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ABSTRACT This paper mainly investigates the fixed-time synchronization problem of memristive fuzzy
bidirectional associative memory (BAM) cellular neural networks (MFBAMCNNs) with time-varying
delays. MFBAMCNNs are formulated by virtue of differential inclusion and set-valued map theories.
By utilizing the definition of fixed-time synchronization and some inequality techniques, some novel
criteria for easy verification are derived to ensure the fixed-time synchronization of the drive-response
MFBAMCNNs based on the Lyapunov stability theory and nonlinear feedback controllers. The results of
the main theorem can be easily extended to the fuzzy BAM cellular neural networks without memristor and
the memristive BAM cellular neural networks without fuzzy logic. In addition, the settling time of fixed-
time synchronization, which does not depend on the initial values, can be simply calculated. At last, two
numerical examples are presented to verify the effectiveness of main results.

INDEX TERMS Fixed-time synchronization, memristor, MFBAMCNNs, Lyapunov function, nonlinear
feedback controller.

I. INTRODUCTION
In 1987, Kosok firstly proposed the bidirectional associative
memory neural networks (BAMNNs), which are made up of
two neuron layers, i.e. X-layer and Y-layer, and have the fea-
tures of heteroassociative, content-addressable memory [1].
These two layers of neurons are completely interconnected,
and there is no signal transmission between neurons on the
same layer. In real life, BAMNNs have powerful information
processing abilities and some good application fields, such as
information associative memory, image processing, artificial
intelligence, and so on. Thus, many scholars have studied
various forms of BAMNNs models [2]–[6]. The memristor
(memory resistor), which was proposed by Chua for the first
time [7], is well-known as the forth basic passive nonlinear
circuit element (please see Fig. 1).

Until the HP labs developed the real memristor in 2008 [8]
(please see Fig. 2), it was widely recognized [2], [9]–[12].
The memristor has the characteristics of nanometer size,
nonvolatile and hysteresis loops, which make it work like
neuronal synapses. Based on the advantages of thememristor,
it can replace the traditional resistors to simulate the biologi-
cal synapses, and the synaptic density in the memristive neu-
ral network is further moved closer to the biological neural
network. Naturally, the researchers combine the memristor
with BAMNNs to form a class of neural networks named
memristive bidirectional associativememory neural networks
(MBAMNNs), which have been extensively investigated in
the aspect of its dynamic behaviors [4], [5], [13]–[18]. For
example, Ali et al. investigated a class of memristor-based
neutral-type stochastic bidirectional associative memory
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FIGURE 1. The position of memristor in four basic circuit elements.

FIGURE 2. The schematic diagram of memristor developed by HP
Laboratory [8].

neural networks; with the aid of a new Lyapunov-Krasovskii
function, they obtained some delay-dependent passivity LMI
inequality conditions [14]. Wang et al. discussed the global
asymptotic stability of drive-response MBAMNNs with

different delays based on a novel sampled-data feedback
controller [5].

Since uncertainties or vagueness are unavoidable in the real
world, Yang et al. combined fuzzy theory with cellular neural
networks as a suitable method to deal with them, thus forming
the fuzzy cellular neural networks (FCNNs) [19], [20]. The
stability of FCNNs plays an important role in image process-
ing and pattern recognition applications. Many scholars have
done extensive researches on FCNNs [21]–[24]. As far as
we know, few researchers have considered the combination
of FCNNs and MBAMNNs to form a new class of memris-
tive fuzzy BAM cellular neural networks (MFBAMCNNs).
In [25], Balasubramaniam et al. studied the global asymptotic
stability of a class of bidirectional associative memory fuzzy
cellular neural networks with multiple types of delays by
using the free-weighting matrix method. Xu and Li investi-
gated the exponential stability of FBAMCNNs with delays
and impulses [26]. However, the above research objects
are not MFBAMCNNs. Compared to existing literature,
MFBAMCNNs have more complex network structures and
dynamic behaviors due to the addition of memristor and
fuzzy logic. There are two main difficulties in the study of
MFBAMCNNs. First, the addition of the memristor model,
which makes MFBAMCNNs become a right-hand discontin-
uous switching differential equations, and traditional research
methods do not suitable for such systems. Second, the addi-
tion of fuzzy logic makes MFBAMCNNs more complex, and
how to deal with the fuzzy item effectively is a problemworth
considering. This is one of the motivations of this paper.
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On the other hand, since Pecora and Carrol first intro-
duced the drive-response concept to synchronize two chaotic
systems [27], the synchronization control of chaotic sys-
tems has been widely used in secure communication, image
encryption, motion control, and so on. As a result, many
synchronization control strategies and schemas are proposed
for chaotic systems [4], [12], [13], [15], [23], [28]–[30].
In these synchronization studies of chaotic neural networks,
the convergence rate (time) is a key consideration of syn-
chronization performance indicator. According to the con-
vergence time, synchronization forms mainly include the
asymptotic (exponential) synchronization, finite-time syn-
chronization and fixed-time synchronization. Among them,
the asymptotic synchronization is based on the enough large
convergence time, and the finite-time and fixed-time synchro-
nization can synchronize the drive-response chaotic systems
in a finite time, which is called the settling time. In prac-
tical applications, we sometimes expect the drive-response
systems to achieve synchronization as quickly as possible.
The critical difference between the finite-time and fixed-time
synchronization is whether the settling time depends on the
initial conditions of the drive-response systems. The finite-
time synchronization depends on the initial conditions, while
the fixed-time synchronization does not depend on it. In many
practical cases, it is not easy to obtain the initial conditions
of the chaotic systems, which make the settling time dif-
ficult to be determined. The fixed-time synchronization is
derived from the definition of fixed-time stability, which was
proposed by Parsegov et al. [31] and Polyakov [32] for the
first time, can overcome this difficulty. In [28], Wan et al.
investigated the fixed-time master-slave synchronization of
Cohen-Grossberg neural networks with time-varying delays
and parameter uncertainties by virtue of Filippov discontinu-
ous theory and Lyapunov stability theory, and obtained some
sufficient conditions to ensure fixed-time synchronization of
master-slave systems. In [33], Liu and Chen discussed the
finite-time and fixed-time cluster synchronization of com-
plex networks under pinning control. However, there are few
results on the fixed-time synchronization of MFBAMCNNs.
In addition, how to design a suitable fixed-time synchroniza-
tion controller for drive-responseMFBAMCNNs systems is a
challenging issue. This is another research motivation of this
paper.

Motivated by the above discusses, we combine fuzzy cel-
lular neural networks withMBAMNNs to form a new class of
neural network model and study its fixed-time synchroniza-
tion problem of the drive-response systems for the first time.
With the help of the definition of fixed-time synchronization,
differential inclusion theory, set-valued map, some inequal-
ities techniques and Lyapunov stability theory, some easily
verifiable sufficient conditions are obtained. In addition, it is
worth noting that the settling time that does not depend on the
initial conditions can be easily calculated directly. The main
contributions of this paper are summarized as follows.
(1) Compared with the existing results on fixed-time syn-

chronization of other neural network models [28], [34],

the fixed-time synchronization problem of MFBAMC-
NNs with time-varying delays is studied for the first
time. The existing BAMNNs models without the mem-
ristor or without the fuzzy logic can be regarded as a
special case of the MFBAMCNNs model.

(2) By the construction of nonlinear feedback controllers
and a simple Lyapunov function, some novel easily ver-
ifiable algebraic inequality conditions are obtained to
ensure the fixed-time synchronization of the proposed
model.

(3) The main results of this paper are more general. It can
be easily extended to the fuzzy BAM cellular neural
networks without memristor and the memristive BAM
cellular neural networks without fuzzy logic.

The remainder of this paper is organized as follows.
In Section II, the MFBAMCNNs mathematical model,
the definition of the fixed-time synchronization, some
assumptions and lemmas are presented as preliminaries.
Through strict proof, some novel criteria to guarantee the
drive-response MFBAMCNNs achieve the fixed-time syn-
chronization are obtained in Section III. After two numerical
simulations illustrate the validity of our results in Section IV,
we sum up the whole paper in Section V.
Notations: In the whole paper, R,Rm,Rn denote

real number set, m-dimensional Euclidean space and
n-dimensional Euclidean space, respectively. R+ represents
positive real number set. C([−τ, 0],Rn), C([−σ, 0],Rn)
denotes a set of continuous function from interval [−τ, 0]
and [−σ, 0] to space Rn. Let I , {1, 2, · · · , n}, J ,
{1, 2, · · · ,m} be a natural number set, respectively.

II. NETWORK MODEL AND PRELIMINARIES
Inspired by [14] and [35], we consider a class of the
MFBAMCNNsmodel described by the following differential
equations

ẋi(t) = −d
(1)
i (xi(t))xi(t)+

m∑
j=1

a(1)ij (xi(t))fj(yj(t))

+

m∑
j=1

b(1)ij (xi(t − σ (t)))fj(yj(t − τ (t)))

+

m∑
j=1

c(1)ij w
(1)
j +

m∧
j=1

α
(1)
ij fj(yj(t − τ (t)))

+

m∨
j=1

β
(1)
ij fj(yj(t − τ (t)))+

m∨
j=1

S(1)ij w
(1)
j

+

m∧
j=1

T (1)
ij w

(1)
j + I

(1)
i ,

ẏj(t) = −d
(2)
j (yj(t))yj(t)+

n∑
i=1

a(2)ji (yj(t))gi(xi(t))

+

n∑
i=1

b(2)ji (yj(t − τ (t)))gi(xi(t − σ (t)))
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+

n∑
i=1

c(2)ji w
(2)
i +

n∧
i=1

α
(2)
ji gi(xi(t − σ (t)))

+

n∨
i=1

β
(2)
ji gi(xi(t − σ (t)))+

n∨
i=1

S(2)ji w
(2)
i

+

n∧
i=1

T (2)
ji w

(2)
i + I

(2)
j , t ≥ 0, (1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T , y(t) = (y1(t), y2(t),
· · · , ym(t))T denote the states of neurons in X-layer and
Y-layer (the voltage of the capacitors C(1)i and C(2)j in the
actual circuits), respectively. i ∈ I, j ∈ J . fj(·), gi(·)
represent the activation functions of the jth and ith neu-
rons.

∨
and

∧
represent fuzzy OR and fuzzy AND opera-

tions. α(1)ij (α(2)ji ) and β(1)ij (β(2)ji ) are respectively the connection
weights of the fuzzy feedback MIN template and the fuzzy
feedforward MAX template with delays. c(1)ij (c

(2)
ji ), S

(1)
ij (S(2)ji )

and T (1)
ij (T (2)

ji ) denote the connection weights of the fuzzy
feedforward template, the elements of the fuzzy feedforward
MIN template and fuzzy feedforward MAX template without
delays. τ (t), σ (t) are the time-varying delays, which meet
0 ≤ τ (t) ≤ τ , 0 ≤ σ (t) ≤ σ . I (1)i and I (2)j denote the bias
values of the ith and jth neurons.
d (1)i (xi(t)), d (2)j (xj(t)), a(1)ij (xi(t)), b(1)ij (xi(t)), a(2)ji (xj(t)),

b(2)ji (xj(t)) denote the memristive weights. In the memristor-
based neural network real circuits, they are given as follows

d (1)i (xi(t)) =
1

C(1)i

m∑
j=1

(W (1)
ij +M(1)

ij )× sgnij +
1

R(1)
i

,

d (2)j (xj(t)) =
1

C(2)j

n∑
i=1

(W (2)
ji +M(2)

ji )× sgnji +
1

R(2)
j

,

a(1)ij (xi(t)) =
W (1)

ij

C(1)i

× sgnij,

b(1)ij (xi(t)) =
M(1)

ij

C(1)i

× sgnij,

a(2)ji (yj(t)) =
W (2)

ji

C(2)j

× sgnji,

b(2)ji (yj(t)) =
M(2)

ji

C(2)j

× sgnji,

where sgnij is the symbolic function with a value of 1
when i = j and 0 otherwise. C(1)i and C(2)j are capacitors.

W (1)
ij ,M

(1)
ij ,W

(2)
ji ,M

(2)
ji denote the memductances of the

resistors R(11)
ij ,R(12)

ij ,R(21)
ji ,R(22)

ji , respectively. R(11)
ij is the

resistor between xi(t) and the activation function fj(yj(t));
R(12)
ij is the resistor between xi(t) and the activation function

fj(yj(t − τj(t))); R(21)
ji is the resistor between yj(t) and the

activation function fi(xi(t));R(22)
ji is the resistor between yj(t)

and the activation function gi(yi(t − σ (t))). Furthermore,

according to the feature of memristor, we use the memristor
simplified model, which is shown in Fig.3. Its memristive
weights is presented as follows

d (1)i (xi(t)) =

{
d̂ (1)i , |xi(t)| ≤ 0

(1)
i ,

ď (1)i , |xi(t)| > 0
(1)
i ,

d (2)j (yj(t)) =

{
d̂ (2)j , |yj(t)| ≤ 0

(2)
j ,

ď (2)j , |yj(t)| > 0
(2)
j ,

a(1)ij (xi(t)) =

{
â(1)ij , |xi(t)| ≤ 0

(1)
i ,

ǎ(1)ij , |xi(t)| > 0
(1)
i ,

a(2)ji (yj(t)) =

{
â(2)ji , |yj(t)| ≤ 0

(2)
j ,

ǎ(2)ji , |yj(t)| > 0
(2)
j ,

b(1)ij (xi(t − σ (t))) =

{
b̂(1)ij , |xi(t − σ (t))| ≤ 0

(1)
i ,

b̌(1)ij , |xi(t − σ (t))| > 0
(1)
i ,

b(2)ji (yj(t − τ (t))) =

{
b̂(2)ji , |yj(t − τ (t))| ≤ 0

(2)
j ,

b̌(2)ji , |yj(t − τ (t))| > 0
(2)
j ,

(2)

where the switching jumps 0(1)
i > 0, 0(2)

j > 0, d̂ (1)i , ď (1)i ,

d̂ (2)i , ď (2)i , â(1)ij , ǎ
(1)
ij , â

(2)
ji , ǎ

(2)
ji , b̂

(1)
ij , b̌

(1)
ij , b̂

(2)
ji , b̌

(2)
ji are known

constants, i ∈ I, j ∈ J . The initial values of MFBAMCNNs
(1) are give by{

xi(s) = ϕ
(1)
i (s), −τ ≤ s ≤ 0,

yj(s) = ψ
(1)
j (s), −σ ≤ s ≤ 0,

(3)

where ϕ(1)i (s) ∈ C([−τ, 0],Rn), ψ (1)
j (s) ∈ C([−σ, 0],Rm),

i.e. ϕ(1)i (s) and ψ (1)
j (s) are continuous function on interval

[−τ, 0] and [−σ, 0].
Obviously, the memristive fuzzy BAM cellular neural

networks (1) is a differential equation with discontinuous
right-sides according the definitions of the memristive con-
nection weights. It shows that the traditional processing
method of dealing with differential equations does not apply
to the model (1). By virtue of differential inclusion and set-
valued map theories [36], [37], the MFBAMCNNs (1) can
be regarded as a state-dependent switching system as shown
below

ẋi(t) ∈ −co[d
(1)
i , d

(1)
i ]xi(t)

+

m∑
j=1

co[a(1)ij , a
(1)
ij ]fj(yj(t))

+

m∑
j=1

co[b(1)ij , b
(1)
ij ]fj(yj(t − τ (t)))

+

m∑
j=1

c(1)ij w
(1)
j +

m∧
j=1

α
(1)
ij fj(yj(t − τ (t)))

+

m∨
j=1

β
(1)
ij fj(yj(t − τ (t)))+

m∨
j=1

S(1)ij w
(1)
j

+

m∧
j=1

T (1)
ij w

(1)
j + I

(1)
i ,
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FIGURE 3. The hysteresis loop (V (t) − I(t)) of the original memristor model and the simplified
memristor model (two-state).

ẏj(t) ∈ −co[d
(2)
j , d

(2)
j ]yj(t)

+

n∑
i=1

co[a(2)ji , a
(2)
ji ]gi(xi(t))

+

n∑
i=1

co[b(2)ji , b
(2)
ji ]gi(xi(t − σ (t)))

+

n∑
i=1

c(2)ji w
(2)
i +

n∧
i=1

α
(2)
ji gi(xi(t − σ (t)))

+

n∨
i=1

β
(2)
ji gi(xi(t − σ (t)))+

n∨
i=1

S(2)ji w
(2)
i

+

n∧
i=1

T (2)
ji w

(2)
i + I

(2)
j , t ≥ 0, (4)

where d (1)i = min{d̂ (1)i , ď (1)i }, d
(1)
i = max{d̂ (1)i , ď (1)i },

d (2)j = min{d̂ (2)j , ď (2)j }, d
(2)
j = max{d̂ (1)j , ď (2)j }, a

(1)
ij =

min{â(1)ij , ǎ
(1)
ij }, a

(1)
ij = max{â(1)ij , ǎ

(1)
ij }, a

(2)
ji = min{â(2)ji , ǎ

(2)
ji },

a(2)ji = max{â(2)ji , ǎ
(2)
ji }, b

(1)
ij = min{b̂(1)ij , b̌

(1)
ij }, b

(1)
ij =

max{b̂(1)ij , b̌
(1)
ij }, b

(2)
ji = min{b̂(2)ji , b̌

(2)
ji }, b

(2)
ji = max{b̂(2)ji , b̌

(2)
ji },

i ∈ I, j ∈ J .
Let measurable functions dxi (t) ∈ co[d (1)i , d

(1)
i ], dyj (t) ∈

co[d (2)j , d
(2)
j ], axij(t) ∈ co[a(1)ij , a

(1)
ij ], a

y
ji(t) ∈ co[a(2)ji , a

(2)
ji ],

bxij(t) ∈ co[b(1)ij , b
(1)
ij ], b

y
ji(t) ∈ co[b(2)ji , b

(2)
ji ], then MFBAM-

CNNs (4) can be equivalently to the following form

ẋi(t) = −dxi (t)xi(t)+
m∑
j=1

axij(t)fj(yj(t))

+

m∑
j=1

bxij(t)fj(yj(t − τ (t)))+
m∑
j=1

c(1)ij w
(1)
j

+

m∧
j=1

α
(1)
ij fj(yj(t − τ (t)))

+

m∨
j=1

β
(1)
ij fj(yj(t − τ (t)))+

m∨
j=1

S(1)ij w
(1)
j

+

m∧
j=1

T (1)
ij w

(1)
j + I

(1)
i ,

ẏj(t) = −d
y
j (t)yj(t)+

n∑
i=1

ayji(t)gi(xi(t))

+

n∑
i=1

byji(t)gi(xi(t − σ (t)))+
n∑
i=1

c(2)ji w
(2)
i

+

n∧
i=1

α
(2)
ji gi(xi(t − σ (t)))
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+

n∨
i=1

β
(2)
ji gi(xi(t − σ (t)))+

n∨
i=1

S(2)ji w
(2)
i

+

n∧
i=1

T (2)
ji w

(2)
i + I

(2)
j , t ≥ 0. (5)

if the MFBAMCNNs (1) are assumed to be the drive
(master) system, then the response (slave)MFBAMCNNs are
designed as follows

u̇i(t) = −d
(1)
i (ui(t))ui(t)+

m∑
j=1

a(1)ij (ui(t))fj(vj(t))

+

m∑
j=1

b(1)ij (ui(t))fj(vj(t − τ (t)))+
m∑
j=1

c(1)ij w
(1)
j

+

m∧
j=1

α
(1)
ij fj(vj(t − τ (t)))

+

m∨
j=1

β
(1)
ij fj(vj(t − τ (t)))+

m∨
j=1

S(1)ij w
(1)
j

+

m∧
j=1

T (1)
ij w

(1)
j + I

(1)
i + r

u
i (t),

v̇j(t) = −d
(2)
j (vj(t))vj(t)+

n∑
i=1

a(2)ji (vj(t))gi(ui(t))

+

n∑
i=1

b(2)ji (vj(t))gi(ui(t − σ (t)))+
n∑
i=1

c(2)ji w
(2)
i

+

n∧
i=1

α
(2)
ji gi(ui(t − σ (t)))

+

n∨
i=1

β
(2)
ji gi(ui(t − σ (t)))+

n∨
i=1

S(2)ji w
(2)
i

+

n∧
i=1

T (2)
ji w

(2)
i + I

(2)
j + r

v
j (t), t ≥ 0, (6)

where rui (t) and r
v
j (t) are the fixed-time synchronization con-

trollers to be designed. The initial values of the MFBAMC-
NNs (6) are defined as{

ui(s) = ϕ
(2)
i (s), −τ ≤ s ≤ 0,

vj(s) = ψ
(2)
j (s), −σ ≤ s ≤ 0,

(7)

where ϕ(2)i (s) ∈ C([−τ, 0],Rn), ψ (2)
j (s) ∈ C([−σ, 0],Rm),

i.e. ϕ(2)i (s) and ψ (2)
j (s) are continuous functions on interval

[−τ, 0] and [−σ, 0], respectively.
Using the same processing method as the model (1) by

applying the set-valued map and differential inclusion the-
ories, we have

u̇i(t) = −dui (t)ui(t)+
m∑
j=1

auij(t)fj(vj(t))

+

m∑
j=1

buij(t)fj(vj(t − τ (t)))+
m∑
j=1

c(1)ij w
(1)
j

+

m∧
j=1

α
(1)
ij fj(vj(t − τ (t)))

+

m∨
j=1

β
(1)
ij fj(vj(t − τ (t)))+

m∨
j=1

S(1)ij w
(1)
j

+

m∧
j=1

T (1)
ij w

(1)
j + I

(1)
i + r

u
i (t),

v̇j(t) = −dvj (t)vj(t)+
n∑
i=1

avji(t)gi(ui(t))

+

n∑
i=1

bvji(t)gi(ui(t − σ (t)))+
n∑
i=1

c(2)ji w
(2)
i

+

n∧
i=1

α
(2)
ji gi(ui(t − σ (t)))

+

n∨
i=1

β
(2)
ji gi(ui(t − σ (t)))+

n∨
i=1

S(2)ji w
(2)
i

+

n∧
i=1

T (2)
ji w

(2)
i + I

(2)
j + r

v
j (t), t ≥ 0, (8)

where dui (t) ∈ co[d (1)i , d
(1)
i ], dvj (t) ∈ co[d (2)j , d

(2)
j ], auij(t) ∈

co[a(1)ij , a
(1)
ij ], a

v
ji(t) ∈ co[a(2)ji , a

(2)
ji ], b

u
ij(t) ∈ co[b(1)ij , b

(1)
ij ],

bvji(t) ∈ co[b
(2)
ji , b

(2)
ji ].

A. THE DEFINITION OF FIXED-TIME SYNCHRONIZATION
In this subsection, we give the definition of fixed-time syn-
chronization between drive-response (master-slave) systems
(1) and (6). We define the error systems between (1) and (6)
as exi (t) = ui(t) − xi(t), e

y
j (t) = vj(t) − yj(t), i ∈ I, j ∈ J .

Then, we have{
ėxi (t) = Dxi (t)+ F

x
i (t)+ G

x
i (t)+ r

u
i (t),

ėyj (t) = Dxj (t)+ F
y
j (t)+ G

y
j (t)+ r

v
j (t),

(9)

where

Dxi (t) = −(d
u
i (t)ui(t)− d

x
i (t)xi(t)),

Dyj (t) = −(d
v
j (t)vj(t)− d

y
j (t)yj(t)),

Fxi (t) =
m∑
j=1

auij(t)fj(vj(t))−
m∑
j=1

axij(t)fj(yj(t))

+

m∑
j=1

buij(t)fj(vj(t − τ (t)))

−

m∑
j=1

bxij(t)fj(yj(t − τ (t))),

Gxi (t) =
m∧
j=1

α
(1)
ij fj(vj(t − τ (t)))

−

m∧
j=1

α
(1)
ij fj(yj(t − τ (t)))
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+

m∨
j=1

β
(1)
ij fj(vj(t − τ (t)))

−

m∨
j=1

β
(1)
ij fj(yj(t − τ (t))),

Fyj (t) =
n∑
i=1

avji(t)gi(ui(t))−
n∑
i=1

ayji(t)gi(xi(t))

+

n∑
i=1

bvji(t)gi(ui(t − σ (t)))

−

n∑
i=1

byji(t)gi(xi(t − σ (t))),

Gyj (t) =
n∧
i=1

α
(2)
ji gi(ui(t − σ (t)))

−

n∧
i=1

α
(2)
ji gi(xi(t − σ (t)))

+

n∨
i=1

β
(2)
ji gi(ui(t − σ (t)))

−

n∨
i=1

β
(2)
ji gi(xi(t − σ (t))).

The initial condition of the error system (9) can be expressed
as {

exi (s) = ϕ
(2)
i (s)− ϕ(1)i (s),

eyj (s) = ψ
(2)
j (s)− ψ (1)

j (s).
(10)

Definition 1: The systems (1) and (6) are said to achieve
the finite-time synchronization, for i ∈ I, j ∈ J ,
if there exists a locally bounded function T (exi (0), e

y
j (0)) :

Rn
→R+

⋃
{0} that depends on exi (0), e

y
j (0), such that

exi (t, e
x
i (0)) = 0, eyj (t, e

y
j (0)) = 0 for all t ≥ T (exi (0), e

y
j (0)),

where exi (t, e
x
i (0)), e

y
j (t, e

y
j (0)) are the solutions of the Cauchy

problem (9). The function T (exi (0), e
y
j (0)) is called the

settling-time function.
Definition 2: The systems (1) and (6) are said to obtain the

fixed-time synchronization, if they can achieve the finite-time
synchronization and the settling-time function T (exi (0), e

y
j (0))

is globally bounded, i.e. there exists a fixed constant Tmax ∈
R+ such that T (exi (0), e

y
j (0)) ≤ Tmax , for any exi (0), e

y
j (0) ∈

R.
Remark 1: According to Definition 2, let e(t) ,

(ex1(t), e
x
2(t), · · · , e

x
n(t), e

y
1(t), · · · , e

y
m(t))T and T (e(0)) ,

T (exi (0), e
y
j (0)), we have the following equivalent form
lim

t→T (e(0))
‖e(t)‖ = 0,

e(t) ≡ 0, ∀t ≥ T (e(0))),
T (e(0)) ≤ Tmax , ∀e(0) ∈ C([−τ, 0],Rn).

where ‖ · ‖ denotes the Euclidean norm.
Remark 2: Compared the Definition 1 and Definition 2,

the main difference between the finite-time synchronization

and the fixed-time synchronization is whether the settling-
time function T and Tmax depend on the initial conditions.

B. SOME ASSUMPTIONS AND LEMMAS
In this subsection, we will give some assumptions and lem-
mas in order to obtain our main results.
Assumption 1: For i ∈ I, j ∈ J , the activation functions

fj(·), gi(·) meet the Lipschitz conditions, i.e. for any x1, x2 ∈
R, x1 6= x2, there exist positive constants ki, lj satisfying the
following conditions

|fj(x1)− fj(x2)| ≤ kj|x1 − x2|,

|gi(x1)− gi(x2)| ≤ li|x1 − x2|.

Lemma 1 [38]: Suppose x1, x2 are any two states ofmodel
(1), then we have the following inequalities∣∣∣∣ m∧

j=1

α
(1)
ij fj(x2)−

m∧
j=1

α
(1)
ij fj(x1)

∣∣∣∣ ≤ m∑
j=1

|α
(1)
ij ||fj(x2)− fj(x1)|,∣∣∣∣ m∨

j=1

β
(1)
ij fj(x2)−

m∨
j=1

β
(1)
ij fj(x1)

∣∣∣∣ ≤ m∑
j=1

|β
(1)
ij ||fj(x2)− fj(x1)|,∣∣∣∣ n∧

i=1

α
(2)
ji gi(x2)−

n∧
i=1

α
(2)
ji gi(x1)

∣∣∣∣ ≤ n∑
i=1

|α
(2)
ji ||gi(x2)− gi(x1)|,∣∣∣∣ m∨

i=1

β
(2)
ji gi(x2)−

m∨
i=1

β
(2)
ji gi(x1)

∣∣∣∣ ≤ m∑
j=1

|β
(2)
ji ||gi(x2)− gi(x1)|.

Lemma 2: If Assumption 1 and fj(±0
(2)
j ) = 0,

gi(±0
(1)
i ) = 0 hold, we have the following inequalities

|auij(t)fj(vj(t))− a
x
ijfj(yj(t))| ≤ a∗ijkj|vj(t)− yj(t)|,

|buij(t)fj(vj(t))− b
x
ijfj(yj(t))| ≤ b∗ijkj|vj(t)− yj(t)|,

|avji(t)gi(ui(t))− a
y
ji(t)gi(xi(t))| ≤ a∗∗ji li|ui(t)− xi(t)|,

|bvji(t)gi(ui(t))− b
y
ji(t)gi(xi(t))| ≤ b∗∗ji li|ui(t)− xi(t)|,

where a∗ij = max{|â(1)ij |, |ǎ
(1)
ij |}, b

∗
ij = max{|b̂(1)ij |, |b̌

(1)
ij |},

a∗∗ji = max{|â(2)ji |, |ǎ
(2)
ji |}, b

∗∗
ji = max{|b̂(2)ji |, |b̌

(2)
ji |}, mj, ni are

the same as those in Assumption 1.
Proof: Please see [9] for its proof process.

Lemma 3: For Eq.(9), the following inequalities hold{
sgn(exi (t))D

x
i (t) ≤ −d

(1)
i |e

x
i (t)| + 0

(1)
i |d̂

(1)
i − ď

(1)
i |,

sgn(eyj (t))D
y
j (t) ≤ −d

(2)
j |e

y
j (t)| + 0

(2)
j |d̂

(2)
j − ď

(2)
j |.

(11)

Lemma 4 [39]: Let the real numbers z1, z2, · · · , zN ≥ 0,
p > 1, 0 < q ≤ 1, then the following inequalities hold

N∑
i=1

zpi ≥ N
1−p( N∑

i=1

zi
)p
,

N∑
i=1

zqi ≥
( N∑
i=1

zi
)q
. (12)

Lemma 5 [32]: Suppose there exists a continuous radi-
cally unbounded function V : Rn

→ R+
⋃
{0} such that

1) V (χ ) = 0 ⇒ χ = 0; 2) any solution e(t) of system (9)
satisfies

V̇ (e(t)) ≤ −aV s(e(t))− bV r (e(t))
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for a, b > 0, s > 1, 0 < r < 1. Then the system (9) can be
fixed-time stable, and the settling time can be calculated as
follows

T (e0(t)) ≤ Tmax =
1

a(s− 1)
+

1
b(1− r)

. (13)

III. MAIN RESULTS
Here, we will design the fixed-time synchronization con-
trollers and derive the sufficient conditions to guarantee the
synchronization between the drive MFBAMCNN (1) and the
response MFBAMCNN (6).

To obtain the fixed-time synchronization, we design the
following controllers rui (t), r

v
j (t), which are added to the

response MFBAMCNN (6)

rui (t) = −λ
x
i e
x
i (t)− sgn(e

x
i (t))(ι

x
i + ω

x
i |e

x
i (t − σ (t))|

+µxi |e
x
i (t)|

γ1 + νxi |e
x
i (t)|

γ2 ),

rvj (t) = −λ
y
j e
y
j (t)− sgn(e

y
j (t))(ι

y
j + ω

y
j |e

y
j (t − τ (t))|

+µ
y
j |e

y
j (t)|

γ1 + ν
y
j |e

y
j (t)|

γ2 ), (14)

where λxi , λ
y
j , ω

x
i , ω

y
j , µ

x
i , ν

x
i , µ

y
j , ν

y
j are nonnegative real

numbers to be determined, γ1 > 1, 0 < γ2 < 1 are constants.
For simplicity, we will transform the Eq. (9) and Eq. (10)

to the following inequalities according to Lemma 1 and
Lemma 2. Obviously, we have

Fxi (t) ≤
m∑
j=1

a∗ijkje
y
j (t)+

m∑
j=1

b∗ijkje
y
j (t − τ (t)),

Gxi (t) ≤
m∑
j=1

|α
(1)
ij |kj|e

y
j (t − τ (t))

+

m∑
j=1

|β
(1)
ij |kj|e

y
j (t − τ (t));

Fyj (t) ≤
n∑
i=1

a∗∗ji lie
x
i (t)+

n∑
i=1

b∗∗ji lie
x
i (t − σ (t))

Gyj (t) ≤
n∑
i=1

|α
(2)
ji |li|e

x
i (t − σ (t))

+

n∑
i=1

|β
(2)
ji |li|e

x
i (t − τ (t)). (15)

According to Eq. (14) and Eq. (15), the error system (9)
can be rewritten as

ėxi (t) ≤ Dxi (t)+
m∑
j=1

kja∗ije
y
j (t)

+

m∑
j=1

kj(b∗ij + |α
(1)
ij | + |β

(1)
ij |)e

y
j (t − τ )

− λxi e
x
i (t)− sgn(e

x
i (t))(ι

x
i + ω

x
i |e

x
i (t − σ (t))|

+µxi |e
x
i (t)|

γ1 + νxi |e
x
i (t)|

γ2 ),

ėyj (t) ≤ Dyj (t)+
n∑
i=1

lia∗∗ji e
x
i (t)

+

n∑
i=1

li(b∗∗ji + |α
(2)
ji | + |β

(2)
ji |)e

x
i (t − σ )

− λ
y
j e
y
j (t)− sgn(e

y
j (t))(ι

y
j + ω

y
j |e

y
j (t − τ (t))|

+µ
y
j |e

y
j (t)|

γ1 + ν
y
j |e

y
j (t)|

γ2 ). (16)

Theorem 1: UnderAssumption 1 and the controllers (14),
if the following algebraic conditions hold

m∑
j=1

a∗∗ji li − (d (1)i + λ
x
i ) < 0,

n∑
i=1

a∗ijkj − (d (2)j + λ
y
j ) < 0,

n∑
i=1

(0(1)
i |d̂

(1)
i − ď

(1)
i | − ι

x
i )

+

m∑
j=1

(0(2)
j |d̂

(2)
j − ď

(2)
j | − ι

y
j ) < 0,

n∑
i=1

kj(b∗ij + |α
(1)
ij | + |β

(1)
ij |)− ω

y
j < 0,

m∑
j=1

li(b∗∗ji + |α
(2)
ji | + |β

(2)
ji |)− ω

x
i < 0.

(17)

then the drive MFBAMCNN (1) and the response MFBAM-
CNN (6) can achieve the fixed-time synchronization. Further-
more, the settling time can be calculated by

Tmax =
1

mini,j{n1−γ1µxi ,m
1−γ1µ

y
j } · 2

1−γ1 (γ1 − 1)

+
1

mini,j{νxi , ν
y
j }(1−γ2)

. (18)

Proof: Define the Lyapunov function as follows

V (t) = V1(t)+ V2(t), (19)

where

V1(t) =
n∑
i=1

|exi (t)|,V2(t) =
m∑
j=1

|eyj (t)|. (20)

Obviously, V (t) ≥ 0. Calculating the upper right-hand Dini
derivative of V1(t) with respect to t along the solution of (10),
we have

D+V1(t) =
n∑
i=1

sgn(exi (t))ė
x
i (t)

≤

n∑
i=1

sgn(exi (t))
{
Dxi (t)+

m∑
j=1

kja∗ije
y
j (t)

+

m∑
j=1

kj(b∗ij + |α
(1)
ij | + |β

(1)
ij |)e

y
j (t − τ (t))

− λxi e
x
i (t)− sgn(e

x
i (t))(ι

x
i + ω

x
i |e

x
i (t − σ (t))|

+µxi |e
x
i (t)|

γ1 + νxi |e
x
i (t)|

γ2 )
}
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≤

n∑
i=1

{
− d (1)i |e

x
i (t)| + 0

(1)
i |d̂

(1)
i − ď

(1)
i |

}

+

n∑
i=1

m∑
j=1

a∗ijkj|e
y
j (t)|

+

n∑
i=1

m∑
j=1

b∗ijkj|e
y
j (t − τ (t))|

+

n∑
i=1

m∑
j=1

kj(|α
(1)
ij | + β

(1)
ij )|eyj (t − τ (t))|

−

n∑
i=1

λxi |e
x
i (t)| −

n∑
i=1

ιxi −

n∑
i=1

ωxi |e
x
i (t − σ (t))|

−

n∑
i=1

µxi |e
x
i (t)|

γ1 −

n∑
i=1

νxi |e
x
i (t)|

γ2

=

n∑
i=1

(−d (1)i − λ
x
i )|e

x
i (t)|

+

n∑
i=1

(0(1)
i |d̂

(1)
i − ď

(1)
i | − ι

x
i )

+

n∑
i=1

m∑
j=1

a∗ijkj|e
y
j (t)| −

n∑
i=1

ωxi |e
x
i (t − σ (t))|

+

n∑
i=1

m∑
j=1

kj(b∗ij + |α
(1)
ij | + β

(1)
ij )|eyj (t − τ (t))|

−

n∑
i=1

µxi |e
x
i (t)|

γ1 −

n∑
i=1

νxi |e
x
i (t)|

γ2 . (21)

Similarly, the upper right-hand Dini derivative of V2(t) can
be calculated as follows

D+V2(t) =
n∑
j=1

sgn(eyj (t))ė
y
j (t)

≤

m∑
j=1

sgn(eyj (t))
{
Dyj (t)+

n∑
i=1

lja∗∗ji e
x
i (t)

+

n∑
i=1

li(b∗∗ji + |α
(2)
ji | + |β

(2)
ji |)e

x
i (t − σ (t))

− λ
y
j e
y
j (t)− sgn(e

y
j (t))(ι

y
j + ω

y
j |e

y
j (t − τ (t))|

+µ
y
j |e

y
j (t)|

γ1 + ν
y
j |e

y
j (t)|

γ2 )
}

≤

m∑
j=1

{
− d (2)j |e

y
j (t)| + 0

(2)
j |d̂

(2)
j − ď

(2)
j |

}

+

m∑
j=1

n∑
i=1

a∗∗ji li|e
x
i (t)|

+

m∑
j=1

n∑
i=1

b∗∗ji li|e
x
i (t − σ (t))|

+

m∑
j=1

n∑
i=1

li(|α
(2)
ji | + β

(2)
ji )|exi (t − σ (t))|

−

m∑
j=1

λxj |e
y
j (t)| −

m∑
j=1

ι
y
j

−

m∑
j=1

ω
y
j |e

y
j (t − τ (t))|

−

m∑
j=1

µ
y
j |e

y
j (t)|

γ1 −

m∑
j=1

ν
y
j |e

y
j (t)|

γ2

=

m∑
j=1

(−d (2)j − λ
y
j )|e

y
j (t)|

+

m∑
j=1

(0(2)
j |d̂

(2)
j − ď

(2)
j | − ι

y
j )

+

m∑
j=1

n∑
i=1

a∗∗ji li|e
x
i (t)| −

m∑
j=1

ω
y
j |e

y
j (t − τ (t))|

+

m∑
j=1

n∑
i=1

li(b∗∗ji + |α
(2)
ji | + β

(2)
ji )|eyj (t − τ (t))|

−

m∑
j=1

µ
y
j |e

y
j (t)|

γ1 −

m∑
j=1

ν
y
j |e

y
j (t)|

γ2 . (22)

Merging Eq.(21) and Eq.(22) into Eq.(18), we have

D+V (t) = D+V1(t)+ D+V2(t)

≤

n∑
i=1

{ m∑
j=1

a∗∗ji li − (d (1)i + λ
x
i )
}
|exi (t)|

+

m∑
j=1

{ n∑
i=1

a∗ijkj − (d (2)j + λ
y
j )
}
|eyj (t)|

+

n∑
i=1

(0(1)
i |d̂

(1)
i − ď

(1)
i | − ι

x
i )

+

m∑
j=1

(0(2)
j |d̂

(2)
j − ď

(2)
j | − ι

y
j )

+

m∑
j=1

{ n∑
i=1

kj(b∗ij + |α
(1)
ij | + |β

(1)
ij |)

−ω
y
j

}
|ej(t − τ (t))|

+

n∑
i=1

{ m∑
j=1

li(b∗∗ji + |α
(2)
ji | + |β

(2)
ji |)

−ωxi

}
|ej(t − τ (t))|

−

n∑
i=1

µxi |e
x
i (t)|

γ1 −

n∑
i=1

νxi |e
x
i (t)|

γ2
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−

m∑
j=1

µ
y
j |e

y
j (t)|

γ1 −

m∑
j=1

ν
y
j |e

y
j (t)|

γ2 .

According to the condition (16) and Lemma 4, we get

D+V (t) ≤ −
n∑
i=1

µxi |e
x
i (t)|

γ1 −

n∑
i=1

νxi |e
x
i (t)|

γ2

−

m∑
j=1

µ
y
j |e

y
j (t)|

γ1 −

m∑
j=1

ν
y
j |e

y
j (t)|

γ2

≤ −min
i
{µxi }

n∑
i=1

|exi (t)|
γ1

− min
i
{νxi }

n∑
i=1

|exi (t)|
γ2

−min
j
{µ

y
j }

m∑
j=1

|eyj (t)|
γ1

− min
j
{ν
y
j }

m∑
j=1

|eyj (t)|
γ2

≤ −min
i
{n1−γ1µxi }

( n∑
i=1

|exi (t)|
)γ1

− min
i
{νxi }

( n∑
i=1

|exi (t)|
)γ2

−min
j
{m1−γ1µ

y
j }

( m∑
j=1

|eyj (t)|
)γ1

− min
j
{ν
y
j }

( m∑
j=1

|exj (t)|
)γ2

.

Let a = mini,j{n1−γ1µxi ,m
1−γ1µ

y
j }, b = mini,j{νxi , ν

y
j },

according to the Lemma 4, we have

D+V (t) ≤ −a(V γ11 (t)+ V γ12 (t))− b(V γ21 (t)+ V γ22 (t))

≤ −a · 21−γ1V γ1 (t)− bV γ2 (t).

By Lemma 5, the origin of error system (9) is fixed-time
stable. Equivalently, the drive MFBAMCNNs (1) and the
response system MFBAMACNNs (6) can achieve the fixed-
time synchronization. Furthermore, the settling time can be
calculated by

Tmax =
1

a · 21−γ1 (γ1 − 1)
+

1
b(1− γ2)

=
1

mini,j{n1−γ1µxi ,m
1−γ1µ

y
j } · 2

1−γ1 (γ1 − 1)

+
1

mini,j{νxi , ν
y
j }(1− γ2)

.

The proof is finished.
Remark 3: From the conclusions of Theorem 1, we can

see that the controller parameters µxi , µ
y
j , ν

x
i , ν

y
j , γ1, γ2 do

not appear in the condition (17), but directly determine the

result of the settling time Tmax . That is to say, we do not need
to consider them when we select the control parameters that
meet the condition (17).
Remark 4: According to the settling time formula (18),

we know that Tmax is inversely proportional to µxi , µ
y
j , ν

x
i , ν

y
j

when γ1 and γ2 are fixed.
The conclusions of Theorem 1 can be easily extended to

common BAM cellular neural networks without the memris-
tor. Considering the following drive-response FBAMCNNs

ẋi(t) = −d
(1)
i xi(t)+

m∑
j=1

a(1)ij fj(yj(t))

+

m∑
j=1

b(1)ij fj(yj(t − τ (t)))+
m∑
j=1

c(1)ij w
(1)
j

+

m∧
j=1

α
(1)
ij fj(yj(t − τ (t)))

+

m∨
j=1

β
(1)
ij fj(yj(t − τ (t)))+

m∨
j=1

S(1)ij w
(1)
j

+

m∧
j=1

T (1)
ij w

(1)
j + I

(1)
i ,

ẏj(t) = −d
(2)
j yj(t)+

n∑
i=1

a(2)ji gi(xi(t))

+

n∑
i=1

b(2)ji gi(xi(t − σ (t)))+
n∑
i=1

c(2)ji w
(2)
i

+

n∧
i=1

α
(2)
ji gi(xi(t − σ (t)))

+

n∨
i=1

β
(2)
ji gi(xi(t − σ (t)))+

n∨
i=1

S(2)ji w
(2)
i

+

n∧
i=1

T (2)
ji w

(2)
i + I

(2)
j , t ≤ 0. (23)

u̇i(t) = −d
(1)
i ui(t)+

m∑
j=1

a(1)ij fj(vj(t))

+

m∑
j=1

b(1)ij fj(vj(t − τ (t)))+
m∑
j=1

c(1)ij w
(1)
j

+

m∧
j=1

α
(1)
ij fj(vj(t − τ (t)))

+

m∨
j=1

β
(1)
ij fj(vj(t − τ (t)))+

m∨
j=1

S(1)ij w
(1)
j

+

m∧
j=1

T (1)
ij w

(1)
j + I

(1)
i + s

u
i (t),

v̇j(t) = −d
(2)
j vj(t)+

n∑
i=1

a(2)ji gi(ui(t))
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+

n∑
i=1

b(2)ji gi(ui(t − σ (t)))+
n∑
i=1

c(2)ji w
(2)
i

+

n∧
i=1

α
(2)
ji gi(ui(t − σ (t)))

+

n∨
i=1

β
(2)
ji gi(ui(t − σ (t)))+

n∨
i=1

S(2)ji w
(2)
i

+

n∧
i=1

T (2)
ji w

(2)
i + I

(2)
j + s

v
j (t), t ≤ 0, (24)

where sui (t), s
v
j (t) are designed as follows

sui (t) = −λ
x
i e
x
i (t)− sgn(e

x
i (t))(ω

x
i |e

x
i (t − σ (t))|

+µxi |e
x
i (t)|

γ1 + νxi |e
x
i (t)|

γ2 ),

svj (t) = −λ
y
j e
y
j (t)− sgn(e

y
j (t))(ω

y
j |e

y
j (t − τ (t))|

+µ
y
j |e

y
j (t)|

γ1 + ν
y
j |e

y
j (t)|

γ2 ), (25)

Define the error systems exi (t) = ui(t)− vi(t), e
y
j (t) = vj(t)−

yj(t), i ∈ I, j ∈ J between the drive system (23) and the
response system (24), and according to Assumption 1 and
Lemma 1, we have

ėxi ≤ −d
(1)
i exi (t)+

m∑
j=1

a(1)ij kje
y
j (t)+ s

u
i (t)

+

m∑
j=1

kj
(
b(1)ij + |α

(1)
ij | + |β

(1)
ij |
)
eyj (t − τ (t)),

ėyj ≤ −d
(2)
j eyj (t)+

n∑
i=1

a(2)ji lie
x
i (t)+ s

v
j (t)

+

n∑
i=1

li
(
b(2)ji + |α

(2)
ji | + |β

(2)
ji |
)
exi (t − σ (t)). (26)

For Eq. (23) and Eq. (24), we have the following corollary.

Corollary 1: Under the controllers (25), if the following
algebraic conditions hold

m∑
j=1

a(2)ji li − d
(1)
i − λ

x
i ) < 0,

n∑
i=1

a(1)ij kj − d
(2)
j − λ

y
j ) < 0,

n∑
i=1

kj(b
(1)
ij + |α

(1)
ij | + |β

(1)
ij |)− ω

y
j < 0,

m∑
j=1

li(b
(2)
ji + |α

(2)
ji | + |β

(2)
ji |)− ω

x
i < 0.

(27)

then the drive-response FBAMCNNs (23) and (24) can
achieve the fixed-time synchronization. Furthermore, the set-
tling time can be calculated by Eq. (18).

Proof: The result can be obtained directly by the proof
of Theorem 1.

We can also easily extend the results to the case without
fuzzy logic. Consider the following drive-response memris-
tive BAM cellular neural networks

ẋi(t) = −d
(1)
i (xi(t))xi(t)+

m∑
j=1

a(1)ij (xi(t))fj(yj(t))

+

m∑
j=1

b(1)ij (xi(t))fj(yj(t − τ (t)))

+

m∑
j=1

c(1)ij w
(1)
j + I

(1)
i ,

ẏj(t) = −d
(2)
j (yj(t))yj(t)+

n∑
i=1

a(2)ji (yj(t))gi(xi(t))

+

n∑
i=1

b(2)ji (yj(t))gi(xi(t − σ (t)))

+

n∑
i=1

c(1)ji w
(2)
i + I

(2)
j . (28)

u̇i(t) = −d
(1)
i (ui(t))ui(t)+

m∑
j=1

a(1)ij (ui(t))fj(vj(t))

+

m∑
j=1

b(1)ij (ui(t))fj(vj(t − τ (t)))

+

m∑
j=1

c(1)ij w
(1)
j + I

(1)
i + r

u
i (t),

v̇j(t) = −d
(2)
j (vj(t))vj(t)+

n∑
i=1

a(2)ji (vj(t))gi(ui(t))

+

n∑
i=1

b(2)ji (vj(t))gi(ui(t − σ (t)))

+

n∑
i=1

c(1)ji w
(2)
i + I

(2)
j + r

v
j (t), t ≥ 0. (29)

For Eq.(28) and Eq.(29), we can obtain the following corol-
lary.
Corollary 2: Under the controllers (14), if the following

algebraic inequalities hold

m∑
j=1

a∗∗ji li − (d (1)i + λ
x
i ) < 0,

n∑
i=1

a∗ijkj − (d (2)j + λ
y
j ) < 0,

n∑
i=1

(0(1)
i |d̂

(1)
i − ď

(1)
i | − ι

x
i )

+

m∑
j=1

(0(2)
j |d̂

(2)
j − ď

(2)
j | − ι

y
j ) < 0,

n∑
i=1

kjb∗ij − ω
y
j < 0,

m∑
j=1

lib∗∗ji − ω
x
i < 0,

(30)
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then the drive MBAMCNNs (28) and response MBAMC-
NNs(29) can achieve the fixed-time synchronization. Mean-
while, the settling time can be calculated by Eq. (18).

Proof: The result can be obtained directly by the proof
of Theorem 1.
Remark 5: The research on fixed-time synchronization

of neural networks is still in the initial stage, and the
related research results are still relatively few. We first
studied the fixed-time synchronization problem of drive-
response MFBAMCNNs. The nonlinear feedback controller
(14) we designed is simple in form and contains more freely
adjustable parameters, which can provide convenience for the
design of the actual controller.

IV. NUMERICAL EXAMPLES
Now, we will validate the effectiveness of Theorem 1 and
Corollary 2 by two numerical simulations.
Example 1: Consider the following MFBAMCNNs with

time-varying delays as the drive system

ẋi(t) = −d
(1)
i (xi(t))xi(t)+

2∑
j=1

a(1)ij (xi(t))fj(yj(t))

+

2∑
j=1

b(1)ij (xi(t))fj(yj(t − τ (t)))

+

2∑
j=1

c(1)ij w
(1)
j +

2∧
j=1

α
(1)
ij fj(yj(t − τ (t)))

+

2∨
j=1

β
(1)
ij fj(yj(t − τ (t)))

+

2∨
j=1

S(1)ij w
(1)
j +

2∧
j=1

T (1)
ij w

(1)
j + I

(1)
i ,

ẏj(t) = −d
(2)
j (yj(t))yj(t)+

2∑
i=1

a(2)ji (xi(t))gi(xi(t))

+

2∑
i=1

b(2)ji (yj(t))gi(xi(t − σ (t)))

+

2∑
i=1

c(2)ji w
(2)
i +

n∧
i=1

α
(2)
ji gi(xi(t − σ (t)))

+

2∨
i=1

β
(2)
ji gi(xi(t − σ (t)))+

2∨
i=1

S(2)ji w
(2)
i

+

2∧
i=1

T (2)
ji w

(2)
i + I

(2)
j , t ≥ 0. (31)

The corresponding response MFBAMCNNs are defined as
follows

u̇i(t) = −d
(1)
i (ui(t))ui(t)+

2∑
j=1

a(1)ij (ui(t))fj(vj(t))

+

2∑
j=1

b(1)ij (ui(t))fj(vj(t − τ (t)))

+

2∑
j=1

c(1)ij w
(1)
j +

2∧
j=1

α
(1)
ij fj(vj(t − τ (t)))

+

2∨
j=1

β
(1)
ij fj(vj(t − τ (t)))+

2∨
j=1

S(1)ij w
(1)
j

+

2∧
j=1

T (1)
ij w

(1)
j + I

(1)
i + r

u
i (t),

v̇j(t) = −d
(2)
j (vj(t))vj(t)+

2∑
i=1

a(2)ji (ui(t))gi(ui(t))

+

2∑
i=1

b(2)ji (vj(t))gi(ui(t − σ (t)))

+

2∑
i=1

c(2)ji w
(2)
i +

2∧
i=1

α
(2)
ji gi(ui(t − σ (t)))

+

2∨
i=1

β
(2)
ji gi(ui(t − σ (t)))+

2∨
i=1

S(2)ji w
(2)
i

+

2∧
i=1

T (2)
ji w

(2)
i + I

(2)
j + r

v
j (t), t ≥ 0. (32)

Let the switching jumps 0(1)
i = 1, 0(2)

j = 2, then the memris-
tor weights parameters of the drive-response MFBAMCNNs
(31) and (32) are selected as follows

d (1)1 (x1) =

{
1.2, |x1| ≤ 1,
1.0, |x1| > 1,

d (1)2 (x2) =

{
1.5, |x2| ≤ 1,
1.2, |x2| > 1,

d (2)1 (y1) =

{
1.0, |y1| ≤ 2,
1.2, |y1| > 2,

d (2)2 (y2) =

{
1.5, |y2| ≤ 2,
1.1, |y2| > 2,

a(1)11 (x1) =

{
−1.5, |x1| ≤ 1,
−1.8, |x1| > 1,

a(1)12 (x1) =

{
−0.8, |x1| ≤ 1,
−0.5, |x1| > 1,

a(1)21 (x2) =

{
−0.4, |x2| ≤ 1,
0.4, |x2| > 1,

a(1)22 (x2) =

{
−1.8, |x2| ≤ 1,
−1.5, |x2| > 1,

a(2)11 (y1) =

{
−0.5, |y1| ≤ 2,
0.5, |y1| > 2,

a(2)12 (y1) =

{
−0.5, |y1| ≤ 2,
0.5, |y1| > 2,

a(2)21 (y2) =

{
−0.6, |y2| ≤ 2,
0.6, |y2| > 2,

a(2)22 (y2) =

{
−0.8, |y2| ≤ 2,
0.8, |y2| > 2,

b(1)11 (x1) =

{
−1.2, |x1| ≤ 1,
−1.5, |x1| > 1,

b(1)12 (x1) =

{
−1.2, |x1| ≤ 1,
−0.8, |x1| > 1,

b(1)21 (x2) =

{
−0.1, |x2| ≤ 1,
0.2, |x2| > 1,

b(1)22 (x2) =

{
−1.6, |x2| ≤ 1,
−1.2, |x2| > 1,

b(2)11 (y1) =

{
1.5, |y1| ≤ 2,
1.2, |y1| > 2,

b(2)12 (y1) =

{
−1.2, |y1| ≤ 2,
1.5, |y1| > 2,

b(2)21 (y2) =

{
1.1, |y2| ≤ 2,
1.5, |y2| > 2,

b(2)22 (y2) =

{
2.8, |y2| ≤ 2,
2.2, |y2| > 2,
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FIGURE 4. The phase diagrams of the drive MFBAMCNNs (31).

Note: In the definitions of b(1)ji (yj) and b
(2)
ji (xi), xi and yj are

denoted as xi(t − σ (t)) and yj(t − τ (t)) in order to simplify
the expressions.

Other parameters are shown below.

τ (t) = σ (t) =
et

1+ et
;

fj(x) = tanh(|x| − 1); gi(x) = tanh(|x| − 2);

C (1)
= C (2)

=

[
0.4 0.2
0.2 0.4

]
;

α(1) = α(2) =

[
−0.2 −0.02
−0.01 −0.1

]
;

β(1) = β(2) =

[
−0.1 −0.01
−0.1 −0.1

]
;

S(1) = S(2) =
[
0.1 0.2
0.2 0.1

]
;

T (1)
= T (2)

=

[
0.2 0.1
0.1 0.2

]
; I (1) = I (2) = (0, 0)T ;

w(1)
= w(2)

= (1.2, 1.2)T ;

ϕ
(1)
1 (s) = ψ (1)

1 (s) = 0.1+ 0.2sin(t);

ϕ
(1)
2 (s) = ψ (1)

2 (s) = −0.2+ 0.1cos(t);

ϕ
(2)
1 (s) = ψ (2)

1 (s) = −0.4+ 0.1sin(t);

ϕ
(2)
2 (s) = ψ (2)

2 (s) = 0.6− 0.2cos(t);

0
(1)
i = 1; 02

j = 2;

In the controller (14), to ensure the conditions (17) hold,
we choose the control parameters λx = (2, 2)T , ιx = (2, 2)T ,
ωx = (2.5, 2.5)T , µx = (6, 6)T , νx = (2, 2)T , λy =
(2, 2)T , ιy = (2, 2)T , ωy = (2.5, 2.5)T , µy = (6, 6)T , νy =
(2, 2)T , γ1 = 1.2, γ2 = 0.6, li = kj = 0.5. Next, we will

verify the conditions (17) of Theorem 1. According to the
above parameter values, we have

(a∗ji)2×2 =
[
1.8 0.8
0.4 1.8

]
, (a∗∗ij )2×2 =

[
0.5 0.5
0.6 0.8

]
,

(b∗ji)2×2 =
[
1.5 1.2
0.2 1.6

]
, (b∗∗ij )2×2 =

[
1.5 1.5
1.5 2.8

]
.

By simple calculation, these parameters make the conditions
(17) of Theorem 1 hold. With the help of Matlab, we can
solve the numerical solutions of the drive-responseMFBAM-
CNNs (31) and (32). Fig. 4 shows the phase diagrams of the
drive MFBAMCNNs (31).

Fig. 5 presents the state trajectories between the drive
MFBAMCNNs (31) and the response MFBAMCNNs (32).

Fig. 6 illustrates the error curves of the drive MFBAMC-
NNs (31) and the response MFBAMCNNs (32).

We calculate the settling time Tmax = 3.7154 based on
Eq. (18) in Theorem 1.
Example 2: Consider the following common drive-

response MBAMCNNs without fuzzy logic

ẋi(t) = −d
(1)
i (xi(t))xi(t)+

2∑
j=1

a(1)ij (xi(t))fj(yj(t))

+

2∑
j=1

b(1)ij (xi(t))fj(yj(t − τ (t)))+ I
(1)
i ,

ẏj(t) = −d
(2)
j (yj(t))yj(t)+

2∑
i=1

a(2)ji (yj(t))gi(xi(t))

+

2∑
i=1

b(2)ji (yj(t))gi(xi(t − σ (t)))+ I
(2)
j . (33)
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FIGURE 5. The state trajectories between the drive MFBAMCNNs (31) and the response MFBAMCNNs
(32) under the controllers (14).

FIGURE 6. The state error curves of the drive MFBAMCNNs (31) and the response MFBAMCNNs (32)
under the controllers (14).

The corresponding response system is shown below

u̇i(t) = −d
(1)
i (ui(t))ui(t)+

2∑
j=1

a(1)ij (ui(t))fj(vj(t))

+

2∑
j=1

b(1)ij (ui(t))fj(vj(t − τ (t)))+ I
(2)
i + r

u
i (t),

v̇j(t) = −d
(2)
j (vj(t))vj(t)+

2∑
i=1

a(2)ji (vj(t))gi(ui(t))

+

2∑
i=1

b(2)ji (vj(t))gi(ui(t − σ (t)))+ I
(2)
j

+ rvj (t), (34)
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FIGURE 7. The phase diagrams of the drive system (33).

FIGURE 8. The state trajectories of the drive-response MBAMCNNs (33) and (34) under the
controllers (14).

where the switching jumps 0(1)
i = 1;0(2)

j = 2 and the
memristor weights are given as follows

d (1)1 (x1) =

{
1.2, |x1| ≤ 1,
1.5, |x1| > 1,

d (1)2 (x2) =

{
1.5, |x2| ≤ 1,
2.0, |x2| > 1,

d (2)1 (y1) =

{
1.1, |y1| ≤ 2,
1.3, |y1| > 2,

d (2)2 (y2) =

{
1.05, |y2| ≤ 2,
1.25, |y2| > 2,

a(1)11 (x1) =

{
−1.5, |x1| ≤ 1,
−1.6, |x1| > 1,

a(1)12 (x1) =

{
−0.6, |x1| ≤ 1,
0.4, |x1| > 1,
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FIGURE 9. The state error curves between the drive-response MBAMCNNs(31) and (32) under the
controllers (14).

a(1)21 (x2) =

{
0.4, |x2| ≤ 1,
0.35, |x2| > 1,

a(1)22 (x2) =

{
0.4, |x2| ≤ 1,
0.42, |x2| > 1,

a(2)11 (y1) =

{
0.2, |y1| ≤ 2,
0.25, |y1| > 2,

a(2)12 (y1) =

{
0.56, |y1| ≤ 2,
0.61, |y1| > 2,

a(2)21 (y2) =

{
0.2, |y2| ≤ 2,
0.25, |y2| > 2,

a(2)22 (y2) =

{
0.5, |y2| ≤ 2,
0.56, |y2| > 2,

b(1)11 (x1) =

{
−1.1, |x1| ≤ 1,
−1.3, |x1| > 1,

b(1)12 (x1) =

{
−1.2, |x1| ≤ 1,
−1.05, |x1| > 1,

b(1)21 (x2) =

{
−1.5, |x2| ≤ 1,
−1.3, |x2| > 1,

b(1)22 (x2) =

{
−0.8, |x2| ≤ 1,
−0.9, |x2| > 1,

b(2)11 (y1) =

{
0.45, |y1| ≤ 2,
0.38, |y1| > 2,

b(2)12 (y1) =

{
0.85, |y1| ≤ 2,
1.0, |y1| > 2,

b(2)21 (y2) =

{
−0.60, |y2| ≤ 2,
0.65, |y2| > 2,

b(2)22 (y2) =

{
1.6, |y2| ≤ 2,
1.4, |y2| > 2,

We assume that the memristor weights of the response system
(34) are the same as that of the drive system (33). Other
parameters are shown below

τ (t) = 0.4+ 0.1cos(t); σ (t) = 0.6+ 0.1sin(t);

fj(x) = tanh(|x| − 1); gi(x) = tanh(|x| − 2);

ϕ
(1)
1 (s) = ψ (1)

1 (s) = −0.2; ϕ
(1)
2 (s) = ψ (1)

2 (s) = 0.6;

ϕ
(2)
1 (s) = ψ (2)

1 (s) = 0.4; ϕ
(2)
2 (s) = ψ (2)

2 (s) = −0.8;

Similarly, we choose the control parameters λx = (2, 2)T ,
ιx = (2, 2)T , ωx = (1, 1)T , µx = (4, 4)T , νx = (2, 2)T ,
λy = (2, 2)T , ιy = (2, 2)T , ωy = (1, 1)T , µy = (4, 4)T ,

νy = (2, 2)T , γ1 = 1.5, γ2 = 0.8. Next, we will verify
the conditions (30) of Corollary 2. According to the above
parameter values, we have

(a∗ji)2×2 =
[
1.6 0.6
0.4 0.42

]
, (a∗∗ij )2×2 =

[
0.45 1.0
0.65 1.6

]
,

(b∗ji)2×2 =
[
1.3 1.2
1.5 0.9

]
, (b∗∗ij )2×2 =

[
0.45 1.0
0.65 1.6

]
.

The above parameters make the conditions (30) of Corol-
lary 2 hold. Here is our simulation results.

Fig.8 presents the state trajectories of the drive MBAM-
CNNs (33) and the response MBAMCNNs (34) under the
controllers (14).

Fig. 9 illustrates the state error curves between the drive-
response MBAMCNNs (33) and (34) under the controllers
(14).

We can also calculate the settling time Tmax = 3.2500
based on Eq. (18).
Remark 6: In the existing literature on fixed-time synchro-

nization of neural networks [28], [33], [34], the model and the
fixed-time synchronization controllers proposed in this paper
are more general. The proof process of this paper is easier to
understand.Meanwhile, it can be seen from the two numerical
examples that the settling-time can be easily calculated.

V. CONCLUSION
In this paper, we address the fixed-time synchronization for
the drive-response MFBAMCNNs with time-varying delays.
MFBAMCNNs are a class of neural networks that com-
bine FCNN with MBAMNN, and have more complex struc-
ture and dynamic behavior. Most of previous work did not
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involved such neural networks. Since the discontinuous right-
sides of MFBAMCNNs, we deal with the memristive con-
nection weights by using differential inclusion and set-valued
map theories. By the definition of fixed-time synchronization,
inequality techniques, and Lyapunov stability theory, some
novel criteria are derived to ensure the fixed-time synchro-
nization of the drive-response MFBAMCNNs based on non-
linear feedback controllers. In addition, the settling time can
be obtained by simple calculation. At last, the effectiveness
of our results is validated by two numerical examples.

So far, there are still many worthwhile studies on the
fixed-time stability or synchronization of the MFBAM-
CNN model. For example, some uncertainty, stochastic
phenomena or various impulsive is inevitable in practical
applications [40]–[44]. Therefore, it may be an interesting
problem to study the MFBAMCNN system with uncer-
tainty or stochastic phenomena. Moreover, how to design a
continuous fixed-time synchronization controller, or an adap-
tive controller similar to that in [45] and [46] is also a problem
worth studying in the future.
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