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ABSTRACT In this paper, we consider a heterogeneous mobile cloud computing (HMCC) system that
consists of remote cloud servers, local cloudlets, task offloadingmobile devices (TMDs), non-task offloading
MDs (NTMDs), and radio access networks such as cellular networks andWLANs. TMDs have the capability
of task offloading to remote cloud servers or cloudlets, whereas NTMDs are conventional cellular users
that do not have such capability. By using stochastic geometry, we analyze the outage probability of task
offloading in the MCC system with only remote cloud servers and that in the HMCC with both remote cloud
servers and cloudlets. The analysis provides useful information, i.e., how the varying system parameters
affect the outage probability. From the analysis, we show that there is an intrinsic limitation in reducing the
outage probability in the MCC system due to the outage when accessing remote cloud servers. In addition,
we show that the use of cloudlets is a promising solution to overcome this limitation. However, a tradeoff
exists in using cloudlets due to their deployment and operation costs. Thus, to address this tradeoff, we also
study the optimal cloudlet deployment to maximize the cloud service provider’s profit while guaranteeing
maximum outage probability requirements.

INDEX TERMS Mobile cloud computing, cloudlet, mobile task offloading, stochastic geometry, cloudlet
deployment, profit maximization.

I. INTRODUCTION
Recently, the number of mobile devices (MDs) in use has
grown significantly, and various types of mobile applications
have been emerging [1]. However, some mobile applications,
such as natural language processing and image processing,
cannot be readily executed on MDs since they require a
large amount of computing resources and a large amount of
energy, while MDs have limited computing resources and
limited battery capacity. To resolve this problem, mobile
cloud computing (MCC) is introduced that allows a task for
such applications to be offloaded to cloud servers, i.e., task
offloading [2]. In an MCC system, remote cloud servers
having a considerably larger amounts of computing resources
than MDs are installed in a data center, and MDs can
use the mobile applications that need a large amount of

computing resources by using the computing resources of
the remote cloud servers. Since the data center is located
in a remote place, the MDs connect to the remote cloud
servers through radio access networks, such as 3G, LTE, and
WiMAX [3]. Hence, due to delays and large transmission
power consumption when using the radio access networks,
an outage of task offloading to the remote cloud servers
can occur [4]. To mitigate such an outage problem, recently,
in addition to remote cloud servers, cloud servers installed
in a local place, such as a cafe or a library, are considered
as a part of the MCC system [5]. These cloud servers in
local places are called cloudlets, and MDs are allowed to
connect to them through built-in WLAN access points (APs)
within cloudlets. In general, cloudlets have larger amounts
of computing resources than MDs, but have much smaller
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amounts of computing resources than remote cloud servers.
An MCC system that consists of both remote cloud servers
and cloudlets is called a heterogeneous mobile cloud com-
puting (HMCC) system [6], [7].

In this paper, we consider an HMCC system, where anMD
offloads its task to either the computing resources of remote
cloud servers through cellular networks or that of cloudlets
through their WLAN APs. We analyze the outage probability
of task offloading in the HMCC by using stochastic geome-
try. We first model the MCC system with cellular networks
that has only remote cloud servers, and analyze its outage
probability of task offloading to the remote cloud servers.
Then, we also model theMCC system that has only cloudlets,
and analyze its outage probability of task offloading to the
cloudlets. By using both outage probabilities of task offload-
ing, we derive the outage probability of task offloading in
the HMCC system that consists of both remote cloud servers
and cloudlets.We then study the optimal cloudlet deployment
to maximize the cloud service provider’s (CSP’s) profit by
considering the deployment cost of local cloudlets, the oper-
ation costs of remote cloud servers and local cloudlets, and
the revenue from the task offloading of the MDs.

A. RELATED WORKS AND MOTIVATION
Task offloading is one of the most important research top-
ics related to both MCC and HMCC systems [2], [3], [8].
When the tasks of MDs require a large amount of comput-
ing resources, task offloading can help the MDs to reduce
their energy consumption due to their tasks [9]. However,
task offloading is not always helpful to reduce the energy
consumption since the energy consumption from communi-
cations might be large [9]. In addition, task offloading is not
helpful when it violates the delay requirement of the task [10].
From these backgrounds, most of the existing studies on
task offloading focus on the strategy of an individual MD
for its task offloading under a given system [11]–[18]. They
model the utility of an MD by considering its benefit and cost
from task offloading. Besides, they develop algorithms for
the MD to decide its task offloading such that its utility is
maximized without the outages of task offloading. In other
words, they address task offloading from the viewpoint of
an individual MD. On the other hand, some other studies
consider task offloading from the viewpoint of CSPs, such
as the operation and design of the systems. Specifically,
in [18] and [19], pricing algorithms that can be used to
maximize the profit of the CSP are proposed. They determine
the price of cloud service taking into account the network
conditions. In [20] and [21], the algorithms for designing a
HMCC system with low costs are provided. They determine
where to install cloudlets among the available candidate sites
by considering the installation costs and the average access
delay to offload tasks.

The algorithms for designing the HMCC system in [20]
and [21] can be used only when the design parameters, such
as the number of cloudlets and the amount of computing
resources of cloudlets, are given. In other words, before

designing the HMCC system by using the algorithms, a plan-
ning process for the HMCC system to determine such design
parameters is required. Hence, an analysis that allows us to
easily obtain useful information for planning the system is
also needed and valuable when designing a system. For exam-
ple, many researches have been conducted on the analyses
for cellular networks such as coverage analyses of down-
link (DL) [22], [23] and uplink (UL) [24], [25]. They model
and analyze cellular networks by using stochastic geometry.
In the analyses, the characteristics of the cellular networks
are derived in simple expressions. From the analyses, we can
easily obtain the useful characteristics in various network
settings, which can be used to plan and design cellular net-
works [26]. As in the case of cellular networks, the analysis
on HMCC systems with regard to various design parameters,
such as the intensity of APs, intensity of cloudlets, power
consumption of task offloading, and required data rate for
task offloading, can provide useful information for planning
and designing the HMCC system. Moreover, in the anal-
ysis on HMCC systems, various network settings, such as
the intensity of BSs, number of channels, and transmission
power, can also provide useful information and should be
also considered since radio access networks, such as cellular
networks and WLAN APs, are used to access the cloud com-
puting resources in HMCC systems. However, to the best of
our knowledge, there is no such analytic research on HMCC
systems yet.

In particular, in this paper, we focus on the outage proba-
bility of task offloading that is the one of the most important
performance metric of task offloading in HMCC systems.
Moreover, as mentioned above, mitigating the outage of task
offloading inMCC systems without cloudlets is the one of the
major reasons of deploying the cloudlets in such systems. By
using the analysis of the outage probability, the performance
of task offloading and the effectiveness of deploying cloudlets
with regard to given design parameters and network settings
can be easily obtained. Hence, in these aspects, such an analy-
sis involving various design parameters and network settings
is important for planning and designing HMCC systems. In
addition, the analysis provides a guideline regarding how
many tasks could be successfully offload, which is highly
relevant to the profit of the CSP. Thus, from an economic
view, the analysis allows the CSP to check the marketability
of its HMCC system and to find the optimal number of
cloudlets to be deployed in its HMCC system.

B. OUR CONTRIBUTIONS
The main contributions of this paper are summarized as fol-
lows:

• We provide the analysis for the outage probability of
task offloading in the HMCC system, and this has never
been tried before, to the best of our knowledge. By using
stochastic geometry, we derive the analysis in a simple
expression. This allows us to obtain useful information
regarding the impacts of the various characteristics of the
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HMCC system on the outage probability that are hard to
predict in general, with low complexity. To address the
outage, in the analysis, the characteristics of radio access
networks including UL and DL transmissions such as
their energy consumption, scheduling, and data rates are
incorporated.Moreover, we also consider the correlation
between using remote cloud servers and cloudlets.

• In this work, we specifically address the following sys-
tem dynamics related to the UL transmission that are
not considered in the analysis on the UL transmission
in conventional cellular networks based on stochastic
geometry: two types of MDs having different statistical
properties on the UL transmission power, UL schedul-
ing with a given number of UL channels, and idle UL
channels that represent the UL channels not scheduled
to any MD.

• The analysis leads to insights for the purpose of using
local cloudlets. In the MCC system with only remote
cloud servers, an intrinsic limitation exists in reducing
the outage probability of task offloading to remote cloud
servers due to the outages that occur when MDs try to
connect to the remote cloud servers through the cellular
network. Since such outages are out of the control of
CSPs, the CSPs can deploy cloudlets to reduce the out-
age probability of task offloading in addition to resolv-
ing the drawbacks of cloud servers, i.e., delay and large
transmission power consumption.

• As the application of the analysis, we consider the eco-
nomic tradeoff in using local cloudlets by studying the
optimal cloudlet deployment that maximizes the profit
of a CSP while considering the maximum outage prob-
ability requirement. From it, we show that cloudlets can
be used in order that CSPs obtain more revenue.

C. PAPER STRUCTURE
The rest of the paper is organized as follows. Section II
presents the HMCC system model. In Section III, the outage
probability of task offloading in the MCC system having
only remote cloud servers is analyzed. In Section IV, we first
analyze the outage probability of task offloading in the MCC
system having only local cloudlets. By using both outage
probabilities, we then extend the outage probabilities to that
in an HMCC system, and study the optimal cloudlet deploy-
ment maximizing the CSP’s profit. We provide results and
discussions in Section V and finally conclude this paper in
Section VI.

II. SYSTEM MODEL
We consider an HMCC system consisting of remote cloud
servers, local cloudlets, and MDs.1 Cloud servers are located
in a data center with large amounts of computing resources
that MDs can use at any time they want. On the other hand,
cloudlets are located in the places near MDs, such as a

1In the rest of this paper, we omit ‘‘remote’’ from remote cloud servers
and ‘‘local’’ from local cloudlets for convenience.

cafe or a library, where only a limited number of servers can
be located. Hence, their computing resources are limited and
finite. In addition, we also consider a cellular network and
the WLAN APs, which are used to access the computing
resources of cloud servers and cloudlets, respectively. The
WLAN APs are installed in cloudlets.

Since MDs that do not use the cloud computing resources
also exist in the cellular network, we consider two types of
MDs: task offloading MDs (TMDs) and non-task offload-
ing MDs (NTMDs). The TMDs have the capability of task
offloading, while the NTMDs do not have the capability,
i.e., the NTMDs are conventional cellular users. When a
TMD executes its task, it decides how to execute the task:
either execution by using its own computing resources,
i.e., mobile execution, or execution by using the cloud com-
puting resources of cloud servers or cloudlets, i.e., cloud
execution.

A. TASK OFFLOADING MODEL
We define a task model that considers the amount of
the required energy for mobile execution, EM (J), delay
requirement, Treq(sec), execution time for mobile execution,
TM (sec), execution time for cloud execution, TC (sec), size of
the input data for cloud execution, Sin(bits), and size of the
result data from cloud execution, Sres(bits). We assume that
the tasks in our system are identical.2 Then, an outage of task
offloading occurs if

• the amount of required energy for cloud execution is
larger than that for mobile execution or

• cloud execution cannot satisfy the delay requirement of
the task.

In general, the amount of required energy for cloud execu-
tion of a TMD varies according to conditions such as its loca-
tion and channel condition. On the other hand, the amount of
required energy formobile execution of a TMD is not affected
by such conditions. The amount of required energy for mobile
execution, EM (J), is given by EM = PM ·TM , where PM is the
constant power consumption of mobile execution. Note that
this derivation of EM is widely used in many researches on
MCC [13]–[15], [17]. Then, EM becomes constant from the
assumption of identical tasks, implying identical TM .

A TMD can conduct a cloud execution by using either
cloud servers or cloudlets. For cloud execution using cloud
servers, first the TMD transmits the input data for executing
its task to the cloud servers through the cellular network with
UL transmission. After transmitting the input data, the cloud
servers execute the task and transmit the result data to the
TMD, i.e., the TMD receives the result data through the cel-
lular network with DL reception. The amount of the required
energy for the cloud execution using cloud servers, EC (J),
is given by EUL + EDL , where EUL and EDL are the energy

2It is worth noting that we assume identical tasks for the sake of simple
presentation. By considering k-type TMDs having different types of tasks,
the identical tasks can be generalized to k-types of tasks having different
characteristics. The way to consider k-type TMDs is described in footnote 3.
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consumption for UL transmission and DL reception, respec-
tively. Note that EUL depends on the time duration of UL
transmission, TUL, trans(s) and the channel condition of the
TMD due to the UL power control scheme. On the other
hand, EDL can be modeled by using the time duration of
DL reception, TDL, trans(s) and the RF modem power con-
sumption, which is a constant [27]. Then, when EC > EM ,
the outage of task offloading to cloud servers occurs. In our
model, we assume that for each cloud execution, TUL, trans
and TDL, trans have fixed values satisfying the delay require-
ment of the task, i.e., TUL, trans+TDL, trans+TC ≤ Treq. Then,
satisfying the delay requirement is equivalent that both UL
transmission and DL reception should satisfy certain levels
of data rates given by RUL = Sin/TUL, trans(bps) and RDL =
Sres/TDL, trans(bps), respectively.
We assume that one WLAN AP is installed on each

cloudlet, and for each task offloading to cloudlets, a TMD
uses a single cloudlet. Each cloudlet can serve at most Nmax

cl
TMDs due to its limited computing resources. For cloud exe-
cution using a cloudlet, the TMD should be located within the
connection range of the WLAN AP installed in the cloudlet.
Then, the TMD transmits the input data to the cloudlet and
receives the result data from the cloudlet. Similar to the cloud
execution using cloud servers, the amount of the required
energy for the cloud execution using cloudlets,EclC (J), is given
by EclUL +E

cl
DL , where E

cl
UL and EclDL are the energy consump-

tion for UL transmission and DL reception, respectively. The
required data rates for UL transmission and DL reception are
also given by RclUL(bps) and R

cl
DL(bps), respectively.

For the convenience of the analysis in Section III, in the
following of this paper, we use power consumptions instead
of energy consumptions, e.g., PUL =

EUL
TUL, trans

instead of EUL .
However, we cannot directly compare the power consump-
tions instead of comparing the energy consumptions since
for each energy consumption, the time duration in which
energy is consumed is different. To resolve this, we normalize
each power consumption by the time duration of UL trans-
mission for cloud execution using cloud servers, TUL, trans.
For example, let the time duration of mobile execution be
TM (s). Then, the power consumption of mobile execution is
given by EM

TM
(watt). However, for the convenience, we use the

normalized power consumption of mobile execution obtained
by PM =

EM
TM
·

TM
TUL, trans

(watt) instead of EMTM (watt).

B. NETWORK MODEL
We consider a networkmodel consisting of a single-tier cellu-
lar network andWLANAPs installed in cloudlets. The BSs of
the cellular network are spatially distributed in R2 according
to a homogeneous Poisson point process (PPP)9 = {mi; i =
1, 2, 3, . . .} with intensity λ, where mi ∈ 9 is the location
of the i-th BS. The cloudlets, i.e., the WLAN APs, are also
spatially distributed in R2 according to a homogeneous PPP
9cl = {ci; i = 1, 2, 3, . . .} with intensity λcl . The MDs
are spatially distributed in R2 according to a homogeneous
PPP 8 = {ui; i = 1, 2, 3, . . .} with intensity λu. Each

MD associates to the base station (BS) that provides the
best average link quality to it, i.e., the nearest BS to it. We
assume that the probability that an MD is a TMD is pT .
Then, the TMDs are spatially distributed in R2 according
to a homogeneous PPP 8T with intensity λTu = pTλu, i.e.,
a thinning PPP from the homogeneous PPP 8 with proba-
bility pT .3 The remaining MDs from the homogeneous PPP
8 are the NTMDs, and they constitute a homogeneous PPP
8NT with intensity λNTu = pNTλu, where pNT = 1 − pT .
The path loss is modeled as d−α , where d is the distance
between an MD and a BS, and α is the path-loss exponent.
We consider the Rayleigh fading for the channel gain h, and
thus, an independent exponential random variable with a unit
mean.

For the cellular network, we consider N UL channels
and N DL channels. We assume that all NTMDs have the
data to transmit and all TMDs also have the input data to
transmit for task offloading.4 We also assume that each MD
can use at most one UL channel and conducts the truncated
channel inversion power control [25]. The MD controls its
UL transmission power such that the received power at the
BS becomes a certain constant, called a cutoff threshold. For
the generality of the model, we denote the cutoff thresholds
for TMDs and NTMDs by ρT and ρNT , respectively. If an
MD requires its UL transmission power to exceed its usable
UL transmission power due to power control, then the MD
gives up its UL transmission. In our system, the usable UL
transmission power of an NTMD is determined by its maxi-
mum UL transmission power. On the other hand, the usable
UL transmission power of a TMD is determined by con-
sidering the power consumption for its task offloading in
order that the task offloading outage does not occur. The
details for determining the usable UL transmission power of
a TMD is explained in Section III. We denote the usable UL
transmission power of NTMDs and TMDs by PNTu and PTu ,
respectively.

Each WLAN AP has a connection range with radius dcl
and the TMDs within the range can access the corresponding
cloudlet. Note that the NTMDs do not use the WLAN APs.

III. ANALYSIS OF TASK OFFLOADING IN MCC WITH
ONLY REMOTE CLOUD SERVERS
In this section, we present the modeling and analysis of the
outage probability of task offloading in the MCC system
where cloudlets are not deployed. For task offloading to
the cloud servers, a TMD should be connected to the cloud
servers through the cellular network. The outage of its task
offloading to the cloud servers does not occur if and only if
all the following conditions are satisfied.

3We can generalize the TMDs as k-type TMDs having different types of
tasks by considering k thinning PPPs from the PPP 8 with corresponding
probabilities, i.e., {plT }l=1,...,k such that pNT +

∑
l=1,...,k p

l
T = 1. Then,

the analyses in this paper can be easily extended for k-type of TMDs.
4We can easily generalize that the NTMDs and TMDs have the data

with probabilities by thinning the PPPs of the NTMDs and TMDs with the
probabilities.
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1) The total transmission power consumption of the TMD,
i.e., PUL + PDL , is lower than the power consumption
of mobile execution, PM .5

2) The TMD is scheduled for UL transmission to transmit
its input data.

3) TheUL data rate of the TMD is higher than the required
UL data rate, RUL .

4) The TMD is scheduled for DL transmission to receive
its result data.

5) TheDL data rate of the TMD is higher than the required
DL data rate, RDL .

We assume that if the UL transmission for the task offload-
ing succeeds, i.e., conditions 2 and 3 are satisfied, then
the DL transmission for the task offloading also succeeds,
i.e., conditions 4 and 5 are satisfied. This assumption is
reasonable since the cellular network considers a quality-of-
service (QoS) class identifier (QCI) of MDs to satisfy the
QoS requirements of theMDs such as delay requirements and
minimum data rates [28]. In addition, the transmission power
of the BS for DL transmission is much higher than that of the
MD for UL transmission and the interference coordination
schemes can be conducted. That is, we only consider the
outage due to conditions 1, 2, and 3. Note that the analyses
for the outage probability due to conditions 1, 2, and 3 are
presented in Sections III-A, III-B, and III-C, respectively.
Next, the analysis of the outage probability of task offloading
to cloud servers is provided in Section III-D. Note that in this
section, we provide the analyses onNTMDs if they are related
with the outage probability of task offloading.

A. ANALYSIS OF THE TRUNCATION OUTAGE PROBABILITY
For UL transmission, MDs control their transmission power
using truncated channel inversion as described in Section II.
Then, the MDs are divided into two groups on the basis
of whether the required transmission power for the channel
inversion is within their usable UL transmission power or not.
The group of the MDs whose required transmission power
is within the usable UL transmission power is called an
active group, and the group of the other MDs is called
an inactive group. The MDs in the active group, called
the active MDs, can transmit their UL data, while the
MDs in the inactive group, called the inactive MDs,
give up their UL transmission, i.e., a truncation outage
occurs.

The usable UL transmission power of TMDs is different
from that of NTMDs due to task offloading. A TMD does not
offload its task if its UL transmission power from channel
inversion power control, PUL , is larger than PM −PDL . Thus,
the usable UL transmission power of the TMD is determined
as

PTu = min
[
PM − PDL ,PMDmax,UL

]
, (1)

5Note that we can compare the power consumptions instead of the energy
consumptions since we use the normalized power consumptions as described
in Section II.

where PMDmax,UL is the maximum UL transmission power of
MDs. On the other hand, the usable UL transmission power of
NTMDs is decided as PNTu = PMDmax,UL . Then, with the usable
UL transmission power and the cutoff threshold of each of
TMDs and NTMDs, we define the cutoff distances of TMDs

and NTMDs, dT and dNT , as dT =
(
PTu
ρT

) 1
α

and dNT =(
PNTu
ρNT

) 1
α
, respectively. A TMD becomes inactive, i.e., the

truncation outage occurs, if its distance from the nearest BS
is larger than dT , whereas an NTMD becomes inactive if
its distance from the nearest BS is larger than dNT . Thus,
the truncation outage probability for a typical TMD, OT

p ,
is obtained by a void probability that depends on the intensity
of BSs, λ, i.e.,

OT
p = e−πλd

T 2
. (2)

Similarly, the truncation outage probability for a typical
NTMD, ONT

p , is obtained as

ONT
p = e−πλd

NT 2
. (3)

Note that the truncation outage probability for an NTMD
is not related to the outage probability of task offloading.
However, it will be used for the analysis of outage proba-
bility of task offloading presented in the following sections.
From (2), we see that the truncation outage probability for
a TMD decreases as the intensity of BSs, λ, increases and
its cutoff distance becomes longer, i.e., when its usable UL
transmission power becomes larger or its cutoff threshold
becomes lower.

B. ANALYSIS OF THE SCHEDULING OUTAGE PROBABILITY
For the UL transmission of an active MD, it should be sched-
uled to use an UL channel. That is, a scheduling outage
occurs when no UL channel is available to the MD due to
the limited number of the UL channels. For each UL channel,
a BS chooses one MD to be scheduled among its active MDs
that are not only within its Voronoi cell but also within their
cutoff distances from it. We assume that when the number
of the active MDs is larger than the number of UL channels,
the BS chooses the MDs to be scheduled randomly with the
same probability. Thus, the scheduling outage probabilities
for active TMDs and NTMDs are same.

We first derive the probability distribution of the number
of the active MDs in the tagged BS with which a typical
active MD is associated, i.e., pact . Note that in the number
of the active MDs in the tagged BS, the typical active MD
is also included. In general, the number of the MDs in a
BS is proportional to its Voronoi cell size. Thus, previous
works [22], [23], [29], where the DL data rate of the cellular
network is analyzed, utilize the size distribution of Voronoi
cells provided in [30]. However, in our system, to be the
active MDs in a BS, the MDs should be not only within the
Voronoi cell but also within their cutoff distances from it.
Thus, to derive pact , we require a new approach considering
both Voronoi cells and the cutoff distance.
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FIGURE 1. Part of the network model in 9 km2 with λ = 5, λu = 100, and
different values of ρ0. The squares represent the BSs, the dots connected
to their BS represent the active MDs, and the remaining dots denote the
inactive MDs. (a) Case for ρ0 = −65 dBm. The circle represents the region
from the cutoff distance. (b) Case for ρ0 = −70 dBm.

According to the cutoff distance of MDs and the intensity
of BSs, we have two different cases to approximate the num-
ber of active MDs, as in Fig. 1. When the cutoff distance is
small or the intensity of BSs is sparse, the number of active
MDs in a BS is proportional to the size of a circle with
a radius of the cutoff distance, as in Fig. 1a. In this case,
we can approximate the probability distribution of the number
of active TMDs in the tagged BS of a typical active MD as
the probability distribution of the number of TMDs within a
circle with a radius of their cutoff distance, dT , conditioning
that the typical active MD is in the circle and the probability
distribution is obtained as

pact,TC (k) = e−λ̂T

(
λ̂T

)k−1
(k − 1)!

, (4)

where λ̂T = λTu πd
T 2. It is worth noting that the probability

distribution pact,TC depends on the cutoff distance dT since the
size of the circle considered in the probability distribution is
determined by the cutoff distance. In a similar way, the prob-
ability distribution of the number of NTMDs within a circle
with a radius of their cutoff distance, dNT , conditioning that
the typical active MD is in the circle, pact,NTC , is obtained by
substituting λ̂T in (4) with λ̂NT = λNTu πdNT 2.

On the other hand, when the cutoff distance is large or the
intensity of BSs is dense, almost all MDs in a BS are active,
as in Fig. 1b. In this case, we can approximate the probability
distribution as the probability distribution of the number of
TMDs in the Voronoi cell of the tagged BS. Then, by using
the size distribution of Voronoi cells in [30], the probability
distribution is obtained as [23]

pact,TV (k) =
3.53.50(k + 3.5)
(k − 1)!0(3.5)

×

(
λTu

λ

)k−1 (
3.5+

λTu

λ

)−(k+3.5)
, (5)

where 0(x) =
∫
∞

0 tx−1e−tdt . Note that we can obtain the
probability distribution of active NTMDs, pact,NTV (k), by sim-
ply replacing λTu in (5) with λNTu .

Let pact,T and pact,NT be the probability distributions of
the number of active TMDs and NTMDs in the tagged BS,
respectively. As mentioned above, pact,T and pact,NT depend
on the corresponding cutoff distance and the intensity of BSs.
Thus, we approximate them by appropriately using the four
distributions, i.e., pact,TC , pact,NTC , pact,TV , and pact,NTV , accord-
ing to the cutoff distances and the intensity of BSs. To this
end, we propose a threshold-based approximation, in which
the approximation for pact,T is chosen among pact,TC and
pact,TV according to its corresponding cutoff distance dT and
the threshold γ act . Similarly, the approximation for pact,NT

is also chosen among pact,NTC and pact,NTV according to dNT

and γ act .
We now provide the rationale for the derivation of the

threshold, γ act . As the cutoff distance becomes larger,
the expected number of MDs within a circle with a radius
of the cutoff distance, conditioning that the tagged MD is
in the circle (e.g., for TMDs, the expected value of pact,TC )
increases and will be equal to the expected number of MDs in
Voronoi cells (e.g., for TMDs, the expected value of pact,TV ).
Note that the expected number of MDs in an arbitrary area
is proportional to the area. Thus, the same expected number
of MDs implies that the circle is large enough such that the
probability distribution of the number of active MDs can be
approximated by that of MDs in the Voronoi cell. Hence,
we determine the threshold, γ act , as the distance that makes
the expected number of MDs within the circle equal to that
of MDs in Voronoi cells. Then, the threshold γ act is obtained
as a function of the intensity of BSs, λ,

γ act (λ) =

√
4.5

3.5πλ
. (6)

The calculation of the threshold in (6) is provided in
Appendix A. Note that the threshold depends only on the
intensity of BSs λ, and hence, the same threshold in (6) is
used for TMDs and NTMDs.

We then approximate the probability distribution pact,T

by adopting the threshold-based approximation method as
mentioned earlier. In the approximation method, one of pact,TC
and pact,TV is chosen as the approximation for pact,T according
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FIGURE 2. Cumulative probability distribution of pact,T ’s varying cutoff
distances, dT , from simulation and their approximations by using pact,T

C
and pact,T

V , with λ = 5 and λT
u = 100. Then, the threshold γ act (λ) is given

by 286.1 m.

to the cutoff distance dT and the threshold γ act (λ) in (6).
When the cutoff distance dT is shorter than the threshold,
we choose pact,TC , and otherwise, we choose pact,TV as

pact,T =

{
pact,TC , if dT < γ act (λ)
pact,TV , if dT ≥ γ act (λ).

(7)

For the probability distribution pact,NT , we choose it same
as in (7) by using pact,NTC , pact,NTV , and dNT . Then, since
TMDs and NTMDs are independently distributed, we can
approximate the probability distribution of the number of
active MDs in the tagged BS, pact , as

pact (k) =
∑

lT+lNT=k

{
pact,T (lT )pact,NT (lNT )

}
,

where lT and lNT are positive integer-valued.
In Fig. 2, pact,T ’s varying cutoff distances, dT , from sim-

ulation and their approximations in (7) are shown. We can
see that as the cutoff distance becomes longer or shorter
than the threshold, the approximation of pact,T becomes more
accurate. This trend is also applicable to the approximation
of pact,NT . Note that for dT < γ act (λ), the approximations
are different each other according to dT since pact,TC depends
on the cutoff distance, dT , which determines the radius of
the circle for pact,TC . On the other hand, for dT ≥ γ act (λ),
the approximations have a same probability distribution,
pact,TV , since pact,TV does not depend on dT .
We now derive the scheduling outage probability as the

following theorem.
Theorem 1: The scheduling outage probability for a typi-

cal active MD, Osc, is given by

Osc =

∞∑
k=N+1

pact (k) ·
k − N
k

. (8)

Proof: The typical active MD is always scheduled if
the number of the active MDs in the tagged BS is less
than or equal to the number of channels N . On the other

hand, when the number of the active MDs is greater than
N , the typical MD is scheduled with the same probability
with the other active MDs. Thus, the scheduling probability
with the given number of the active MDs, nact , is equal to
1/nact . Then, the scheduling outage probability for the typical
MD with the given number of the active MDs, k ≥ N + 1,
is obtained as

pact (k) ·
k − N
k

.

By summing it over all k ≥ N + 1, the scheduling
outage probability for a typical active MD is obtained as
in (8).

From (8) in Theorem 1, we can see that the scheduling out-
age probability decreases as N becomes large. Suppose that
N is given by N ′, and then, the scheduling outage probability
is obtained as

pact (N ′ + 1)
N ′ + 1

+
2pact (N ′ + 2)

N ′ + 2
+

3pact (N ′ + 3)
N ′ + 3

+ · · · .

On the other hand, when N is given by N ′ + 1, it is obtained
as

pact (N ′ + 2)
N ′ + 2

+
2pact (N ′ + 3)

N ′ + 3
+ · · · .

Then, we can see that compared with the scheduling outage
probability when N = N ′ + 1, the scheduling outage proba-
bility when N = N ′ has the following additional terms in the
summation:

pact (N ′ + 1)
N ′ + 1

+
pact (N ′ + 2)
N ′ + 2

+
pact (N ′ + 3)
N ′ + 3

+ · · · ,

where all terms are positive. Thus, it is obvious that the
scheduling outage probability decreases as N becomes large.
On the other hand, it increases when the probability that
the number of active MDs in the tagged BS is larger than
N + 1 becomes large. As in (4) and (5), the probability of
the number of active MDs in the tagged BS increases in
general as the intensity ofMDs or the cutoff distance becomes
large.

C. ANALYSIS OF THE SINR OUTAGE PROBABILITY
For the UL transmission of a scheduled TMD, the required
UL data rate should be satisfied to offload the task within
the target delay requirement. Since an MD can use at most
one UL channel, in our system model, the required UL data
rate can be equivalently expressed as the required UL SINR.
Hence, we here derive the UL SINR outage probability for an
active scheduled TMD.

Without loss of generality, the UL SINR analysis is con-
ducted on a tagged BS located at the origin. According to
Slivnyak’s theorem [31], the statistical properties on the coex-
isting PPPs do not change due to conditioning on placing a
BS at the origin. Thus, the UL SINR outage analysis for a BS
at the origin can be applied to the other BSs. The UL SINR
outage probability for a typical active scheduled TMD,OT

sinr ,
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is calculated as follows [25]:

OT
sinr = P

{
ρT ho
n0 + I

≤ θ

}
= P

{
ho ≤

θ

ρT
(no + I)

}
= EI

[
1− e

−
θ

ρT
(n0+I)

]
= 1− e

−
θno
ρT LI

(
θ

ρT

)
, (9)

where ho is the channel gain between the BS and the typ-
ical TMD at the tagged channel, n0 is the noise power, θ
is the SINR threshold, I is a random variable representing
the aggregate interference at the BS from other active MDs
scheduled on the tagged channel, and LI (·) is the Laplace
transform of its probability density function. The random
variable I is given by

∑
ui∈8̃

Pihi‖ui‖−α , where 8̃ is the
point process that consists of interfering MDs on the tagged
channel, hi is the channel gain between the BS and the inter-
feringMD, and Pi is the transmission power of the interfering
MD. To model the interference from other active MDs, I,
the soft-core process is more appropriate than the PPP since
the interfering active MDs have a correlation among them.
Nevertheless, many studies ignore the correlation among the
interfering active MDs and model the interference by using
the PPP since the soft-core process is not tractable and the
correlation is weak [24], [25].

We analyze the UL SINR outage probability in a simi-
lar way in [25]. However, we consider two types of MDs,
i.e., TMDs and NTMDs, which have different statistical
properties on the UL transmission power, whereas only one
type of MDs is considered in [25]. Thus, we should address
their different statistical properties when deriving I, since the
interfering MDs consist of both types of MDs. In addition,
contrary to [25], we do not assume the saturation condition
with which each BS is assumed to have at least one MD for
each UL channel. In other words, some UL channels in some
BSs might not be used by any user in our system. We call
those UL channels idle UL channels. Thus, when deriving I,
we should also consider the different statistical properties due
to the idle UL channels.

As mentioned above, in our system, interfering MDs com-
prise two types of MDs. We obtain the statistical property on
the interfering MDs as in the following lemma.
Lemma 1: Let the interfering MDs from the other BSs at

the tagged UL channel be modeled as an independent PPP.
Then, the probability that a typical interfering MD is a TMD,
p̃T , is obtained as

p̃T =
pT (1−OT

p )

pNT (1−ONT
p )+ pT (1−OT

p )
,

where OT
p is the truncation outage probability for a typical

TMD in (2) andONT
p is that for a typical NTMD in (3). Then,

the probability that a typical interfering MD is an NTMD,
p̃NT , is obtained as p̃NT = 1− p̃T .

Proof: Adifferent type ofMDs has a different truncation
outage probability, (2) or (3), due to the different usable UL
transmit power and cutoff thresholds. Thus, the probability
that a typical active MD is an active NTMD is given by
pNT (1 − ONT

p ), and the probability that a typical active MD
is an active TMD is given by pT (1−OT

p ). Then, p̃T and p̃NT
are obtained as this lemma, since each BS randomly chooses
an UL scheduled MD among both active TMDs and active
NTMDs.

In addition, in our system, some idle UL channels exist in
some BSs. To address them in deriving I, we assume that the
interferingMDs constitute a homogeneous PPPwith intensity
(1− pidle)λ, where pidle is the probability that an UL channel
in a typical BS is idle. The probability pidle is given by the
following lemma. We skip the proof of the lemma since it
can be easily proved.
Lemma 2: The probability that an UL channel in a typical

BS is idle, pidle, is obtained as

pidle =
N∑
k=0

p̂act (k) ·
N − k
N

, (10)

where p̂act is the probability distribution of the number of
active MDs in the typical BS.

For Lemma 2, the probability distribution of the number
of the active MDs in a typical BS, p̂act , should be derived.
Since it can be derived in a similar way to the probability
distribution of the number of activeMDs in the BSwithwhich
a typical active MD is associated, pact , as in Section III-B, we
provide the details of the derivation of p̂act in Appendix B.
From Lemmas 1 and 2, the UL SINR outage probability of

a typical active scheduled TMD is derived as the following
theorem.
Theorem 2: In a cellular network with two types of MDs,

let us assume that the interfering MDs constitute a PPP
with intensity (1 − pidle)λ and their transmit powers are
independent, where pidle is given by (10). Then, the UL SINR
outage probability for a typical active scheduled TMD, OT

s ,
is given by

OT
sinr = 1−exp

−θn0
ρT
−2θ

2
α

p̃NT (ρNT
ρT

)2
α

ξ

(
PNTu
ρNT

, α

)

+ p̃T ξ
(
PTu
ρT
, α

))∫
∞

θ−
1
α

y
yα + 1

dy

, (11)

where p̃T and p̃NT are given by Lemma 1, and ξ (x, α) is given
by

ξ (x, α) =
γ
(
2, π(1− pidle)λx

2
α

)
1− exp

(
−π (1− pidle)λx

2
α

) ,
where γ (a, b) =

∫ b
0 t

a−1e−tdt is the lower incomplete
gamma function.

Proof: See Appendix C.
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Theorem 2 provides the UL SINR outage probability for a
typical active scheduled TMD in a simple expression. More-
over, when α is an integer, the integral in (11) is reduced in a
closed-form expression [25]. For example, for α = 4, the UL
SINR outage probability is simplified as

OT
sinr = 1− exp

−θn0
ρT
−
√
θ

p̃NT
√
ρNT

ρT
ξ

(
PNTu
ρNT

, 4
)

+ p̃T ξ
(
PTu
ρT
, 4
))

arctan(
√
θ )

.
Theorem 2 shows that the UL SINR outage probability
decreases when the UL SINR threshold, θ , becomes small.
In addition, it also decreases as the cutoff threshold for
TMDs, ρT , increases. However, note that when ρT increases,
the truncation outage probability also increases. Thus, to opti-
mize the total outage probability, ρT should be properly
chosen as will be shown later. Moreover, the UL SINR
outage probability decreases as pidle increases. As shown in
Lemma 2, pidle increases asN becomes larger, and thus, larger
N is always more favorable to reduce the outage probability
as will be shown later since the scheduling outage probability
also decreases when N becomes large.

D. OUTAGE PROBABILITY OF TASK OFFLOADING TO
REMOTE CLOUD SERVERS
As mentioned at the beginning of this section, there are three
conditions in order that a TMD connects to cloud servers
through the cellular network and successfully offloads its
task to the cloud servers: 1. being active, 2. being scheduled,
and 3. satisfying the required UL data rate. Thus, by com-
bining these conditions and the outage probability analyses
in (2), (8), and (11), the outage probability that a TMD cannot
offload its task to cloud servers, Ot , is derived as

Ot = OT
p + (1−OT

p )Osc + (1−OT
p )(1−Osc)OT

sinr .

(12)

IV. ANALYSIS OF TASK OFFLOADING IN HMCC
In this section, we present the analyses of the outage prob-
abilities of task offloading in the MCC system having only
cloudlets and in the HMCC system where both cloud servers
and cloudlets exist. We also study the cloudlet deployment
problem maximizing the profit of a CSP.

A. OUTAGE PROBABILITY OF TASK OFFLOADING TO
LOCAL CLOUDLETS
For task offloading to cloudlets, a TMD connects to a cloudlet
by using the WLAN AP installed in the cloudlet. The outage
of the task offloading to cloudlets does not occur if and only
if a TMD satisfies all the following conditions:

1) The TMD is within the connection range of the WLAN
AP installed in the cloudlet.

2) TheUL data rate of the TMD is higher than the required
UL data rate, RclUL .

3) TheDL data rate of the TMD is higher than the required
DL data rate, RclDL .

4) The TMD is scheduled to use the computing resources
of the cloudlet.

The last condition comes from the limited computing
resources of cloudlets.

We assume that the connection range of the WLAN AP is
determined to be short enough such that the energy consump-
tion for the cloud execution using cloudlets, EclC (J), is always
less than that of mobile execution, and both UL and DL trans-
missions always satisfy the required data rates for the delay
requirement, i.e., RclUL and RclDL .

6 Then, the satisfaction of
condition 1 implies that conditions 2 and 3 are also satisfied.
Thus, we only consider the outage due to conditions 1 and
4, i.e., the outage due to the connection range of the WLAN
AP and the limited number of serving TMDs of cloudlets.
Note that the analyses for the outage probability due to con-
ditions 1 and 4, are presented in Sections IV-A.1 and IV-A.2,
respectively. Then, the analysis of the outage probability of
task offloading to cloudlets is provided in Section IV-A.3.

1) ANALYSIS OF THE RANGE OUTAGE PROBABILITY
AWLANAP is installed in its corresponding cloudlet and has
the connection range dcl . Thus, when a TMD is not in the con-
nection range of any WLAN AP, the TMD cannot offload its
task to cloudlets, i.e., a range outage occurs. Hence, the range
outage probability is given by the probability that any cloudlet
does not exist within the distance dcl from the TMD. Since
the cloudlets constitute a homogeneous PPP, the range outage
probability for a typical TMD, Ocl

r , can be obtained by the
void probability of a PPP with the distance dcl as

Ocl
r = e−πλcld

2
cl . (13)

From (13), we see that the range outage probability decreases
as dcl or λcl becomes large.

2) ANALYSIS OF THE CLOUDLET SCHEDULING OUTAGE
PROBABILITY
Cloudlets have a constraint on the number of serving TMDs
due to their limited computing resources. Thus, a typical
TMD within the connection range of the tagged cloudlet
should be scheduled to use the computing resources of the
tagged cloudlet for task offloading to cloudlets. According to
the number of the TMDs in the connection range of the tagged
cloudlet including the typical TMD, there are two cases that
the typical TMD is scheduled to use the computing resources
of the tagged cloudlet:

• Case 1: The number of the TMDs in the connection
range is smaller than or equal to Nmax

cl .

6These assumptions are reasonable since the power consumption using
WLAN APs is lower than that using cellular networks [4], [32]. In addition,
each WLAN AP in our system can provide sufficiently high data rate and
low latency to serve its TMDs since it is directly connected to the cloudlet
and serves only a limited number of TMDs due to the number of maximum
serving TMDs of the cloudlet [4].
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• Case 2: The number of the TMDs in the connection
range is larger thanNmax

cl , and the typical TMD is chosen
to be scheduled among the TMDs in the connection
range.

When the number of TMDs in the connection range is
larger than Nmax

cl , the typical TMD cannot use the computing
resources if it is not scheduled to use it. We call this a cloudlet
scheduling outage. The probability distribution of the number
of the TMDs in the connection range is given by a Poisson
distribution with intensity λTu πd

2
cl , since the TMDs constitute

a homogeneous PPP. We assume that when the number of the
TMDs in the connection range of a cloudlet is greater than
Nmax
cl , the cloudlet randomly chooses Nmax

cl TMDs to serve
among the TMDs with the same probability for each TMD
for the fairness among TMDs. Then, the cloudlet scheduling
outage probability for a typical TMD in the connection range
of tagged cloudlet, Ocl

u , is given by

Ocl
u =

∞∑
k=Nmax

cl +1

e−λ
T
u πd

2
cl

(
λTu πd

2
cl

)k−1
(k − 1)!

·
k − Nmax

cl

k
. (14)

From (14), we can see that the cloudlet scheduling outage
probability has the same form with the scheduling outage

probability in (8), if we regard e−λ
T
u πd

2
cl

(
λTu πd

2
cl

)k−1
(k−1)! as a func-

tion of k . Thus, in a similar way to the scheduling out-
age probability in (8), we can easily show that the cloudlet
scheduling outage probability decreases as Nmax

cl becomes
large. On the other hand, it increases when the probability
that the number of TMDs in the connection range is larger
than Nmax

cl + 1 becomes large, i.e., λTu or dcl becomes large.

3) OUTAGE PROBABILITY OF TASK OFFLOADING
TO LOCAL CLOUDLETS
There are two conditions in order that a TMD connects to a
cloudlet through its included WLAN AP and offloads its task
to the cloudlet: 1. being within the connection range and 2.
being scheduled. By combining the conditions and the outage
probability analyses in (13) and (14), the outage probability
that a typical TMD cannot offload its task to cloudlets, Ocl

t ,
is derived as

Ocl
t = Ocl

r + (1−Ocl
r )Ocl

u . (15)

B. OUTAGE PROBABILITY OF TASK OFFLOADING IN HMCC
We now analyze the outage probability of task offloading
in the HMCC system consisting of both cloud servers and
cloudlets. The outage of task offloading in the HMCC system
implies that a task cannot be offloaded to both cloud servers
and cloudlets. In the HMCC system, a correlation exists
between the outage probabilities of task offloading to cloud
servers and cloudlets, since the TMDs using the cloudlets,
i.e., within the connection range of the cloudlets, do not
connect to the cellular network.

Considering this correlation, the TMDs that offload tasks
to the cloud servers using the cellular network, i.e., the TMDs
that do not use the cloudlets, can be modeled by a Poisson

hole process (PHP), where its holes represent the region
within the connection range of the cloudlets. We can formally
define the PHP for the TMDs as follows: Let the homoge-
neous PPP of TMDs, 8T , be a baseline PPP from which
the holes will be carved out. Let the homogeneous PPP of
cloudlets, 9cl , be the locations of holes with a radius dcl .
Then, the region covered by the holes, i.e., the region within
the connection range of the cloudlets, is given by

4cl = ∪ci∈9clB(ci, dcl),

where B(ci, dcl) = {x ∈ R2
: ‖x − ci‖ < dcl}. By using the

region 4cl , the TMDs that offload tasks to the cloud servers
can be formally expressed as

8′T = {ui ∈ 8T : ui /∈ 4cl} = 8T \4cl .

Then, with this PHP, 8′T , we can define a new MCC system
only with the cloud servers, formed by omitting the TMDs
that use the cloudlets from the original HMCC system. This
new MCC system does not have the correlation with the
cloudlets in the HMCC system any longer, since it does not
include any TMDs that use the cloudlets. Thus, the outage
probability for the HMCC system, O, is given by

O = O′t ×Ocl
t , (16)

where O′t is the outage probability for the new MCC system.
However, the characteristics of the PHP is not tractable in
general [33], and thus, in many studies, they are addressed
by approximating the PHP. Hence, in this subsection, we first
derive the outage probability of task offloading in the new
MCC system, O′t , by approximating the PHP 8′T . By using
O′t , we then derive the outage probability of task offloading
in the HMCC system as in (16).

We approximate the PHP of the TMDs that use the cloud
servers to offload, 8′T , as a homogeneous PPP having the
same intensity. The intensity of the PHP was derived in [31],
and the intensity of the PHP8′T in our system, λPHP, is given
by

λPHP = λ
T
u e
−πλcld2cl . (17)

Then, the PHP 8′T is approximated as a homogeneous PPP
with intensity, λPHP. With this PPP approximating the PHP
and the PPP representing the NTMDs, we can approxi-
mate the new MCC system. We then apply the analysis in
Section III to the approximatedMCC system with its param-
eters that can be derived as follows. The intensity of the total
MDs in the approximated MCC system, λ′u is given by

λ′u = λPHP + λ
NT
u = λu(pT e

−πλcld2cl + pNT ).

Then, the probability that a typical MD is a TMD, p′T ,
is derived by

p′T =
pT e−πλcld

2
cl

pT e−πλcld
2
cl + pNT

,
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and the probability that a typical MD is an NTMD, p′NT ,
is derived by

p′NT =
pNT

pT e−πλcld
2
cl + pNT

.

With these parameters, i.e., λ′u, p
′
t , and p

′
NT , the outage prob-

ability for the new MCC system, O′t , is approximated as
in (12). Then, we can approximate the outage probability for
the HMCC system as in (16).

From (17), we see that the intensity of the TMDs in the new
MCC system decreases as the intensity and/or the connection
range of the cloudlets increase. Thus, the scheduling outage
probability in the newMCC system decreases as the intensity
and/or the connection range of the cloudlets increase.

C. OPTIMAL CLOUDLET DEPLOYMENT
In this subsection, we study an optimal cloudlet deployment
that maximizes the profit of a CSP. A tradeoff exists in using
cloudlets since the costs occur when the CSP deploys and
operates them. Thus, to address the tradeoff, we define an
economic model of the HMCC system considering the CSP’s
expenses and revenue due to the deployment of cloudlets. We
then formulate a cloudlet deployment problem to maximize
the profit of the CSP and obtain the optimal cloudlet deploy-
ment by solving the problem.

In the economic model, the CSP calculates its profit from
its HMCC system over a discrete time horizon, where each
timeslot has a fixed equal duration, e.g., a week, a day,
an hour. Let τ be an index of timeslots and the set of timeslots
denoted by T = {1, 2, . . . ,T }. We assume that the cloud
servers of the CSP are already installed in its data center
and their operational cost for each timeslot is constant. Note
that with the assumption, maximizing the profit of the CSP
is equivalent to maximizing the additional profit due to the
cloudlets since the operational costs of the cloud servers are
constant, and the revenue from the cloud servers and the
deployment of the cloudlet are independent. Thus, we con-
sider only the additional cost and revenue due to the deploy-
ment of cloudlets.

When the CSP deploys cloudlets to help more TMDs
offload their tasks, the deployment cost, i.e., CAPEX, and
operational cost, i.e., OPEX, occur. The CAPEX is the
expenses from buying the cloudlets and their placement,
and the OPEX consists of the electricity cost and internet
connection cost for the cloudlets. Both CAPEX and OPEX
depend on the intensity of the cloudlets to be deployed, λcl .
Note that the CAPEX occurs only once when the cloudlets
are deployed. On the other hand, the OPEX occurs during
each timeslot after the deployment. We denote the func-
tions of the CAPEX and the OPEX during each timeslot
by CCAPEX (λcl) and Ccl

OPEX (λcl). We assume that they are
convex functions of λcl . The total OPEX by timeslot T is
obtained as

∑T
τ=1 C

cl
OPEX (λcl). Then, the CSP’s total cost,

CCSP, is obtained as

CCSP(λcl) = CCAPEX (λcl)+
T∑
τ=1

Ccl
OPEX (λcl). (18)

The average intensity of the TMDs and that of the NTMDs
during timeslot τ are denoted by 3T

u (τ ) and 3
NT
u (τ ), respec-

tively. The number of the tasks that the TMDs want to
offload during timeslot τ is denoted by NU (3T

u (τ )), which
is a random variable depending on 3T

u (τ ). We assume that
a priori knowledge of 3T

u (τ ), 3
NT
u (τ ), and the probability

distribution of NU (3T
u (τ )) are given from the past informa-

tion of the MCC system. For given 3T
u (τ ), 3

NT
u (τ ), and

λcl , we can obtain the outage probability for the MCC sys-
tem, Ot

(
3T
u (τ ),3

NT
u (τ )

)
, and that for the HMCC system,

O
(
3T
u (τ ),3

NT
u (τ ), λcl

)
, by using (12) and (16), respec-

tively. Then, we can obtain the number of the task offload-
ing outage during timeslot τ in the MCC system, i.e.,
without the cloudlets, as NU (3T

u (τ ))Ot
(
3T
u (τ ),3

NT
u (τ )

)
,

and that in the HMCC system, i.e., with the cloudlets,
as NU (3T

u (τ ))O
(
3T
u (τ ),3

NT
u (τ ), λcl

)
. Then, the number of

additional offloaded tasks by the cloudlets during timeslot τ
is given by

NU (3T
u (τ ))

(
Ot (3T

u (τ ),3
NT
u (τ ))−O(3T

u (τ ),3
NT
u (τ ), λcl)

)
.

When a TMD offloads its task by using the cloud computing
resources, it should pay the fee for its task offloading to the
CSP. The cost of task offloading for a single task is denoted
by CU . Then, the CSP’s additional revenue during timeslot τ
from the cloudlets is obtained as

RCSP(τ, λcl) = CUNU (3T
u (τ ))

(
Ot (3T

u (τ ),3
NT
u (τ ))

−O(3T
u (τ ),3

NT
u (τ ), λcl)

)
. (19)

We formulate the cloudlet deployment problem maximiz-
ing the profit of the CSP from (18) and (19) while guar-
anteeing the outage requirement of task offloading, i.e., the
maximum outage probability of task offloading, as

maximize
0≤λcl≤λmaxcl

T∑
τ=1

E {RCSP(τ, λcl)} − CCSP(λcl)

subject to O
(
3T
u (τ ),3

NT
u (τ ), λcl

)
≤ ξ, ∀τ ∈ T ,

(20)

where λmaxcl is the maximum intensity of cloudlets, which
the CSP can deploy in practice, ξ is the maximum outage
probability of task offloading, and the expectation is taken
over NU . Then, by solving the problem, we can obtain the
optimal intensity of the cloudlets to be deployed, which max-
imizes the profit of the CSP while guaranteeing the outage
requirement of task offloading.

Since the problem has only a single decision variable, λcl ,
we can find the near-optimal intensity of the cloudlets quite
easily. To this end, we first quantize the search interval of
the problem, Dcl = {λcl |0 ≤ λcl ≤ λmaxcl }. Let Nq denote
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Algorithm 1 Algorithm for Solving Cloudlet Deployment
Problem
1: PROFITOPT = −∞
2: Quantize the search interval Dcl into D̄cl
3: for each λcl ∈ D̄cl do
4: if O

(
3T
u (τ ),3

NT
u (τ ), λcl

)
≤ ξ, ∀τ ∈ T then

5: Obtain PROFIT (λcl) as in (20)
6: if PROFITOPT < PROFIT (λcl) then
7: PROFITOPT ← PROFIT (λcl)
8: λ∗cl ← λcl
9: end if
10: end if
11: end for

the cardinality of quantized search interval set. For example,
we can adopt a simple linear quantization method, and then,
the quantized search interval set, D̄cl , is defined as

D̄cl =

{
0,

λmaxcl

Nq − 1
,
2λmaxcl

Nq − 1
, · · · , λmaxcl

}
.

It is worth emphasizing that for quantizing the search interval,
any other method other than the linear quantization method
above can be used. For each λcl ∈ D̄cl , we can obtain the
profit of the CSP, i.e., the objective value of the problem
in (20), and check if the outage requirement of task offloading
are satisfied or not. Then, by comparing the profits with λcl’s
that satisfy the outage requirements, we can obtain the near-
optimal intensity, λ∗cl , which has the maximum profit among
such λcl’s. This algorithm is presented in Algorithm 1 as a
pseudo code.

In the algorithm, as increasing Nq, i.e., quantizing the
search interval more finely, the profit gap between the near-
optimal intensity and the optimal intensity decreases. How-
ever, at the same time, the computational complexity of
the algorithm also linearly increases according to Nq, since
the algorithm should obtain the profit and check the outage
requirements for each λcl ∈ D̄cl . Nevertheless, the compu-
tational complexity is still reasonable owing to the simple
expressions of the outage probabilities. Besides, the complex-
ity to solve this problem is not a critical problem since the
CSP does not have to solve it in real time.

V. RESULTS AND DISCUSSIONS
In this section, we verify our analysis through simulations and
provide results and discussions for the HMCC system. To this
end, we develop a dedicated C++-based simulator on which
the following system can run. We set the BS intensity λ = 5
BSs/km2, the cloudlet intensity λcl = 20 cloudlets/km2,
and the MD intensity λu = 100 MDs/km2. Then, from (6),
the threshold for approximation of pact , γ act (λ), is given by
286.1m. Besides, from (23), the threshold for approximation
of p̂act , γ̂ act (λ), is given by 252.31m. The probability that
a typical MD is a TMD is set to be pT = 0.2. We set the
maximum UL transmission power PMDmax,UL = 0.2 W, which
is the maximum UL transmit power in LTE (23 dBm) [28].

FIGURE 3. The outage probability varying the SINR threshold θ .
(a) O, O′t , and Ocl

t , varying the SINR threshold θ with ρ0 = −70 dBm.
(b) O’s varying the SINR threshold θ with ρT = −60,−70,−80 dBm.

We assume that themobile execution power is large enough to
make the usable UL transmission power of the TMD be PTu =
PMDmax,UL = 0.2 W as in (1). Note that this assumption is rea-
sonable since in general, the TMDs want to offload the tasks
that have high computational complexity and consume a lot of
power. We set the SINR threshold of TMDs be θ = 0 dBwith
which the data rate requirements of tasks such as audio and
image processing can be satisfied in LTE [34]. The number of
UL channels is set to be N = 25. All MDs conduct channel
inversion power control, and the cutoff threshold of TMDs
and NTMDs are set to be ρT = ρNT = −70 dBm.7 The
noise spectral intensity is set to be −174 dBm. We set the
connection range of a WLAN AP in a cloudlet dcl = 50 m
and the maximum number of serving TMDs in a cloudlet
Nmax
cl = 5. We drop BSs, cloudlets, and MDs randomly and

uniformly over a 100 km2 simulation area to realize PPPs.
The above simulation parameters are used unless mentioned
explicitly.

In our analysis, we approximate pact , p̂act and the cor-
relation between using cloud servers and cloudlets for task
offloading. Thus, we should verify our analysis for the outage
probability of task offloading in the HMCC system with

7Note that this cutoff threshold is not favorable for our analysis since
its cutoff distances for TMDs and NTMDs is close to the thresholds for
approximation.
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different system parameters through the simulation results.
In the following results, we not only verify our analysis but
also provide discussions on the task offloading in the HMCC
system from our analysis.

In Fig. 3, we first compare the simulation results and our
analyses varying the SINR threshold θ that represents the
required UL data rates for task offloading. From Fig. 3a,
we see that our analyses for the outage probabilities, O, O′t ,
and Ocl

t , closely follow the simulation results even with the
approximation of pact and p̂act . Note that θ does not affect the
outage probability of task offloading to cloudlets, Ocl

t , and
thus, it is constant. When θ is small, i.e., when the required
UL data rate is low, the SINR outage does not occur, and thus,
O′t is determined only by the truncation outage probability
and the scheduling outage probability. As θ becomes larger,
i.e., as the required UL data rate is high, the SINR outage
probability also increases, and eventually, the task offloading
to cloud servers always fails, i.e., O′t ≈ 1. Thus, when
offloading the task whose required UL data rate is high,
the cloudlets are effective to offload it. In particular, in the
case that the required UL data rate of the task is too high,
using the cloudlets located close to the TMDs might be only
a way to offload it.

In Fig. 3b, the total outage probabilities, O, with different
cutoff thresholds of TMDs, ρT , are shown. Since ρT is the
system parameter of the cellular network that determines the
received power level at BSs, it directly affects the outage
probability. We see that our analyses closely follow the sim-
ulation results regardless of the cutoff threshold of TMDs.
From the figure, we see that due to the truncation outage
probability, when θ is small, the outage probability decreases
as ρT becomes smaller. On the other hand, due to the SINR
outage probability, when θ is large, the outage probability
decreases as ρT becomes larger. Thus, with given tasks,
the outage can be reduced by properly choosing the parameter
of the cellular network, i.e., ρT . When offloading the tasks
whose required UL data rate is high, the cellular network with
high ρT is more favorable than that with low ρT , and vice
versa.

In Fig. 4, we now compare the simulation results and our
analyses for the outage probabilities varying the intensity of
cloudlets, λcl . From Fig. 4a, we see that as λcl becomes larger,
the total outage probability, O, decreases since the outage
probability of task offloading to cloudlets, Ocl

t , decreases.
This implies that using more cloudlets is effective to reduce
the total outage probability of the task offloading. In addition,
we can see that our analyses closely follow the simulation
results despite the fact that we approximate the PHP of the
TMDs that do not use the cloudlets. Note that the correlation
between using cloud servers and cloudlets for task offloading
becomes stronger as the intensity of cloudlets becomes larger.
However, in the figure, the simulation result for the outage
probability of task offloading to cloud servers is almost con-
stant regardless of the intensity of cloudlets. From this result,
we can infer that the correlation is still weak even though the
intensity becomes larger.

FIGURE 4. The outage probabilities varying the intensity of cloudlets, λcl .
(a) O, O′t , and Ocl

t , varying the intensity of cloudlets, λcl . (b) O, O′t , and
Ocl

t , varying the intensity of cloudlets, λcl with pT = 0.8, N = 10, and
dcl = 100 m.

With such weak correlation, it is hard to show how the
correlation affects the outage probability as in Fig. 4a. Thus,
in Fig. 4b, to show the effect from the correlation, we consider
a scenario in which the correlation is considerably stronger
by setting the parameters to pT = 0.8, N = 10, and dcl =
100. Then, due to the strong correlation, we can see that the
simulation results for the outage probability of task offloading
to cloud servers, O′t , decreases as λcl increases. We can also
see that our analyses closely follow the simulation results
even with such strong correlation.

Compared with the previous work [25], we additionally
consider the scheduling outage and idle UL channels in
our analysis. They are directly affected by the number of
UL channels. Thus, we compare the simulation results and
our analysis for the outage probabilities varying the num-
ber of UL channels, N . Note that N does not affect the
outage probability of task offloading to cloudlets, Ocl

t , and
thus, it is constant. From Fig. 5, we see that our analy-
ses closely follow the simulation results. Naturally, as N
increases, the scheduling outage probability decreases. In
addition, the SINR outage probability also decreases since
the interference becomes weaker due to the large number of
idle UL channels. Thus, larger N is always more favorable to
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FIGURE 5. The outage probabilities, O, O′t , and Ocl
t , varying the number

of UL channels, N .

FIGURE 6. The outage probabilities, O, O′t , and Ocl
t , varying the cutoff

distance, dT .

offload the tasks regardless of the characteristics of the tasks
such as the require UL data rate and the power consumption
of mobile execution.

To consider the scheduling outage and idle UL channels,
we approximate the probability distributions of the number
of active TMDs and NTMDs, pact,T and pact,NT , in the
tagged BS using the proposed threshold-based approxima-
tion. The approximations become more accurate as the cutoff
distances becomes longer or shorter than the threshold as
shown in Fig. 2. Thus, to show how much the approximation
errors affect the outage probabilities, in Fig. 6, we compare
the simulation results and our analyses for the outage prob-
abilities varying the cutoff distance, dT . From the figure,
we can see that despite of the approximations, our analyses
closely follow the simulation results. This shows that the
impact of the approximation errors for pact,T on the outage
probability is not significant. Moreover, similar to the case
of the approximations in Fig. 2, our analyses become more
accurate as the cutoff distances becomes longer or shorter
than the threshold.

In Fig. 7, we provide the total outage probabilities,
O, varying the system parameters in the MCC sys-
tem, i.e., ρT , N , and PTu , with different intensities of
cloudlets, λcl , to show a limitation in reducing the outage

probability in the MCC system with only the cloud servers
and also show the effectiveness of using more cloudlets to
reduce the total outage probability. In Fig. 7a, the total outage
probabilities varying the cutoff threshold of TMDs, ρT , are
provided. As shown in Fig. 3b, ρT is a critical parameter
in the outage probability of task offloading to cloud servers.
When ρT is small, the SINR outage mainly occurs since the
received power at the BS is weak. On the other hand, when ρT

is large, truncation outage mainly occurs since large amount
of power is required for the truncated channel inversion power
control. Thus, as shown in the figure, to optimize the total
outage probability, ρT should be properly chosen. However,
ρT is hard to be controlled by the CSP since it is the system
parameter of the cellular network.

In Fig. 7b, the total outage probabilities varying the number
of UL channels, N , are shown. As N increases, the total out-
age probability decreases as also shown in Fig. 5 since both
scheduling outage probability and SINR outage probability
decrease. However, the total outage probability converges to
the truncation outage probability since it does not depend on
N . Thus, there is a limitation in reducing the total outage
probability by increasing N . Besides, N is also the given
parameter of the cellular network that cannot be controlled
by the CSP.

In Fig. 7c, the total outage probabilities varying the usable
transmission power of TMDs, PTu , are shown. When PTu is
small, the total outage probability is high since the truncation
outage frequently occurs. As PTu becomes larger, the total
outage probability decreases, but it converges to a certain
level since the scheduling outage and the SINR outage occur.
Thus, as N , PTu also has a limitation in reducing the total
outage probability. Moreover, as in (1), PTu depends on the
power consumption of mobile execution, PM , and the power
consumption of DL reception, PDL , and the maximum UL
transmission power of MDs, PMDmax,UL , which are not easily
changed.

As shown in the figures in Fig. 7, a better outage perfor-
mance can be achieved by optimizing the system parameters
such as ρT , N , and PTu in the cellular network.8 Moreover,
optimizing the system parameters commonly has an intrinsic
limitation in reducing the total outage probability. On the
other hand, from the figures, we see that as the intensity of
cloudlets increases, the total outage probability proportion-
ally decreases. This implies that the cloudlets can be also
utilized to achieve a better outage performance. In particular,
when the QoS requirement such as the maximum outage
probability is given, the cloudlets might be necessarily used
to satisfy it due to the limitation of optimizing the system
parameters. However, when using the cloudlets, the deploy-
ment cost and the operation cost occur. Thus, an economic
tradeoff exists between the addition revenue and the costs
from the cloudlets.

8Note that in general, such system parameters are hard to be controlled
by the CSP. Nevertheless, the analysis according to the system parameters
is useful to the CSP since it should predict the effect of the changes of such
system parameters on its HMCC system to cope with them.
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FIGURE 7. The outage probability varying the system parameters with different intensities of cloudlets. (a) O’s varying the cutoff threshold of TMDs ρT

with λcl = 0,30,60. (b) O’s varying the number of UL channels N with λcl = 0,30,60. (c) O’s varying the usable transmission power of TMDs PT
u with

λcl = 0,30,60.

FIGURE 8. The expected profit for the cloudlet deployment problem.

We then show the optimal cloudlet deployment addressing
the tradeoff from the economic model in Section IV-C.We set
the duration of each timeslot to be a month and consider the
time horizon of 5 years, i.e., 60 months. The deployment cost
of the cloudlets is defined by CCAPEX (λcl) = 200λcl $/km2

and the operating cost of them is defined by COPEX (λcl) =
10λcl $/month/km2. We set the cost of task offloading for
a single task CU = 0.5 $/task. The average intensities
of the TMDs and the NTMDs, 3T

u and 3NT
u , is set to be

20 TMDs/km2 and 80NTMDs/km2 over all timeslots, respec-
tively. The random variable for the number of the tasks which
TMDs want to offload during each timeslot is generated as
a Poisson distribution and its parameter (mean) is set to be
500×3T

u tasks/month/km2. The QoS requirement, i.e., the
maximum outage probability of task offloading, is set to be
0.5.

In Fig. 8, the expected profit varying the intensity of
cloudlets in the cloudlet deployment problem is shown. Since
the total outage probability is a nonincreasing function of the
intensity of cloudlets, we can obtain the minimum intensity
of cloudlets to satisfy the QoS requirement as shown in Fig. 8.
We then find the intensity of cloudlets which maximizes
the expected profit of the CSP. The CSP can achieve more

expected profit by deploying more number of cloudlets than
the minimum number of cloudlets to satisfy the QoS require-
ment. This result implies that the cloudlets can be used not
only to resolve the weaknesses of using the cloud servers or to
satisfy the QoS requirement, but also to get more revenue.

VI. CONCLUSION
In this paper, we modeled and analyzed the outage prob-
ability of task offloading in the HMCC system by using
stochastic geometry. The analysis addresses the main causes
of the outage of task offloading such as energy consumption
and delay requirements of tasks. In addition, the correlation
between the task offloading to cloud servers and cloudlet
was incorporated. Then, it was verified through the simu-
lation results. From the analysis, we showed that a lower
bound exists on the outage probability of task offloading to
remote cloud servers since outages due to power constraint,
scheduling, and required data rate occur when TMDs access
the cellular network. We also showed that using cloudlets is
a promising solution to achieve a better outage probability.
However, when using the cloudlets, an economic tradeoff
exists between the additional revenue and costs. To address
the tradeoff, we proposed an economic model of the HMCC
system considering the CSP’s costs and revenue. Based on
the model, we formulated the cloudlet deployment problem
to maximize the CSP’s profit, and we then found the optimal
deployment of the cloudlet by solving the problem. In the
results, it is shown that the cloudlets can be utilized not only
to satisfy the QoS requirement, i.e., the maximum outage
probability, but also to generate more revenue.

APPENDIX A
CALCULATION OF THE THRESHOLD IN (6)
We determine the threshold, γ act , as the distance that makes
the expected number of MDs within a circle equal to that of
MDs in Voronoi cells. We first calculate the expected number
of MDs within a circle with a radius of γ act conditioning that
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the typical MD is in the circle as

∞∑
k=1

ke−λuπ (γ
act )2 (λuπ (γ

act )2)k−1

(k − 1)!
= λuπ (γ act )2 + 1. (21)

We calculate the expected number of MDs in the Voronoi cell
of the tagged BS as

∞∑
k=1

k
3.53.50(k + 3.5)
(k − 1)!0(3.5)

(
λTu

λ

)k−1 (
3.5+

λTu

λ

)−(k+3.5)
(i)
=

(
4.5λu

λ

3.5+ λu
λ

)(
3.5+ λu

λ

3.5

)
+ 1 =

4.5λu
3.5λ

+ 1, (22)

where (i) follows from the regularization of the binomial
series [35]. Then, we can determine the threshold in (6) by
obtaining γ act , which makes (21) and (22) the same.

APPENDIX B
DERIVATION OF p̂act

The number of active MDs in a typical BS and that in
the tagged BS with the typical active MD have different
statistics, i.e., p̂act is different from pact that was derived
in Section III-B. In the tagged BS, at least one active MD
exists due to the typical active MD. Moreover, the tagged BS
probably has a larger area, which incurs more active MDs,
since a BS having a larger area has more chance to cover the
typical active MD [36].

As shown in Fig. 1, according to the cutoff distance and
the intensity of BSs, we can approximate p̂act by using the
probability distributions, p̂act,TC , p̂act,NTC , p̂act,TV , and p̂act,NTV ,
which will be derived as follows. The probability distribution
of the number of TMDs within a circle with a radius of their
cutoff threshold, p̂act,TC , is obtained as

p̂act,TC (k) = e−λ̂T

(
λ̂T

)k
k!

,

where λ̂T = λTu πd
T 2. We can obtain that of NTMDs, p̂act,NTC ,

by simply substituting λ̂T in p̂act,TC with λ̂NT = λNTu πdNT 2.
The probability distribution of the number of TMDs in a
typical BS, p̂act,TV , is obtained as

p̂act,TV (k) =
3.53.50(k + 3.5)

k!0(3.5)

(
λTu

λ

)k (
3.5+

λTu

λ

)−(k+3.5)
in [37]. We can obtain that of NTMDs, p̂act,NTV , by simply
substituting λTu in p̂act,TV with λNTu . Then, we can apply the
threshold-based approximation proposed in Section III-B.

To provide a function to choose the threshold for the
approximation of p̂act , γ̂ act , we first obtain the expected num-
ber of MDs in a circle with a radius of γ̂ act as in Appendix A.
We can easily obtain it as λuπγ̂ act2 since the number of
MDs in a circle is given by a Poisson random variable. The
expected number ofMDs in the Voronoi cell of a typical BS is
intuitively given by λu

λ
. Note that we can also obtain the same

result by using the regularization of the binomial series. Then,
γ̂ act (λ) is given by

γ̂ act (λ) =
√
1/πλ. (23)

By using the threshold, we choose a probability distribution
to use for p̂act,T and p̂act,NT . For p̂act,T , we use p̂act,TC if dT <
γ̂ act (λ), and p̂act,TV otherwise. Similarly, for p̂act,NT , we use
p̂act,NTC if dNT < γ̂ act (λ), and pact,NTV otherwise. With p̂act,T

and p̂act,NT , we can approximate the probability distribution
of the number of active MDs in a typical BS, p̂act (k), as

p̂act (k) =
∑

lT+lNT=k

{
p̂act,T (lT )p̂act,NT (lNT )

}
,

where lT and lNT are nonnegative integer-valued.

APPENDIX C
PROOF OF THEOREM 2
We first derive the probability distribution of the UL trans-
mission power of active TMDs and that of active NTMDs.
Let PT be the UL transmission power of an active TMD and
PNT be the UL transmission power of an active NTMD. The
probability distribution of the UL transmission power of an
active TMD, fPT , is given in the following lemma.
Lemma 3 [25]: In a single-tier Poisson cellular network

using truncated channel inversion power control with cutoff
threshold ρT , the moments of the UL transmission power of
an active TMD are obtained as

E[PT ν] =
ρT

ν
γ
(
να
2 + 1, πλdT 2

)
(πλ)

να
2

[
1− exp

{
−πλdT 2

}] .
Moreover, the moments of the transmission of an active
NTMD in the UL can be similarly obtained by using its
maximum transmit power PNTu and its cutoff threshold ρNT .

To obtain the UL SINR outage probability, the Laplace
transform of the total interference is needed as in (9). To
obtain it, we use the following facts and assumption:

• Fact 1: The average received power from the TMDs at
any BS is equal to ρT .

• Fact 2: The average interference received from any
single interfering MD is strictly less than ρ̂ =

max{ρNT , ρT }.
• Fact 3: Due to the idle UL channels, the intensity of
interfering MDs on each channel is given by (1 −
pidle)λ. Then, from Lemma 1, the intensities of interfer-
ing TMDs and NTMDs on each channel are given by
p̃T (1− pidle)λ and p̃NT (1− pidle)λ, respectively.

• Assumption: The interfering MDs constitute a homo-
geneous PPP and have independent UL transmission
powers.

With the above, the total interference is given by

I =
∑

ui∈{8̃T∪8̃NT }\{o}

I
(
Pi‖ui‖−α < ρ̂

)
Pihi‖ui‖−α,
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LI (s) = E
[
e−sI

]
= E

[
e
−s
(∑

ui∈8̃NT \{o}
I(Pi‖ui‖−α<ρ̂)Pihi‖ui‖−α+

∑
ui∈8̃T \{o}

I(Pi‖ui‖−α<ρ̂)Pihi‖ui‖−α
)]

(i)
= E8̃NT

 ∏
ui∈8̃NT \{o}

EPi,hi

e
−sI

(
‖ui‖>

(
Pi
ρ̂

) 1
α

)
Pihi‖ui‖−α




×E8̃T

 ∏
ui∈8̃T \{o}

EPi,hi

e
−sI

(
‖ui‖>

(
Pi
ρ̂

) 1
α

)
Pihi‖ui‖−α




(ii)
= e

−2π (1−pidle)λ

p̃NT
∫
∞(
PNT
ρ̂

) 1
α
EPNT ,h

[(
1−e−sP

NT hx−α
)]
xdx+p̃T

∫
∞(
PT
ρ̂

) 1
α
EPT ,h

[(
1−e−sP

T hx−α
)]
xdx



(iii)
= e

−2π (1−pidle)λ

p̃NT
∫
∞(
PNT
ρ̂

) 1
α
EPNT

[(
1− 1

1+sPNT x−α

)]
xdx+p̃T

∫
∞(
PT
ρ̂

) 1
α
EPT ,h

[(
1− 1

1+sPT x−α

)]
xdx


(iv)
= e

−2π (1−pidle)λs
2
α

(
p̃NTE

[
PNT

2
α

]
+p̃TE

[
PT

2
α

]) ∫
∞

(sρ̂)
−1
α

y
yα+1 dy

. (24)

where 8̃T is a homogeneous PPP that represents the inter-
fering TMDs, 8̃NT is a homogeneous PPP that represents the
interferingNTMDs, ρ̂ = max{ρNT , ρT }, and I(·) is an indica-
tor function. Note that the indicator function is used to reflect
the fact that the average interference received from any single
interfering MD is strictly less than ρ̂. By using the above
equation, the Laplace transform of the total interference is
derived as in (24), where (i) follows from the independence
between 8̃NT , 8̃T ,Pi, and hi, (ii) follows from the probability
generation functional of the PPP [31], (iii) follows from the
Laplace transform of the channel gain h, and (iv) follows from
substituting y with x

(sP)
1
α

. Then, the equation (11) is derived

by substituting LI
(
θ
ρT

)
in (9). LI

(
θ
ρT

)
can be obtained

from Lemma 3 and (24).
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