk,i ]

E‖r̂u,e(i)‖2, (70)
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and substituting (66) (67) and (69) into (70) when i −→ ∞,
we get

E[σ̂ 2
vk,∞ ] = E[σ̂ 2

ek,∞ ]−
1

E[σ̂ 2
uk,∞ ]

E‖r̂u,e(∞)‖2

=
2α3

1+ α3
(E‖ψ̃∞k−1‖

2
Ru,k + σ

2
v,k ). (71)

Substituting (66) (69) and (71) into (60) when i −→ ∞
yields

E[µk (∞)]

=
E[σ̂ 2

ek,∞ ]− E[σ̂
2
vk,∞ ]

E‖r̂u,e(∞)‖2 + δ

=

(1− α3)(E‖ψ̃∞k−1‖
2
Ru,k + σ

2
v,k )

(1− α3)Tr(Ru,k )(E‖ψ̃∞k−1‖
2
Ru,k + σ

2
v,k )+ (1+ α3)δ

.

(72)

Note that only one parameter α3 is shown in (72), while
other parameters α1 and α2 are removed. This is the reason
that we use a single smoothing factor α to replace all the
others. Equation (72) gives an expression of the mean steady-
state step-size. However, it can be seen that E‖ψ̃∞k−1‖

2
Ru,k is

unavailable since it is a function of E[µk (∞)]. In steady state,
it is known that ψ (∞)

k−1 converges to w
o. By the definition (8),

we expect that the weight error vector ψ̃∞k−1 is very small for
deriving a closed-form solution for Equation (72). Therefore,
E[σ̂ 2

ek,∞ ], E[‖r̂u,e(∞)‖2] and E[σ̂ 2
vk,∞ ] can be approximated

in a reasonable way

E[σ̂ 2
ek,∞ ] = σ

2
v,k , (73)

E[‖r̂u,e(∞)‖2] =
1− α
1+ α

Tr(Ru,k )σ 2
v,k , (74)

E[σ̂ 2
vk,∞ ] =

2α
1+ α

σ 2
v,k . (75)

As a consequence, the mean step size in steady state can be
obtained as

E[µk (∞)] = µk =
(1− α)σ 2

v,k

(1− α)Tr(Ru,k )σ 2
v,k + (1+ α)δ

. (76)

Because the step size in (23) is derived by the time-
averaging method, it holds true that µk (∞) ≈ E[µk (∞)].
Thus, the variance of steady state step size can be assumed
to be equal to zero. Then, we can obtain E[µ2

k (∞)] as
follows:

E[µ2
k (∞)] = µk2 = (E[µk (∞)])2

=
(1− α)2σ 4

v,k

[(1− α)Tr(Ru,k )σ 2
v,k + (1+ α)δ]2

. (77)

By substituting (76) (77) into (57) and (58), the
steady-state MSD and EMSE of each agent can be

rewritten as

ηk =

M∑
j=1

(

N∑
k=1

µ2
kσ

2
v,kλk,j

2
N∑
k=1

µkλk,j

), (78)

ζk =

M∑
j=1

(

λk,j
N∑
k=1

µ2
kσ

2
v,kλk,j

2
N∑
k=1

µkλk,j

), (79)

where λk,j is the jth (1 ≤ j ≤ M ) element of column
vector λk .

V. SIMULATION RESULTS
To evaluate the proposed VSS-ILMS algorithm, in this
section, we provide two computer simulation results. One
is the numerical comparison between the proposed algo-
rithm and the traditional LMS adaptive filtering algorithms.
Meanwhile, we verify the theoretical expressions derived in
Section IV. The other one is based on the target localization
application in sensor networks to illustrate the practical usage
of the algorithm presented here.

A. NUMERICAL SIMULATIONS
In this subsection, all simulations were carried out using the
following parameters selection. In our scenario, the network
with 20 agents are connected in a way of Hamiltonian cycle
as shown in Figure 1. The independent Gaussian regres-
sors are generated as the measurements {uk,i} with power
σ 2
u,k ∈ (0, 1] (Figure 2(a)). The tracked optimal weight vector
wo = col{1, 1, · · · , 1}/

√
M with M = 10 is known for us

but unknown for evaluated algorithms. The noise variances
σ 2
v,k ∈ (0, 0.1] following Gaussian distributions for all agents

is plotted in Figure 2(b), and the corresponding signal-to-
noise ratio (SNR) is shown in Figure 2(c). we assume the
measurements are acquired via dk (i) = uk,iwo + vk (i). The
smoothing factor and regularization parameter are selected
as α = 0.985 and δ = 3. The learning curves of transient
MSD and EMSE are obtained by performing 5000 iterations
and averaging them for 200 independent experiments. The
steady-state performance of step size, MSD and EMSE for
each agent are then generated by averaging 200 samples at
time 5000.

First, we provide the MSD curves for agent N = 20 by
running proposed VSS-ILMS algorithm and ILMS algorithm
with three different step sizes from small to large. On the basis
of the results presented in Figure 3, we have the following
observations: for the conventional ILMS algorithm, the one
with a relatively large step-size has a fast convergence speed
at the initial state while the other one with a relatively small
step-size has a low MSD at steady state. Unlike the ILMS
algorithm, ourVSS-ILMS algorithm shows a great effect both
on convergence speed at initial state and low MSD for at
steady state. In Figure 4, one can also see the same results on
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FIGURE 2. (a) Power profile. (b) Noise power profile. (c) Signal-to-noise
ratio profile.

the EMSE learning curves for agent N . These facts indicate
that the derived optimal variable step size shows the very
good tracking performance when the error changes in the
system occur.

For comparison purposes, the following variable step-size
LMS adaptive filtering algorithms are applied to incremental
networks for performing parameter estimation. These stand-
alone LMS algorithms can bemodified to fit themeasurement
exchange case in network. The parameters used in simula-
tions are also shown as follows.

1) Kwong’s VSS-LMS algorithm [13]:

µk (i) = αµk (i− 1)+ γ e2k (i)

Parameters: α = 0.95, γ = 0.065
2) Aboulnasr’s RVS-LMS algorithm [14]:

µk (i) = αµk (i− 1)+ γ p2k (i)

pk (i) = βpk (i− 1)+ (1− β)ek (i)ek (i− 1)

Parameters: α = 0.95, β = 0.98, γ = 0.015

FIGURE 3. Transient MSD performance at agent N for proposed VSS-ILMS
and conventional ILMS algorithm with different constant step size µ.

FIGURE 4. Transient EMSE performance at agent N for proposed VSS-ILMS
and conventional ILMS algorithm with different constant step size µ.

3) Huang’s VSS-NLMS algorithm [19]:

µk (i) = αµk (i− 1)+ (1− α)
σ̂ 2
ek,i

βσ̂ 2
vk,i

σ̂ 2
ek,i = ασ̂

2
ek,i−1 + (1− α)e2k (i)

σ̂ 2
uk,i = ασ̂

2
uk,i−1 + (1− α)uk,iu∗k,i

r̂u,e(i) = αr̂u,e(i− 1)+ (1− α)uk,iek (i)

σ̂ 2
vk,i = σ̂

2
ek,i −

1
σ̂ 2
uk,i

r̂u,e(i)∗r̂u,e(i)

Parameters: α = 0.995, β = 50, µmax = 0.01,
µmin = 0.0005

It should be noted that VSS-LMS and RVS-LMS algo-
rithms have always been regarded as good comparison
for LMS algorithm, and Huang’s VSS-NLMS algorithm is
recently proposed variable step-size normalized LMS algo-
rithm that uses a similar time-averaging estimation method
with good performance. Based on the implementations of
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FIGURE 5. Transient MSD performance for VSS-ILMS and three variable
step-size LMS algorithms.

FIGURE 6. Effect of α1, α2 on the MSD for agent N .

above algorithms, in which parameters are selected to achieve
average-case performance for fair comparison, we can see
in Figure 5 that these variable step size algorithms have
similar initial convergence rate. But as the process reaches
steady state, the proposed VSS-ILMS algorithm provides
the lowest squared error of the four algorithms. According
this simulation, it can be known that with the same con-
vergence rate, the proposed algorithm is clearly superior for
final steady-state error. As mentioned, the main reason is that
our algorithm adopts the approximated optimal step size that
assure the minimum MSD at each iteration.

To evaluate experimentally the effect of three parameters
α1, α2, α3, we perform two types of simulations: varying
α1, α2 under fixed α3 = 0.985 (Figure 6) and varying α3
under fixed α1 = α2 = 0.985 (Figure 7). One can see from
Figure 6 that variation in α1, α2 for Equation (19) and (21)
has a very small impact on the MSD learning curve. On the
other hand, one can also see from Figure 7 that variation in α3
for Equation (22) greatly affects the steady state performance
of the proposed algorithm. By analyzing (72), we know that
the steady state mean step size is not related to α1, α2 and

FIGURE 7. Effect of α3 on the MSD for agent N .

FIGURE 8. Simulation and theory of steady state step size at each agent.

is inversely proportional to α3. Therefore, a reasonable large
α3 leads to a low steady state error and vice versa. Simulated
results alsomatch the steady-state analysis. From this, we rec-
ommend that α3 (i.e., α in our algorithm) should be large
when high error accuracy is required for network application.

In Figure 8, we evaluate the derived expression (76), where
the mean steady state step-size is obtained theoretically.
We can easily see that there is a good match between sim-
ulation and theory. The experimental values for MSD and
EMSE in steady state are plotted in Figure 9 and Figure 10,
respectively. It can be seen that theoretical results differ
slightly from simulated results because we assume that the
step sizes are independent of input regressors and errors in
the derivation of MSD and EMSE (i.e., Assumption 1). More
precisely, the theoretical MSD and EMSE are smaller than
the simulation ones. By analyzing (78), steady state MSD is
achieved in an equalization way (i.e., ηk = ηl for k 6= l),
which is also confirmed by both the simulation and theory
results shown in Figure 9. By analyzing (79), the EMSE is
more sensitive to the level of input data as depicted
in Figure 10. Moreover, we can see that two empirical results
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FIGURE 9. Simulation and theory of MSD at each agent.

FIGURE 10. Simulation and theory of MSD at each agent.

based on (78) and (49) are very close. Thus, the approxima-
tion for Fk is reasonable because the square of steady state
step size is very small as shown in Figure 8. From Figure 10,
furthermore, we can even see the experimental values based
on (79) and (50) are overlapped.

B. APPLICATION TO TARGET LOCALIZATION
The adaptive estimationmodel (1)-(3) is useful for some prac-
tical applications in smart cities, for example, target local-
ization and collaborative spectral sensing in wireless sensor
networks [47], complex behavior in biological and social
networks [48]. In this subsection, the proposed algorithm is
applied to the parameter estimation for a target position in
a wireless sensor network, where the agents can be referred
as sensor nodes. It is well known that target localization is
a significant determinant of success for some techniques in
the realm of sensor networks, such as position-based routing,
coverage and connectivity protocols.

Given the target localization model [7], [47] by using
the LMS estimation method, we introduce the following
notations that are consistent with those presented in the pre-
vious sections. The estimated position column vectorwo with
size of 2 is denoted as the actual location of target in the

FIGURE 11. An illustration of the simulated sensor network deployed for
target localization.

two-dimensional coordinate. The N anchor nodes that know
their own positions are deployed in the monitored area. The
collected measurements uk,i denote the noisy direction vector
pointing from the anchor node k = 1, · · · ,N towards the
target and are modeled as

uk,i = uok + ak (i)u
o⊥
k + bk (i)u

o
k , (80)

where uok and uo⊥k are the unit direction vector and the per-
pendicular unit direction vector of uk,i, respectively, ak (i)
and bk (i) are zero-mean spatially independent random noises,
each of which has the variance σ 2

a,k and σ 2
b,k . The other

measurements dk (i) are defined as

dk (i) , uk,iwo + vk (i), (81)

where vk (i) denotes the noise on distance from anchor k to
target at time i, which is zero-mean and spatially independent
with variance σ 2

v,k . In our simulation, dk (i) can be obtained by

dk (i) = r ik + uk,ipk , (82)

where pk is the known position vector of anchor node k , r ik is
the the noisy distance measurement between anchor node k
and target.

As a result, the position parameter vector wo of a ran-
dom target can be tracked by using the proposed VSS-ILMS
algorithm with the desired convergence rate and localization
accuracy. Figure 11 is an illustration of the simulated sensor
network that consists of 100 normal nodes that are randomly
distributed in a square area of 50m×50m and 8 anchor nodes
that know their positions exactly and communicate in a way
of Hamiltonian cycle. The noise variances σ 2

v,k ∈ (0, 2],
σ 2
a,k and σ

2
b,k ∈ (0, 0.1] are chosen randomly.

Figure 12 shows the changes on localization error of
VSS-ILMS compared to ILMS algorithm with different fixed
step-size. From Figure 12, we see that the convergence per-
formance is similar to those in Figure 3. It is important to note
that the huge oscillation appears in ILMS algorithm when
the step-size is large, which can also be found in Figure 3.
The steady-state oscillation is defined as the MSD deviation
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FIGURE 12. Localization errors of ILMS algorithm with different fixed
step-size and proposed algorithm.

between the successive iterations after the convergence. That
happens because the amplitude of oscillation is proportional
to the step-size in ILMS algorithm [7]. On the other hand,
the small step-size can reduce the amplitude of oscillation
but result in the slow convergence. As shown in Figure 12,
both high convergence speed and low oscillation are achieved
by our algorithm since the proposed variable step-size follow
adaptively the underlying data changes.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel variable step-size incre-
mental LMS algorithm, in which a local optimal step size
is estimated at each node in order to achieve the minimum
MSDper iteration. The proposed algorithm solve the problem
of performance degradation resulting from the constant step
size when difference of noise level appears between nodes.
The other benefit of our step size update scheme is that the
tradeoff between fast convergence rate and low MSD for
conventional ILMS algorithm is overcome. The steady-state
performance of proposed algorithm is analyzed by deriving
the expressions of the steady-state step-size, MSD and EMSE
in a closed form. The advantages of proposed algorithm
are also showed in simulation results by comparing it with
ILMS algorithms with different constant step size and several
classical stand-alone LMS filtering algorithms applied in
incremental cooperative network. The theoretical results are
verified by simulations one by one. Moreover, our algorithm
is also verified by the model of target localization in sensor
networks. In future work, we will consider the effective com-
bination of a lightweight incremental construction mode and
distributed estimation to achieve better performance based on
the sensing data in smart cities.
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