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ABSTRACT A multistage attitude control and momentum management (ACMM) control strategy is
proposed for space stations. The ACMM, which includes closed-loop angular momentum feedback (CAMF)
and torque equilibrium attitude (TEA) tracking, is achieved using the gravity gradient and an aerodynamic
torques. The CAMF is employed as the normal flight mode, and TEA tracking is used to unload the angular
momentum after attitude stabilization. Hence, the angular momentum imparted by the attitude control device
does not need to be unloaded using thrusters during the entire operating phase. The system performances,
especially the relationship between the environmental torques and the attitude, are analysed. The internal
model principle is utilized to suppress the attitude fluctuation during the CAMF mode, and a quintic
polynomial is utilized to realize TEA tracking. The pole placement algorithm, which can obtain the feedback
matrix in the linear quadratic regulator (LQR) without choosing a weight matrix, is introduced to design the
LQR controllers. This approach is demonstrated for a future Chinese space station, and the simulation results
verified the effectiveness of the proposed control algorithm.

INDEX TERMS Attitude control and momentum management, closed-loop angular momentum feedback,
torque equilibrium attitude, internal model principle, linear quadratic regulator with pole placement.

I. INTRODUCTION
As low-orbit spacecraft, space stations are exposed to spa-
tially varying environmental torques [1]. Control moment
gyros (CMGs) are usually utilized as attitude control actu-
ators for space stations due to their ability to amplify
torques [2], [3]. To minimize CMGs angular momentum and
maintain a certain degree of attitude error, space stations
utilize both environmental perturbations and CMGs to seek
torque equilibrium attitude (TEA) during most of the time
in orbit, an approach called attitude control and momentum
management (ACMM) [4]. According to the different control
strategies, ACMM can be divided into torque equilibrium
attitude (TEA) tracking and closed-loop angular momentum
feedback (CAMF).

Three-axis passive stabilization was realized using gravity
gradient torques for early space stations such as Salyut 6 and
Salyut 7 [5]. To desaturate the CMGs angular momentum,
the Mir station let the inertia principal axis be perpendic-
ular to the orbital plane [3]. Hattis [6] advocated momen-
tum management for the first time officially. He reviewed
the key techniques utilized on Skylab and presented the
basis for space station CMGs momentum management.
Kunmar [7] researched the performance of CMGsmomentum

management by predicting TEA using a linearized model.
He focused on pitch axis control and achieved good results.
Many studies on TEA employing algebra were undertaken by
Sharychev [8]–[10]. He analysed different mechanical mod-
els and proposed the existence conditions for TEA. Because
this type of open-loop control strategy may cause error accu-
mulations, TEA tracking is difficult for use in long-term
orbital operations.

Shain and Spector [11] developed a three-axis decouple
CAMF controller architecture by first using gravity gradient
torques. B. Wei then demonstrated a new momentum man-
agement controller for space stations. The gravity gradient
and gyroscopic torques are utilized to seek TEA in the
presence of biases and cyclic disturbances [12]. However,
space stations may operate over a wide range of pitch angles,
which contradicts the small-angle assumption and could pro-
duce system instabilities. To solve these problems, periodic-
distance accommodating control was investigated by
Warren et al. [13] for asymptotic momentum management,
and the proposed controller employed quaternion feedback
control. It was shown that a linear quadratic regulator (LQR)
synthesis technique is robust over a wide range of pitch
angles. Sunkel and Shieh [14] presented a multistage design
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scheme for determining optimal attitude control and momen-
tum management for the space station. However, he still
assumed uncoupled roll/yaw axis and pitch axis dynamics
to undertake the controller design.

Afterwards, an improved algorithm model based on a
three-axis coupled model was developed by Harduvel [15].
Those studies could have been more successful if the large
angle situation had been considered and if a high order matrix
Q had been avoidedwhen constructing the state feedback gain
matrix by solving the Riccati equation. More recent studies
have been undertaken by Zhu and Xu [4]. She converted the
nonlinear system to a linear structure with state dependent
coefficient matrices and needed to minimize a quadratic-
like performance index. However, to trade off computation
load and attitude control, the state-dependent Riccati equa-
tion was calculated online using a computationally efficient
technique [16], which is difficult to be applied in practice.

However, space stations must fly under attitude stabiliza-
tion for approximately 10% of the operational period during
orbital rendezvous and docking [17], [18]. Obviously, this
attitude stabilization mode will lead to the continuous accu-
mulation of CMGs angular momentum. Therefore, CMGs
angular momentum must be unloaded using thrusters before
the space station control mode is switched from attitude sta-
bilization to CAMF, which is costly and will impact scientific
experiments, especially microgravity experiments [19], [20].

This paper presents a multistage attitude control strategy
for space stations that consists of CAMF and TEA track-
ing. We obtained the constraint conditions by analysing the
dynamic characteristics of a linearized three-axis coupled
model. To design the CAMF controller, we introduced filters
in the state-space equation to suppress the attitude fluctuation
caused by disturbances. Before the control mode switches
from attitude stabilization to CAMF mode, TEA tracking
is used for the CMGs angular momentum unloading. The
attitude maneuver path is planned using a quintic polyno-
mial, and the attitude maneuver control model is obtained
by transforming the nonlinear system to a linear double-
integrating system. This TEA tracking design, which utilizes
environmental torques to unload CMGs angular momentum,
is presented for the first time. Moreover, this attitude control
strategy can avoid propellant consumption and maintain the
microgravity environment. For both CAMF and TEA track-
ing, LQR controllers are designed, and a pole placement
algorithm is introduced to obtain the feedback matrix with-
out choosing a weight matrix. We establish accurate orbit,
gravity gradient and aerodynamic models to analyse system
robustness.

II. SPACE STATION MODELING
A. NONLINEAR MODELS OF SPACE STATION DYNAMICS
We define three coordinate systems to describe space
station motion: body frame Obxbybzb, local-vertical local-
horizontal (LVLH) frame Ooxoyozo and inertial frame
Oixiyizi. In the LVLH frame, the zo-axis points towards the

earth (mass centre), the xo-axis lies perpendicular to the
zo-axis in the orbital plane, with its positive axis in the direc-
tion of the velocity vector, and the yo-axis is perpendicular
to the orbital plane, completing the right-hand orthogonal
system. The body–fixed coordinate frame and inertial frame
overlaps with the LVLH frame at the initial time.

The nonlinear dynamic equation of the space station in the
LVLH frame can be written as

Ioω̇obi + İ
o
ωobi + ω

o
oi × I

oωobi = Toc + T
o
g + T

o
a (1)

where ωobi is the absolute angular velocity expressed in the
LVLH frame, ωooi is the angular velocity of the LVLH frame
expressed in the LVLH frame, and the right side of the equa-
tion is the total torque acting on the space station, including
the output torque of CMGs Toc , gravity gradient torque Tog
and aerodynamic torque Toa. I

o represents the inertia matrix
expressed in the LVLH frame:

Io = Co
b I

bCb
o (2)

in which Ib is the inertia matrix of the space station expressed
in the body-fixed frame:

Ib =

 I11 −I12 −I13
−I12 I22 −I23
−I13 −I23 I33

 (3)

The attitude of the space station is defined as the orienta-
tion of the body-fixed frame with respect to the LVLH frame
and is written as θ =

[
ϕ ϑ ψ

]T, where ϕ, ϑ and ψ are the
roll, pitch and yaw angles produced through a 3-1-2 rotation
sequence. The transformation matrix from the LVLH frame
to the body-fixed frame is defined as

Cb
o =

 cϑcψ − sϕsϑsψ cϑsψ + sϕsϑcψ −sϑcϕ
−sψcϕ cϕcψ sϕ

sϑcψ + sϕsψcϑ sϑsψ − sϕcϑcψ cϕcϑ


(4)

where s , sin, c , cos, and Co
b =

[
Cb
o
]T
. The gravity

gradient torque is written as

Tog = 3µ/R3
(
αo × Ioαo

)
(5)

where µ is the gravitational coefficient of the earth, R is
the distance between the earth’s mass centre and the space
station’s mass centre, and αo =

[
0 0 −1

]T is the unit vector
from Earth’s mass centre to the space station’s mass centre,
expressed in the LVLH frame. Given that the space station
has a near-circular orbit, R can be treated as a constant, which
means the orbital velocity ωo is constant too. We then have
µ/R3 ≈ ω2

o. Substituting (2) and (3) into (5) yields

Tog = 3ω2
o

(
αo × Co

bI
bCb

oα
o
)
. (6)

The aerodynamic torque described in the LVLH frame is
generally estimated using the following expression:

Toa = 0.5ρCDV 2
r Apr

o
× Vo (7)
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where ρ is the atmospheric density,CD is the drag coefficient,
Vr is the atmospheric velocity relative to the space station,
Ap is the effective incidence area, and ro is the vector from
the centre of mass to the centre of pressure expressed in the
LVLH frame, which can be written as ro = Co

br
b, where rb =[

rbx r
b
y r

b
z
]T

is the vector from the centre ofmass to the centre
of pressure expressed in the body frame. Vo is the unit vector
of the atmospheric velocity expressed in the LVLH frame.

The attitude kinematics of the space station can be
described as ωbboωbbo

ωbbo

 =
−ψ̇sϑcϕ + ϕ̇cϑψ̇sϑ + ϑ̇
ψ̇cϕcθ + ϕ̇sϑ

 (8)

ωbbi = ω
b
bo + C

b
oω

o
oi (9)

where ωbbo =
[
ωbbo ω

b
bo ω

b
bo

]T is the angular velocity of the
body-fixed frame relative to the orbital frame with compo-
nents taken in the body-fixed frame, and ωobi is the absolute
angular velocity of the body frame relative to the inertial
frame with components expressed in the LVLH frame.

The CMGs dynamic is expressed in the orbital frame as

Toc = −ω
o
oi × h

o
c − ḣ

o
c (10)

where hoc is the angular momentum of the CMGs described
in the orbital frame.

B. LINEARIZATION OF THE MODELS
To obtain the linearized model of the space station’s motion,
we assume that the body frame deviates from the LVLH
frame by small angles. The transformation matrix Cb

o can be
simplified to

Cb
o ≈ E− [θ ]× (11)

where E is the unit matrix, and []× represents the vector
cross product. The linearized expression of Io is obtained by
substituting (11) into (2) and restraining the first-order term:

Io ≈ Io + θ × Io − Io × θ (12)

The linearized equation for the gravity gradient torque can
be obtained by substituting (12) into (6) and retaining the
first-order terms:

Tog = 3ω2
o

 (I33 − I22) −I12 I13
−I12 (I33 − I11) I23
0 0 0

 ϕϑ
ψ


+ 3ω2

o

 I23
−I13
0

 (13)

The gravity gradient torque can be divided into attitude-
dependent and attitude-independent terms, and the attitude-
dependent term can be used for momentum management.

To obtain the linearized attitude related terms for the aero-
dynamic torque, we assume that Vr is a constant and that
Vo
=
[
−1 0 0

]T is a constant vector, and the atmospheric
density is assumed to change with time in sinusoidally. When

the space station is flying in an earth-oriented flight atti-
tude, the solar arrays should track the sun. The effective
incidence area Ap in (7) can be generally divided into an
average part and cyclic components. Based on the above
assumptions, the aerodynamic torque can be divided into the
attitude related term and Tod :

Toa ≈

 0 0 0
−ty tx 0
−tz 0 tx

 ϕϑ
ψ

+ Tod (14)

where

tx = 0.5CDV 2
r r

b
x (ωo/2π)

∫ 2π/ωo

0
ρApdt

ty = 0.5CDV 2
r r

b
y (ωo/2π)

∫ 2π/ωo

0
ρApdt

tz = 0.5CDV 2
r r

b
z (ωo/2π)

∫ 2π/ωo

0
ρApdt

(15)

The angular momentum of the space station in the orbital
frame Ho

s can be described as

Ho
s = Ioωobi (16)

Upon further analysis, we find that the angular momentum
of the space station can be divided into a time-varying compo-
nent and a constant component (gyroscopic coupling item):

Ho
s = H̄

o
s +1H

o
s (17)

To make 1Ho
s = 0 when the LVLH frame over-

laps the body frame, the constant component is defined as
H̄
o
s = Ibωooi. Note that the inertia matrix is expressed in the

body frame and that ωooi is described in the orbital frame.
By combining (13), (14), (16) and (17), the dynamics of the
space station described in (1) can be rearranged to

1Ḣ
o
s = −ω

o
oi ×1H

o
s + T

o
ec + T

o
c + T

o
d − ω

o
oi × H̄

o
s

+ 3ω2
o
[
I23 −I13 0

]T (18)

where

Toec =

 3ω2
o (I33 − I22) −3ω2

oI12 3ω2
oI13

−ty − 3ω2
oI12 3ω2

o (I33 − I11)+ tx 3ω2
oI23

−tz 0 tx


×

 ϕϑ
ψ

 (19)

The attitude related environment control torques Toec in
the above equation are obtained from (13) and (14). More-
over, Toec is very significant to momentum management
because it determines which environmental torques will be
utilized for attitude movement. Obviously, no gravity gradi-
ent torque related to attitude can be produced in the yaw axis
for momentum management, and the aerodynamic torque is
much smaller than the gravity gradient torque. Therefore,
it is difficult for the space station to offset the disturbance
torque in the yaw direction. To solve this problem, the roll
angle will be used to offset the disturbance torque in the yaw
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axis. Additional details will be discussed in the next section.
To obtain the linearized attitude kinematics, we assume that

Co
bω

b
bo ≈ θ̇ (20)(

Io
)−1
=

(
Ib
)−1
+ θ ×

(
Ib
)−1
−

(
Ib
)−1
× θ (21)

The attitude kinematics can be linearized by substituting
(9), (17), (20), and (21) into (16) and restraining first-order
term:

θ̇ =

[(
Ib
)−1
× H̄

o
s − [θ ]×

]
θ +

(
Ib
)−1

1Ho
s (22)

III. DYNAMIC CHARACTERISTIC ANALYSIS
A. ATTITUDE CONTROL AND MOMENTUM
MANAGEMENT ANALYSIS
Before analysing the ACMM model, we should determine
which form of disturbance causes CMGs momentum accu-
mulation and which form of attitude manoeuvre could avoid
CMGs saturation. To obtain a constant disturbance in the
inertial frame, the aerodynamic item unrelated to attitude
in (14) is expressed as

Tod =

 T ox0T oy0
T oz0

+
 a sin(ωot)+ b cos(ωot)T oy1 sin(ωot + ϕy)
c sin(ωot)+ d cos(ωot)


+

 T ox2 sin(2ωot + ϕ2x)T oy2 sin(2ωot + ϕ2y)
T oz2 sin(2ωot + ϕ2z)

 (23)

where Tod0 =
[
T ox0 T

o
y0 T

o
z0
]T

is constant in the orbital frame,
a, b, c, d , and T oy1 are constant coefficients, ϕy is the phase

of the pitch at frequency ωo, Tod2 =
[
T ox2 T

o
y2 T

o
z2
]T

is the

coefficient of 2ωo, and ϕ2 =
[
ϕ2x ϕ2y ϕ2z

]T is the phase
of 2ωo. Assuming that the gravity gradient torque and the
aerodynamic torque are fully absorbed by CMGs, we have

T ig + T
i
a = −T

i
c (24)

The angular momentum of CMGs in the inertial frame can
be obtained from (10):

T ic = −C
i
oω

o
oi × h

o
c − C

i
oḣ

o
c (25)

Obviously, the constant disturbance expressed in the iner-
tial frame could cause CMGs angular momentum accumu-
lation. Namely, the constant disturbance expressed in the
inertial frame should be offset by extra torques such as the
gravity gradient torque and aerodynamic torque. The pitch
axis in the LVLH frame can be regarded as an inertial axis,
and the roll /yaw axes are rotating around the pitch axis at
the orbital frequency. We divide the disturbance into two
components: that perpendicular to the orbital plane part and
the component in the orbital plane. Because a disturbance
in pitch can be offset by a constant bias in the pitch axis
according to (19), we assume that 1Ḣ

o
s (2) = 0 in (18), and

hence the dynamics of the space station in the pitch axis can
be rewritten as(
−ty − 3ω2

oI12
)
ϕ +

[
3ω2

o (I33 − I11)+ tx
]
ϑ

+ 3ω2
oI23ψ + T

o
dy = 3ω2

oI13 (26)

Ignoring the impact of the coupling effect between roll/
yaw and pitch, we decouple the pitch axis from the yaw/roll
axes. The TEA in pitch can be estimated using the following
equation:

θ0y =
(
T oy0 − 3ω2

oI13
)
/
[
3ω2

o(I11 − I33)− tx
]

(27)

The following analysis will show that the attitude error
in yaw can be held to zero by the roll axis undergoing a
sinusoidal motion at the orbital frequency. The estimated
error in pitch caused by the decoupling is very small.

FIGURE 1. Constant disturbance in the orbital plane.

To make the explanation more visual, the constant distur-
bance in the orbital plane is illustrated in Fig. 1. The vector

−→
AB

represents the orientation of the constant component of the
disturbance torque T id in the orbital plane, and α is the angle
between T idxz0 and ox

i. The inertial and LVLH frames overlap
at the initial time. The angle between xo and xi isωot at time t ,
and the transformation matrix from the LVLH frame to the
inertial frame is defined as

C i
o =

 cosωot 0 − sinωot
0 1 0

sinωot 0 cosωot

 (28)

To obtain the constant component of T id in the inertial

frame,T id0 =
[
T ix0 T

i
y0 T

i
x0

]T
, we need to express the orbital

frequency component of T0
d in the inertial frame and retain

the constant term:

T id0 =


0.5(b− c)
T oy0
0.5(a+ d)

(29)

This means
∣∣T idxz0∣∣ = 0.5

√
(b− c)2 + (a+ d)2 is deter-

mined by the phases of Tod at the orbital frequency, and

α = arccos
[
0.5(b− c)/

∣∣∣T idxz0∣∣∣] (30)
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The disturbance in the orbital plane shown in Fig. 1 must
be offset by the roll/yaw motion. However, the aerodynamic
torque is very small, the yawmotion can produce very limited
torques according to (19), and we utilize the roll axis motion
to produce a control torque in the orbital plane and keep the
attitude stable in yaw. When the space station operates in the
orbital arc ÂB, the roll should produce a control torque in
the opposite direction of the roll axis to offset the disturbance
in the orbital plane. Similarly, when the space station is
operating on the orbital arc B̂A, the roll should produce a
control torque in the positive direction of ooxo to offset the
disturbance in the orbital plane. In this case, the roll axis will
undergo a sinusoidal motion at the orbital frequency.

For example, if (I33 − I22) > 0, and ϕ < 0, the roll axis
will produce a torque in the minus ooxo on the orbital arc AB,
and the component of the environmental control torqueToec =[
T oecx T

o
ecy T

o
ecz
]T

in (19) in the roll axis at any time used to
offset the disturbance is

T o
ecx
= 3ω2

o (I33 − I22) ϕ (31)

where

ϕ = −kϕ cos (ωot − α) sign (I33 − I22) (32)

kϕ ≥ 0, and sign(.) is the signum function.
Similarly, the roll axis will manoeuvre to ϕ > 0 on the

orbital arc B̂A, and therefore no angular momentum will be
accumulated in the vertical orientation of T idxz0 by symmetry.
The absolute in-plane value of To

d
is∣∣∣T idxz0∣∣∣ = ∣∣∣∣(ωo/2π) ∫ 2π/ωo

0
T o
ecx

cos (ωot − α) dt

∣∣∣∣ (33)

kϕ is solved using (31) and (33), and upon substitution
into (32),

ϕ = −
(∣∣∣T idxz0∣∣∣ / ∣∣∣1.5ω2

o (I33 − I22)
∣∣∣)

× cos (ωot − α) sign (I33 − I22) (34)

Based on the above analysis, we find that the pitch angle
retains a constant bias when the roll performs circular motion
at the orbital frequency. All of the disturbances, with the
exception of the constant component in the inertial frame, will
be absorbed by CMGs. To reduce the error between the actual
system and the nominal system, the attitude angles should
be as small as possible, and the correlation coefficient of the
environmental torques should therefore meet the constraint
conditions {∣∣3ω2

o(I11 − I33)− tx
∣∣� 0∣∣3ω2

o (I33 − I22)
∣∣� 0

(35)

B. ATTITUDE PATH PLANNING
The space station needs to maintain stability during ren-
dezvous and docking, which will cause an accumulation of
angular momentum. If we switch the control mode to CAMF
without unloading the angular momentum, the system may
shake or even become unstable. We use TEA tracking to

unload the angular momentum accumulation caused by atti-
tude stabilization, and TEA tracking is achieved by attitude
path planning.

As analysed above, the angular momentum of CMGs
can be unloaded by an attitude manoeuvre in the roll and
pitch axes, and the attitude path can therefore be defined as
θd =

[
ϕd ϑd 0

]T. The attitude path, whether in the roll
axis or pitch axis, can be divided into three parts: manoeu-
vring to desired attitude, attitude maintaining and manoeu-
vring to zero-attitude. The attitude manoeuvre process is
shown in Fig. 2.

FIGURE 2. Time allocation schematic of attitude manoeuvre.

We utilize a quintic polynomial to plan the attitude path,
which ensures angular and angular velocity continuity. For
the pitch angle,

ϑd =



ky1
[
(t − t1)5 + ay1 (t − t1)4 + by1 (t − t1)3

]
t1 < t < t2

ϑ1 t2 < t < t3
ky2
[
(t − t3)5 + ay2 (t − t3)4 + by2 (t − t3)3

]
+ ϑ1

t3 < t < t4
(36)

where
ky1 = 6ϑ1/t5s1
ay1 = − (5/2) ts1
by1 = (5/3) t2s1,


ky2 = −6ϑ1/t5s3
ay2 = − (5/2) ts3
by2 = (5/3) t2s3

ϑ1 is the steady state attitude, which can be estimated using
the initial CMGs angular momentum and attitude related
coefficient:

ϑ1 =
[
ωohoucy/2πn+ T

b
dy

]
/
[
3ω2

o(I11 − I33)− tx
]

(37)

where n = ts2ωo/2π is the number of orbital periods used to
unload the CMGs angular momentum, which can be set based
on the situation.

ϕd =


kx1

[
(t − t1)5 + ax1 (t − t1)4 + bx1 (t − t1)3

]
−kx cos (ω0t − α) sign (I33 − I22)
kx2

[
(t − t3)5 + ax2 (t − t3)4 + bx2 (t − t3)3

+ ex2 (t − t3)]+ ϕ2
t1 < t < t2
t2 < t < t3
t3 < t < t4 (38)

where 
kx1 = 0.01/t5s1
ax1 = (−300ϕ1+100ts1ϕ̇1 − 2) ts1
bx1 = (1+ 400ϕ1 − 100ts1ϕ̇1) t2s1,
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kx2 = 0.01/t5s3
ax2 = (300ϕ2 + 200ts3ϕ̇2 − 2) ts3
bx2 = (1− 400ϕ2 − 300ts3ϕ̇2) t2s3
ex2 = 100t5s3ϕ̇2{
ϕ1 = −kx cos (ω0t2 − α) sign (I33 − I22)
ϕ2 = −kx cos (ω0t3 − α) sign (I33 − I22)

(39)

kx is the maximum steady state attitude, which can be esti-
mated using the initial CMGs angular momentum and attitude
related coefficient:

kx =
∣∣∣ωohiucxz/ (2πn)+ T ixzd0∣∣∣ / [1.5ω2

o (I33 − I22)
]

(40)

Because the angular momentum of CMGs in the orbital
plane, hiucxz, is generated using the constant disturbance in
the orbital plane, T ixzd0, it is reasonable to assume that hiucxz is
parallel to T ixzd0, which means the phase angle α in (39) is the
same as the phase angle shown in Fig. 1.
NOTE 1: The attitude path planned in this part is based on

the dynamic characteristics and CMGs angular momentum
that needs to be unloaded. The effect of unloading depends
on the accuracies of the models, especially the disturbance
model, and it is therefore difficult to unload the CMGs angu-
lar momentum to precisely zero.

IV. CONTROLLER DESIGN
A. TORQUE EQUILIBRIUM ATTITUDE TRACKING
Because of the large angles in attitude manoeuvres, the lin-
earized model cannot be used to design the TEA tracking
controller. The nonlinear dynamic model of (1) is expressed
in the body frame:

Ibω̇bbi + İ
b
ωbbi + ω

b
bi × I

bωbbi = Tbc + T
b
g + T

b
a (41)

Taking the derivative of (9),

ω̇bbi = 8θ̈ + f ϑ (42)

where

8 =

 cϑ 0 −cϕsϑ
0 1 sϕ
sϑ 0 cϕcϑ

.
f ϑ is a function that is related to the angles and angular

velocity (43), as shown at the bottom of this page.
By substituting (42) into (41), the double integral model is

obtained:

θ̈ = U (44)

where

U =
(
Ib8

)−1 [
Tbc+T

b
g+T

b
a−ω

b
oi × I

bωbbi − I
bf ϑ

]
(45)

To obtain the track error, define

1θ = θd − θ (46)

Taking the derivative of (46) twice and substituting (44)
into the result yields

1θ̈ = θ̈d − U (47)

Choosing the state values x =
[
1θ 1θ̇

]T
and combining

(44), (46) and (47) yields

ẋ2 =
[
0 E
0 0

]
x2 +

[
0
E

]
u2 (48)

where u2 = θ̈d − U , and

u2 = −K2x2 (49)

We can obtain the CMGs control torque from (45):

Tbc =
(
Ib8

)
U − Tbg − T

b
a + ω

b
oi × I

bω + Ibf ϑ .

Feedback matrix K2 can be obtained using the linear
quadratic regulator with the eigenvalue placement algorithm
presented in section IV, part C.

B. CLOSED-LOOP ANGULAR MOMENTUM FEEDBACK
The attitude error and CMGs angular momentum should
be constrained simultaneously in CAMF. 1Ho

s contains the
information about the angular velocity, hence the CAMF
model is completely described by (10) (18) and (22).
We choose the augment state variables as x =

[
1Ho

s θ h
o
c
]T

and rewrite these equations into the form of the state space
equation: {

ẋ1 = A1x1 + B1Toc + Bww
u1 = −K1x1

(50)

where

A1 =

−
[
ωooi
]× AT θ 0(

Ib
)−1

Aθθ 0

0 0 −
[
ωooi
]×
,

B1 =
[
E 0 −E

]T
, Bw =

[
E 0 0

]T
, and

w = Tod + H̄
o
s + 3ω2

o

 I23
−I13
0

,
Aθθ =

[(
Ib
)−1
× H̄

o
s − [θ ]×

]
.

To reduce the disadvantageous effects of disturbances on
the attitude and allow the space station to perform the desired
motion mentioned, we suppress the disturbance using the
internal model principle [21]. The internal model applies to

f ϑ =

−ϕ̇ϑ̇sϑ − ϑ̇ψ̇cϕcϑ + ϕ̇ψ̇sϕsϑϕ̇ψ̇cϕ
ϕ̇ϑ̇cϑ − ϕ̇ψ̇sϕcϑ − ϑ̇ψ̇cϕsϑ

+ ωo ×
−ϕ̇cϕsϑcψ + ϑ̇ (sϑsψ − sϕcϑcψ)+ ψ̇ (sϕsϑsψ − cϑcψ)ψ̇sψcϕ + ϕ̇sϕcψ
ϕ̇cϕcϑcψ − ϑ̇ (sϕsϑcψ + cϑsψ)− ψ̇ (sϕcϑsψ + sϑcψ)

 (43)
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FIGURE 3. System structure of CAMF.

linear or weakly nonlinear systems. The necessary condition
for ensuring the stability of the system shown in Fig. 3 is that
the basic system (the red part in Fig. 3; (50)) is stable [22].
Fortunately, we have analysed the controllability of the basic
system from the characteristics of ACMM and have obtained
the following theorem.
Theorem: The system described in (50) is controllable if

and only if (35) is satisfied. This theorem can be easily proven
using the Popov–Eleventh–Hautus Criterion [23].

The disturbance mainly includes the constant term,
the period term at a single frequency and high frequency
terms. According to the internal model principle, it is nec-
essary to model the disturbance for control. The compensator
(the yellow part shown in Fig. 3 is utilized to suppress the
influence of high frequency disturbances on the attitude angle
and to avoid the accumulation of CMGs angular momentum
caused by constant disturbances:{

ẋe = Aexe + Bex
ue = −Kexe

(51)

where

xe =
[
f 0 f 11 f 12 f 21 f 22 f 31 f 32

]T
,

Ae =



0 0 0 0 0 0 0
0 0 E 0 0 0 0
0 −ω2

oE 0 0 0 0 0
0 0 0 0 E 0 0
0 0 0 −λ21ω

2
oE 0 0 0

0 0 0 0 0 0 E
0 0 0 0 0 −λ22ω

2
oE 0


,

and

Be =



0 A0θ A0h
0 0 0
0 A1θ A1h
0 0 0
0 E 0
0 0 0
0 E 0


.

λ1 and λ2 are coefficients of ωo, which means disturbances
with frequencies ωo, λ1ωo, and λ2ωo are suppressed by the

controller. To ensure the system is controllable, λ1 and λ2
should meet the constraint λ2 > λ1 > 1. Based on the
analysis in section III, the pitch must contain bias, and the
moving mode of the row is chosen as a sinusoidal movement
at the orbital frequency to offset the torques that could cause
CMGs angular momentum accumulation in a steady state.
To achieve this effect, filter matrices are defined as follows:

A0θ =

 1 0 0
0 0 0
0 0 1

, A0h =

 0 0 0
0 1 0
0 0 0

 ,
A1θ =

 0 0 0
0 1 0
0 0 1

, and A1h =

 1 0 0
0 0 0
0 0 0


The final state space equation is

[
ẋ1
ẋe

]
=

[
A1 0

Be Ae

][
x1
xe

]
+

[
B1

0

]
T c +

[
Bw
0

]
w

T c = −
[
K1 Ke

] [ x1
xe

]
(52)

This is a 30-dimensional state space equation. To facilitate
the solution of the feedback gain matrix, an improved linear
quadratic regulator with an eigenvalue placement algorithm
will be introduced in part C.

C. LINEAR QUADRATIC REGULATOR WITH
EIGENVALUE PLACEMENT
Consider the linear time-invariant controllable system
described by

ẋ = Ax+ Bu; x (0) = 0 (53)

where x is the state vector, u is the input vector, and A and B
are constant matrices of appropriate dimensions. Let the
quadratic cost function for (53) be

J =
∫
∞

0

[
xTQx+ uTRu

]
dt (54)

where Q and R are non-negative and positive weight matri-
ces. The feedback controller that minimizes the cost func-
tion can be expressed as (55) by solving the matrix Riccati
equation (56):

u = −RBTPx , −Kx (55)

PBR−1BTP − ATP − PA− Q = 0 (56)

In order to avoid the selection of weight matrixQ andmake
the system have better dynamic characteristics, we use the
pole placement algorithm introduced by Shieh et al. [24].
This technology can place the close-loop poles in a sector
region with a sector angle±π/2k, k = 2, 3 from the negative
real axis in the s-plane the and left hand of the −h vertical
line (Fig. 4), where h ≥ 0 represents the prescribed degree
of relative stability. This algorithm places closed-loop poles
within the open sector using numerical iteration.
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FIGURE 4. Specified region for pole placement.

FIGURE 5. Shift region for pole placement.

The best dynamic property of the control system will be
obtained when the closed –loop poles are placed near ±π/2,
but the largest region that can be considered is bounded
by lines of ±π/4. To better achieve the dynamic property
of control system and increase the flexibility of the pole
placements, a shifted sector method is proposed in Fig. 5,
whereby the poles can be placed at any sector angle β
between 30◦ and 90◦. The design steps are as follows.
Step 1) Given a linear system as in (53), assign h such that
−h is parallel with the imaginary axis, which would represent
the line beyond which the closed-loop pole will be placed
in the sector shown in Fig. 4. Assign the positive-definite
matrix R, and solve the equation

P0BR−1BTP0 − P0(A+ hEn)− (A+ hEn)TP0 = 0 (57)

Solve the symmetric positive semi-definite matrix P0.
The immediate closed-loop system matrix is A1 = A −
BR−1BTP0, and hence all the poles are in the left-hand plane
beyond the −h vertical line. Set i = 1.
Step 2) Assign an angle β for the sector, and h1 = h

in Fig. 5. If β ∈ (30◦, 45◦) go to Step3); otherwise β ∈
(45◦, 90◦) and proceed to Step7). Step 3) For assignment
angle β, move the imaginary axis to the right:

h2 =
√
3h1 tanβ − h1 (58)

Obtain the new state matrix A1 = A1 − Eh2;
Step 4). Solve the equation

Q̂iBR
−1BT Q̂i − Q̂i(A

3
1)− (A3

1)
T Q̂i − 0 = 0 (59)

Obtain the symmetric positive semi-definite solution
matrix Q̂i. Check if 0.5tr(BR−1BT Q̂i) = 0; if so, proceed
to V, but otherwise continue.

Step 5) Solve the equation

P iBR−1BTP i − P(Ai)− ATi P − Q̂i = 0 (60)

Obtain solution P i; the immediate closed-loop system
matrix is therefore Ã = Ai − γiBR−1BTP i. Solve for the
coefficient γi from the inequality

a1γ 3
i + b1γ

2
i + c1γi + d1 ≤ 0 (61)

where a1 = −tr[(BR−1BTP i)3], b1 = 3tr(BR−1BTP i)2Ai,
c1 = −3tr(BR−1BTP i)A2

i , and d1 = 0.5tr(BR−1BT Q̂i).
Step 6) Set i = i+ 1 and proceed to Step4)
Step 7) For the assignment angle β, move the imaginary

axis to the right:

h2 = h1 tanβ − h1 (62)

Obtain the new state matrix A1 = A1 − Eh2.
Step 8) Solve the equation

Q̂iBR
−1BT Q̂i − Q̂i(−A

2
i )− (−A2

i )
TQ̂i − 0 = 0 (63)

Obtain the solution of the symmetric positive semi definite
matrix Q̂i. Check if 0.5tr(BR−1BT Q̂i) = 0. If so, proceed
to V, but otherwise continue.

Step 9) Solve the equation

P iBR−1BTP i − PAi − ATi P − Q̂i = 0 (64)

Obtain the solution P i; the immediate closed-loop system
matrix is therefore ˜A = Ai − γiBR−1BTP i. Solve for the
coefficient γi:

γi = max{0.5,
b2 +

√
(b22 + a2c2

a2
} (65)

where a2 = −tr[(BR−1BTP i)2], b2 = tr(BR−1BTP i)Ai, and
c2 = 0.5tr(BR−1BT Q̂i).
Step 10) Set i = i+ 1 and proceed to Step8).
Step 11) The algorithm is completed, all of the closed-loop

system poles are in the specified region of Fig. 5, and the
optimal feedback is

K = BR−1BT (P0 + γ1P1 + · · · + γjP j) (66)

Finally, the optimal regulator can be given as u = −Kx.
NOTE 2: This pole placement technology, which is utilized

to compute CAMF and the attitude manoeuvre controller,
has an advantage over the traditional LQR algorithm; the
feedbackmatrices can be obtained by setting the performance
indexes without choosing a weight matrix Q, which is effi-
cient and easy for high-dimension space state equations. The
gain matrix designed by this algorithm is more convenient
than the reference [15].
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V. NUMERICAL EXAMPLE
Themultistage attitude control strategy proposed in this paper
was verified through mathematical simulation. To obtain
accurate gravitational gradients and aerodynamic moments,
we established the orbital model. The orbital elements
included the semimajor axis (as), eccentricity (e), right ascen-
sion of the ascending node (�), orbital inclination (I ), argu-
ment of perigee (ω), and true anomaly (θ (t0)), the values of
which are shown in table 1. The atmospheric density ρ in
(7) is influenced by many factors, including seasonal effects,
solar activity, the day/night cycle, orbital geometry and the
earth’s magnetic activity. We utilized NRLMSISE-00 [25]
to obtain real-time atmospheric densities. Fig. 6 shows the
structure of the space station. We can therefore calculate the
aerodynamic torques according to (7), which is more accurate
than other algorithms.

TABLE 1. Orbital elements.

FIGURE 6. S Space station structure.

Considering that there is not a singularity problem arising
from the variable speed control moment gyros (VSCMGs),
two clusters of VSCMGs in a pyramid configuration were uti-
lized as the control actuators [26], and each of the VSCMGs
had a nominal angular momentum of 2000 N .ms. In this
case, we assumed that a cargo spaceship docks with the core
module in the radial direction (Fig. 6). The following inertia
matrix was specified for the space station:

Ib =

[
55.94 −0.2201 0.1854
−0.2201 64.27 0.3125
0.1854 0.3125 107.6

]
× 105 kg.m2.

For the TEA tracking, the feedback matrix K2 in (49) was
chosen by the LQR with the eigenvalue placement algorithm.
The related performance indexes were assigned as R = E,

h = 0.01, and β = 60◦. An interesting phenomenon is that
all of the system poles were configured to −0.02. The initial
attitude was θ =

[
0.4◦ 0.5◦ −0.3◦

]T, and the initial angular
velocity was chosen as ωb =

[
0 0 0

]T rad/s. Using curve
fitting, we isolated the constant and cyclic components at the
orbital rate of the disturbance and expressed the components
in the orbital frame as

Tod =

−0.017−0.97
0.012


+

−0.036 sin(ωot)+ 0.049 cos(ωot)
0.086 sin(ωot + 3π/4)

−0.15 sin(ωot)+ 0.095 cos(ωot)

 (N.m).

(67)

We set the adjusting time as ts1 = ts3 = 500s. Four
orbital periods were utilized to unload the VSCMGs angular
momentum. According to the dynamic characteristics of TEA
tracking, the coefficient in (37) was ϑ1 = 0.07156. Hence the
coefficients in (36) could be obtained easily. Similarly, we set
α ≈ π7/6 in (30) according to (66), and the kx in (40) was
estimated as kx = 0.00912; the coefficients of attitude path
of roll angle in (38) could therefore also be obtained.

It is easily shown that the inertia matrix meets the con-
straint condition in (35), which means the CAMF system is
controllable. The parameters in (52) are shown in table 2.
The CAMF controller gain was computed using the linear
quadratic regulator with the eigenvalue placement algorithm.
To obtain good dynamic performance, the pole placement
related parameters were assigned to R = E3, h = 0.4ωo, and
β = 60◦. All of the closed-loop poles were placed to the left
of the line at 0.4ωo and within a sector angle of 60◦ (Fig. 7).
Hence the system possessed proper transient response and
robustness properties.

FIGURE 7. System poles of CAMF.

The numerical results are presented in Fig. 8 to Fig. 13.
This simulation can be divided into three parts: attitude
stabilization, TEA tracking and CAMF. Attitude stabilization
lasted for approximately two orbital periods (185 minutes)
for rendezvous and docking (Fig. 8). Before the attitude con-
trol strategy switched from attitude stabilization to CAMF,
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TABLE 2. CAMF parameters.

FIGURE 8. Space station attitude.

FIGURE 9. VSCMGs angular momentum.

the VSCMGs should be unloaded because a large amount
of momentum would accumulate in the attitude stabilization
mode (Fig. 9). Otherwise, the model error between the real
system and the linearized system would be amplified, which
would cause the system to become unstable and shake.

The VSCMGs momentum was unloaded in four orbit peri-
ods before the space station flew in CAMF mode over the
next eight orbital periods (Fig. 8 and Fig. 9). The attitude-
related gravity term and the aerodynamic torques (Fig. 10 and
Fig. 12,) were utilized to unload the VSCMGs momentum
(Fig. 9) and offset the disturbance at the same time during the
attitude manoeuvre. The VSCMGs momentum was within
±500N .m.s at the shift point (Fig. 9). The attitude control
switched from the TEA tracking mode to the CAMF mode
smoothly over six orbital periods (Fig. 8).

During the CAMF stage, the pitch angle was approxi-
mately 3.3◦, the roll angle underwent sinusoidal motion at
the orbital frequency, and the yaw angle remained at zero
(Fig. 8), which means the perturbation on the yaw axis was
absorbed by the rolling axis movement. By combining Fig. 9,

FIGURE 10. Gravity gradient torque.

FIGURE 11. Angular momentum accumulation caused by gravity gradient
torques.

FIGURE 12. Aerodynamic torques.

Fig. 11 and Fig. 13, it can be seen that the accumulation
of angular momentum caused by the constant disturbance
was perfectly absorbed by the gravity gradient and aero-
dynamic torques through the attitude manoeuvre. Although
the disturbances with frequencies ωo, 2ωo, and 3.5ωo were
suppressed by the controller, the high-order attitude pertur-
bation remained (Fig. 8) because it was difficult to estimate
the high-order disturbance (Fig. 12). However, the controller
that accounted for the disturbance suppression performed
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FIGURE 13. Angular momentum accumulation caused by aerodynamic
torques.

better than its counterpart that did not account for disturbance
suppression.

VI. CONCLUSIONS
A multistage attitude control algorithm for space stations
using VSCMGswas proposed in this paper. To ensure that the
VSCMGs angular momentum is unloaded before the control
mode is switched from attitude stabilization to CAMF, a TEA
tracking controller was designed. TEA tracking, which is
realized using an attitude manoeuvre, is an open-loop control
strategy, which means that its control effect depends on the
system model. Obviously, it is difficult to obtain an accurate
system model, and as a consequence, the VSCMGs angular
momentum cannot be unloaded to zero at the end of the atti-
tude manoeuvre. Fortunately, holding the VSCMGs angular
momentum over a small range is sufficient to avoid the shock-
ing of attitude at the initial moment, and the method still has
significant practical value. Based on a three-axis coupled lin-
earized model, a CAMF controller based on the LQRmethod
and the internal model principle was proposed to achieve
ACMM. Because of the disturbance model introduced in the
system, the influences of environmental torques on attitude
are well suppressed. The pole placement algorithm yields a
good solution to the problem of choosing the proper weight
matrix, especially for multidimensional matrices. In this case,
no jet propulsion is needed during the entire process.
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