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ABSTRACT Electroencephalography-based sleepiness detection system (ESDS) is a brain-computer
interface that evaluates a driver’s sleepiness level directly from cerebral activity. The goals of ESDS
research are to estimate and produce a timely warning to prevent declines in performance efficiency and to
inhibit sleepiness-related accidents. We first, review different types of measures used in sleepiness detection
systems (SDSs) and presents their advantages and drawbacks. Second, the review includes several techniques
proposed in ESDSs to optimize the number of EEG electrodes, increasing the sleepiness level resolution and
incorporation of circadian information. Finally, the review discusses future direction that can be considered

in the development of ESDS.

INDEX TERMS Sleepiness, fatigue, countermeasure, accident prevention, alertness monitoring, classi-
fication, electroencephalography, multimodal approach, brain-computer interface, multi-modal approach,

homeostasis, circadian.

I. INTRODUCTION
Work in shifts is prevalent in many round-the-clock indus-
tries (e.g., maritime, military, manufacturing and land
transportation) to maintain 24-hour operation. The demand
for continuous operation sometimes requires workers to sus-
tain wakefulness throughout the night. Extended wakeful-
ness throughout the night may lead to misalignment between
internal biological functions and social needs [1]-[5], which
subsequently leads to sleepiness during and after work
periods [6]-[8]. The detrimental impact of sleepy/ drowsy
driving is significant issue and is strongly associated
with many near-misses and driving accidents [9]-[15]. For
instance, the US National Highway Traffic Safety Adminis-
tration analyzed police report and estimated that many vehicle
crash are directly related to the driver sleepiness [16]. This
is because sleepiness may lead to a slower reaction time
that indirectly limits human’s ability to respond effectively to
spontaneous emergent events [17]-[20]. In addition, humans
often provide imprecise estimations when asked to subjec-
tively quantify fluctuations in their alertness level [21].
Development of a continuous real-time sleepiness detec-
tion system (SDS) to monitor and prevent further drowsi-
ness, which is incompatible with safety-sensitive operations,
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is thus highly desirable. There are many SDS available to
monitor sleepiness levels (See section II for details), and
electroencephalography-based sleepiness detection system
(ESDS) provide the most predictive and reliable estima-
tions [16], [22]-[24]. Although a significant amount of
research has been conducted in the development of ESDS,
several constraints limit their application in the field. The
application in naturalistic driving environment requires that
an ESDS be robust, easy to wear and not computationally
expensive. One reason for this is that most existing ESDS
are based on multiple EEG electrode settings. Effective man-
agement of this issue requires minimization of the number
of EEG electrodes [25], signifying the need to find the best
set of electrode localization, feature and classifier that are
most discriminative in classifying different level of sleepi-
ness. Prior research has shown that leveraging the number
of EEG electrodes with proper selection of the features and
classifier is feasible for monitoring progressive changes in
sleepiness [26]-[28].

According to the American Academy of Sleep
Medicine [29], sleep can be scored according to different
stages: stage W (wakefulness), stage NonREM (stages N1,
N2 and N3), and stage R (rapid eye movement). Stage W is
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the unequivocal stage of high arousal and stage N1 is the
ambiguous stage between wakefulness and sleep (i.e., drowsy
sleep). Stages N2, N3 and R are unambiguous stages of sleep.
Compared with binary cases (i.e., Stage W or stage N1),
multilevel (i.e., including intermediate levels between Stage
W and N1) ESDSs enable an individual to track their arousal
level in incremental steps and allow for ample lead time for
appropriate mitigation procedures [30]. For field practicality,
a multilevel drowsiness detection system is important for
monitoring the dynamic changes in brain activity. In addition,
the circadian rhythm is an important consideration for a
sleepiness detection system [31]-[33]. However, the circa-
dian system, which is a well-known endogenous influence
that affects human cognitive performance differently within a
24-hour cycle [34]-[38], is often neglected in ESDSs. Recent
studies have shown that incorporating the circadian rhythm
may improve the accuracy of an ESDS [31]-[33].

Sleepiness can be defined as the increasing sleep propen-
sity due to decreased physiological arousal [39]-[41].
According to Borbély’s two-process model [42], sleep
propensity is influenced by the interaction of circadian
and homeostatic processes. The first, the circadian process
(P_Circ), generates approximately 24-hour rhythmic fluc-
tuations in sleep propensity. Drivers are usually more alert
during the solar day and are more likely to become sleepier
throughout the solar night [31], [32]. The second process is
the sleep homeostasis process (P_Hom), which represents
the progressive build-up of sleep pressure during wakeful-
ness and the progressive decline as recovery occurs during
sleep. The interaction of P_Circ and C_Hom oscillation is as
depicted in Figure 1.

Sleepiness —»
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FIGURE 1. The Interaction between circadian and homeostatic process.
The grey rectangular box indicated sleep period. The figure adapted from
[43] (See text for detail).

Often in the literature, the word fatigue has been used
interchangeably or is substituted with the terms sleepiness
and sleep propensity [1], [44]. One reason why the term
fatigue and sleepiness has been used somewhat loosely might
be due to the overlapping features and semiotic between
them [45]. In addition, the developers of SDS often used the
word fatigue to describe their model in compliance to regula-
tory requirement [44]. There are numerous work addressing
the differences between fatigue and sleepiness both in term of
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clinical aspect and their exact definition [45]-[47]. Fatigue in
general can be defined as a condition in which it is difficult to
maintain the motor or mental energy levels with time spend
during the mental activity [45]. Rest break is presumably the
way to recover from fatigue [45]. With respect to the two
reasons mentioned above, the terms fatigue, sleepiness and
drowsiness are used interchangeably in this review.

In this article, we present an overview of techniques used
in sleepiness detection systems, particularly within the land
transportation domain. We review the techniques and classi-
fication results obtained for ESDSs with a small number of
EEG electrodes and multilevel sleepiness detection. Studies
that include a circadian factor to improve the performance
of the ESDS are also discussed. Finally, future direction in
ESDS research are presented.

Il. SLEEPINESS DETECTION SYSTEMS

The evaluation of a driver’s sleepiness level can be divided
into six main techniques: 1) subjective measures; 2) vehicle-
based systems; 3) Driver’s behavior-based systems; 4) mathe-
matical models of sleep-wake (MMSW) dynamics; 5) human
physiological signal-based systems; 6) hybrids of one or more
of these techniques. A sleepiness test that fulfills criteria that
include: a) easy to use; b) objective; c) reliable; d) robust
to the subject’s motivation; e) non-intrusive; f) minimally
restricts the subject’s movement; g) able to continuously
monitor the sleepiness state has greater potential for routine
use in field environments [48], as summarized in Table 1.

The first technique for tracking sleepiness levels is hav-
ing the driver subjectively rate their sleepiness at that
time [49]-[51]. The most commonly used sleepiness scale
used is the Karolinska sleepiness scale (KSS) [52]. Although
this technique provides a very straightforward procedure for
assessing a drivers’ sleepiness level, it is difficult to assess
sudden variations in sleepiness level and the ratings may
be confounded by misjudgment by the individual [21]. Fur-
thermore, a driver’s attention can be distracted if sleepiness
feedback is assessed frequently.

The second technique evaluates a driver’s sleepiness state
according to changes of vehicle-based estimators including
steering wheel movement, standard deviation of the lane posi-
tion, vehicle speed, gear changes, braking and pressure on the
steering wheel [53], [54]. Although this technique allows for
non-contact detection and eliminates any discomfort to the
driver [55], it is difficult to develop a common model due
to differences such as vehicle type, driving conditions, driver
experience, and the geometric and environmental situations
of the road [25], [56]. In addition, changes in driving behavior
are not exclusively due to drowsiness but are also influenced
by the driver’s motivation, experience or personality [57].

The third technique utilizes image acquisition technology
to track behavioral changes including eye blink, Percentage
of Eye Close (PERCLOS), facial position, yawning and gaze
direction [58]-[64]. Despite the improvements achieved in
recent years, image or video acquisition is sensitive to the
illumination of the surrounding area [65]. The accuracy of the
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TABLE 1. Summary of the effects that visual and cognitive distraction has on driving performance.

Ref. Measure Parameter(s) Practicality criteria Comments
a b ¢ d e f g Mainadvantage(s) Main limitation(s)
[49-51] Subjective Sleepiness scale Y N N Y Y Y N Thistechnique allows the Not suitable for
measures (e.g., Karolinska driver to assess their continuous sleepiness
Sleepiness Scale) sleepiness level according evaluation;
to their subjective feelings self-assessment of
sleepiness is often
wrong
Vehicle-based  Steering wheel Y Y N N Y Y Y Non-intrusive A technique used for a
[53, 54] measures movement, car cannot be applied to
standard deviation airplanes, trains or
of lane position, ships;
vehicle speed, gear different drivers might
changes, braking have unique driving
and pressure on styles;
the driving paddle driving might vary in
different environmental
situations
[58-65] Behavioral Eye-blink, Y Y N N Y N Y Non-intrusive; easy to use This technique is
measures percentage of eye unreliable due to the
close, facial influence from varying
position, yawning light conditions;
and gaze direction inaccurate prediction is
possible, especially
when SW is sleeping
with an open eye
[68, 69] Bio- Time awake,sleep Y Y Y Y Y Y Y Non-intrusive Reliable only if the
mathematical  duration input provided is
measures accurate
[71, 73, Physiological ~ Statistical & N Y Y Y N Y Y Among the physiological Obtrusive;
74,77, measures energy features measures, EEG is the most ~ prone to unavoidable
80-83, 85] derived from the reliable, accurate, and motion artifacts and
electrophysiologic highly reproducible noise introduced due to
al signal electromagnetic field

interferences or poor
electrode attachment,
which result in
unreliable classification
results

eyelid closure measurement can be affected by glare reflec-
tion from the subject’s glasses or by the subject’s face being
intermittently outside of the detection angle of the recorder
during image acquisition [28], [66].

The fourth technique is application of bio-mathematical
models (BMMs) of alertness to predict drowsy driv-
ing [67], [68]. Most cognitive performance and human alert-
ness models were built using the two-process model (TPM)
concept [42]. Schedulers and planning staff have utilized
BMM to quantitatively forecast and evaluate the likely sleepi-
ness level and cognitive performance of those on a given duty
schedule [21], [44], [69]. However, no BMM can forecast any
transient changes in sleepiness [21], [22].

The fifth technique emerged from the fact that decrements
in an individual’s driving performance and alertness state
accompany the changes in physiological features [70], [71].
Numerous physiological indicators are used to bridge
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the physiological-sleepiness relationship such as electro-
cardiogram (ECG) [72]-[75], electrooculography (EOG)
[76]-[78], functional Near Infrared Spectroscopy (fNIR)
[79] and electroencephalography (EEG) [7], [70], [73],
[79]-[86]. Among these modalities, EEG is the most predic-
tive and reliable for continuous evaluation of sleepiness or
alertness [16], [23], [24].

EEG is a common technique used in sleep research to
record the electrical potential generated from the activity of
cortical neurons situated just beneath the scalp. EEG signals
can reflect brain activity changes with variation in alertness
and arousal states during the transitional phase between stage
W and stage N1 [87]. There are different ways to place
the EEG electrodes on the scalp such as the 10-20 system,
10-10 system, 10-5 system and et cetera [88]. These relative
head-surface-based positioning systems has been designed to
allow the use of any number of electrodes with predictable
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FIGURE 2. Electrode placement according to the international
10-20 system. F: frontal lobe, T: temporal lobe, C: central lobe, P: parietal
lobe, and O: occipital lobe. Z refers to an electrode placed on the midline.

and easily repeatable position [89]. A commonly used sys-
tem in driving studies is the 10-20 system. For example,
in the study [80], the EEG signal were recorded only from
the channel Oz of the international 10-20 system with the
reference electrode placement on the Fz and ground electrode
was placed on the right ear lobe as depicted in Figure la.
In addition, other studies has used more electrodes using the
10-20 systems, not limited to, such as the 4 channels [90], 8-
channels [25] or 32-channel [20] as shown in Figure 1b and
Figure 1c and Figure 1d , respectively.

The EEG signal is divided into several sub-bands: delta
(0.1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-36 Hz)
and gamma (36-44 Hz). The frequency range is often grouped
into each of these sub-bands to compensate for the individ-
ual differences and has been shown to correlate well with
changes in driving performance during alert or drowsy driv-
ing [70], [71], [90], [91]. However, use of EEG as standalone
modality do not provide good classification results due to
unavoidable motion artifacts [78], noise due to electromag-
netic field interference [92], or poor electrode attachment and
et cetera.

Lastly, hybrids of these techniques have been designed to
complement the limitations of each approach [93]. A hybrid
between EEG with one or more sleepiness detection tech-
niques was designed to improve the discrimination power of
EEG [56], [76], [79], [81].

Ill. EEG-BASED SLEEPINESS DETECTION SYSTEM

The sleepiness and performance fluctuations due to the under-
lying interaction of P_Circ and P_Hom are reflected by
frequency-specific circadian and wake duration-dependent
changes from the waking EEG [94]-[97]. The dominance
of each EEG sub-band at specific times can be used to
interpret the brain behavior. The intrusion of low-frequency
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EEG oscillations such as delta usually indicates the sleep
stage and increases in the theta indicate the onset of
sleep [98]-[100]. Alpha activities may reflect the increase
in mental effort to maintain vigilance and the beta wave is
related to high alertness and arousal [101].

The buildup in sleep propensity and drowsiness is com-
monly characterized by increases in the theta and alpha activ-
ities with a parallel decrease of brain activity in the beta
band as the alertness level decreases [16], [99]. Nevertheless,
many studies were reported to show a significant increase
in delta activities [17], [24], [95], [102]-[105]. However,
the increased in delta, theta and lower-alpha as demonstrated
during an extended wakefulness study was not monotonic
and exhibited a predominantly circadian effect [48], [95],
[102], [104].

In addition to the above EEG characteristic, other
researchers combine the EEG sub-bands to form an equation
that served as a more reliable and robust technique to detect
and quantify alertness levels [71]. However, depending on the
observed dynamic changes in spectral power, different types
of ratios have been claimed to be the most sensitive indices
to alertness levels such as (1) [theta 4 alpha]/beta [71], [81],
[106], [107]; (2) [theta + alpha]/ [alpha + beta] [81], [107];
(3) and [gamma + beta]/[sigma + alpha] [108]. Observa-
tion of the EEG drowsiness-signature paved the way for
development of an ESDS that automatically estimates driving
performance from brain activity [16], [109].

A. LIMITED NUMBER OF EEG ELECTRODES

To be practical for routine use, an ESDS should apply as
few EEG electrodes as possible to reduce the setup time and
computational load [87], [110]. Several ESDSs using a single
channel or minimal multiple channels have been reported in
the literature. These studies were motivated to seek an optimal
combination of electrode localization, features and classifiers
to improve the performance of the algorithm, as tabulated
in Table 2.

In one study [26], Shabani et al. extracted a determinism
feature using recurrence quantification analysis from only
the F8 electrode and used a combination of support vector
machine (SVM) and Bayes classifiers. SVM is a supervised
machine learning algorithm used for classification and regres-
sion. The working principle behind SVM is finding the opti-
mal hyperplane that maximize the separation between two
classes. More detail about SVM can be referred in [111]. The
proposed techniques could differentiate alert to drowsy states
with 90.6% accuracy.

In addition, several studies applied features from the occip-
ital region to detect sleepiness while performing a task. For
example, some authors [27] proposed support vector regres-
sion (SVR) to classify an 8-class problem of alert (degrees
of vigilance 1, 2, 3, and 4), mildly drowsy (degrees of
vigilance 5, 6, and 7) and severe behavioral lapse (degree of
vigilance 8). SVR is one of the form of SVM. The main idea
of SVR is to compute the linear regression function in the
higher dimensional space by mapped the input data through
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TABLE 2. Accuracy of classifiers in the ESDS based on single- or minimal-multichannel electrodes. The protocols are arranged by the number of subjects,
protocol and total duration of the experiment. The tasks are (t1) a driving simulation, The information in parenthesis after each task is the total time
(minute: m or hour = h) required to complete the task. The proposed scalp areas are: (F) frontal, (0) occipital, (OM) occipital midline, (P) parietal. The
class problems are (A) alert, (D) drowsy, (S) sleep. NR: not reported, CP: class problem. The SVM multiclass classification can be divided into
one-against-all (OA) or one-against-one (00) method. In some case, the author did not explicitly explain the details of a particular information and this is
symbolized as (). In study [80] the author did not explicitly explained which EEG sub-band was used to calculate the PSD spectra, while in

studies [81], [113], the authors did not explicitly mentioned either they utilized type OA or 00 when used SVM for classification.

No. Subjects Protocol Electrode(s) Feature(s) Classification Accuracy Ref.
[CP]
1. 12 tl F8 EEG (delta & SVM + Bayes 90.60% [2 CP] [26]
(50 m) theta)
2. 15 tl 01 & 02 EEG (theta, alpha SVR-RBF 93.10+5.2% [8 CP] [27]
(90 m) and beta)
3. 20 t1 O1 or O2 EEG (theta, alpha SVM-+posterior A (91.25%,), Early-warning [28]
(60 m) and beta) probabilistic (83.78%) & D (91.92%)
model
4, 10 t1 (120 Ol orO2 EEG (theta, alpha K-singular value Ol feature (87.05%) & [25]
m) and beta) decomposition 02 feature (93.87%)
[2 CP]
5. 10 tl (120 Ol orO2 EEQG (theta, alpha SVM 01 feature (92.39% & [55]
m) and beta) 02 feature (93.72%)
[2 CP]
6 15 tl (NR) Oz EEG (Mahalanobis ~ BL positive predictive value and [99]
distance feature) sensitivity of 76.9% and 88.70%,
respectively [2 CP]
7. 5 tl(NR) Oz PSD spectra* SVM 98.20 % [81]
[2 CP]
8 20 t1 (90m) Ol1,02,and EEG (Delta, theta, = RSEFNN RMSE (0.0997) [CP NR] [117]
Oz alpha and beta)
9 60 tl (120-  P3,PZand EEG (ApEn & SVM P3 (0.91 %), Pz (0.90 %), P4 (9.89 [116]
180m) P4 SampEn) %) [2 CP]
10. 20 tl (2days Fpz-Czand  EEG (Delta, theta, SVM* Average accuracy rate of 98.00% [5  [82]
x480m) Pz-Oz alpha and beta) and CP]
respiratory signals
1. 13 tl (150  Fpl, Fp2, Higher dimension SVM (OA &00)  SVM (OA) best three-state [118]
m) C3,C4,01, EEG feature classification accuracy of 81.64 %
02 extracted based on [3 CP]
MVAR
12. 20 t1 (120 Ol & 02 EEG & EOG ANN Average accuracy rate of 99.50- [119]
m) wavelet entropy, 96.50% [4 CP]
EEG sample
entropy, and EMG
approximate
entropy
13. 10 t1 (120 19 EEG (Delta, theta, BL Percentage error for alert (1.0%), [92]
m) Channels, alpha and beta) transitional (9.20%), transitional to
NR in post-transitional (11.5%) and post-
detailed transitional (2.70%), respectively [4
CP]
14. 31 tl Fz, T8 & Oz EEG, EOG and LDA Best classification rate 97.00% [5 [120]
(120~180 ECG signals CP]
m)
15. 31 tl Fz, T8 & Oz EEG, EOG and SVM (NR) Best classification rate 92.00% [5 [56]
(120~180 ECG CP]
m)

the nonlinear function. More detail can be found in [112].
The power spectral density (PSD) of the theta, alpha and beta
activity were extracted from the occipital (O1 & O2) data and
radial basis function kernel SVR was used for classification,
with a root mean square error (RMSE) of 0.124 £ 0.011.
Fast Fourier Transform is a technique used to convert the time
domain signal into frequency domain. One author [28] used
fast Fourier transform (FFT) extraction of the theta, alpha and
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beta power from O1 and O2 and classified the data using an
SVM-based posterior probabilistic model (SVMPPM).

The results confirmed accuracies of 91.25%, 83.78%
and 91.92% for the alert, early-warning and drowsy groups,
respectively. In another study, [25] the alert-drowsy states
were classified based on PSD features derived from a FFT
using either the O1 or O2 channel and sparse representation
classification with k-singular value decomposition (KSVD)
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for classification. KSVD is an iterative approach which
switch between the sparse coding of the given signal relying
on the current dictionary and keep updating the atoms of the
dictionary to get optimum fitting of the data. More detail of
KSVD can be found in [118]. The algorithm resulted in clas-
sification accuracies of 87.05% and 93.87% using features
from Ol and O2, respectively. Recently, researchers [55]
applied FFT to extract the power spectrum density features
from 01 and O2. For comparison, the SVM classifiers were
applied with sensitivities of 92.39% and 93.72% for the PSD
features derived from O1 and O2, respectively.

Some studies localized the midline occipital but others
such as Chin er al. [98] extracted the Mahalanobis dis-
tance (MD) features from a single Oz EEG channel. The
alert-drowsy classification was conducted using a Boolean
logic (BL) algorithm in which the summation of the MD
features was compared with a pre-determined threshold. The
proposed method showed a positive predictive value and
sensitivity of 76.90% and 88.70%, respectively. Similarly,
drowsy and alert were classified in a study [80] in which
the author compared a SVM classifier with a linear dis-
criminant analysis (LDA) and MAX classifier. The SVM
feed with a PSD feature from the Oz electrode resulted
in the most accurate classification of 98.20%. Another
[114] Liu er al. proposed a new recurrent self-evolving
fuzzy neural network (RSEFNN) that effectively integrates
and considers the past and current (target) EEG states. FFT
was applied to extract the PSD from the occipital region
(01, 02, and Oz). The RSFNN as indexed by the RMSE
outperformed the SVR, self-organizing neural fuzzy infer-
ence network (SONFIN), a fuzzy wavelet neural network
(FWNN), a Takagi—Sugeno—Kang (TSK)-type, recurrent
fuzzy network (RFN).

In addition to the occipital region, features originating from
the parietal region were used to discriminate the sleepiness
level, as in a study [113] in which the discriminability of
parietal (P3, PZ and P4) data was determined using a com-
bination of approximate entropy (ApEn) and sample entropy
(SampEn) and SVM for classification. Approximate entropy
and Sample entropy are techniques used to measure the sys-
tem complexity of the time series related to entropy. More
detail can be found in [119]. The averaged accuracies for the
two-class problem (i.e., alert & drowsy) in descending order
were 0.9128 %, 0.9064 %, and 0.8983 %, for P3, Pz and P4,
respectively.

Extreme learning machines (ELM) is one step ahead of
a conventional artificial learning approach. It is based on
the biological learning. In contrast to the neural network,
the hidden neurons parameters do not need to be tuned
but it is randomly assigned where the learning process is
completed in single step. More detail about ELM can be
found in this recent article [120]. In some studies, the
EOG and EEG data were combined, as in the study by
Chen et al. [66] in which the author proposed an ELM
classification based on ApEn, Renyei entropy, SampEn and
recurrence quantification analysis (RQA) features extracted
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from the Fz and Oz data of EEG and EOG signals. For com-
parison, three different classifiers (ELM-SIG, ELM_RBF
& SVM) classified the two-class (drowsy and alert) problem
from two different sets of features. The first feature set (SF1)
was a combination of nonlinear features from the EEG data
and the second feature set (SF2) was a combination of non-
linear features from EEG & EOG data. ELM_sig in both
combinations (SF1 or SF2) outperformed ELM_RBF and
SVM and the combination of ELM_sig and SF2 performed
better than ELM_sig and SF1 with an accuracy of 97.30 %
versus 95.60 %.

B. MULTICLASS SLEEPINESS CLASSIFICATION

It is advantageous for an ESDS to show progressive changes
in arousal level. Compared to the binary case, a multilevel
drowsiness system enables an individual to track their arousal
level in incremental steps and allows for ample lead time for
appropriate mitigation procedures [30]. Several techniques
have been proposed to monitor progressive arousal changes
at three or more levels. Table 2 summarizes all the studies
related to this.

EEG time series analysis can be divided into linear
and nonlinear techniques. In linear modeling technique,
the simple and commonly used method is auto regressive
model (AR). Multivariate autoregressive (MVAR) approach
provide the directional and causal flow of information based
on Granger’s framework [121]. Principle Component Anal-
ysis (PCA) and Kernel-PCA (KPCA) are common methods
used for data reduction. Both techniques used the singular
value decomposition which is applied on data to project it to
the lower dimensional space and further detail can be found
in [122]. For example, EEG features were extracted based on
MVAR. The performance of two dimensionality reductions
(PCA & KPCA) and SVM classification implementations
(SVM One-Against-One & SVM One-Against-All) were
compared in classifying the 3-alertness-state problem (alert,
medium drowsy and extreme drowsiness) [115]. Compared
with other combinations, the KPCA-SVM One-Against-All
method resulted in the best three-state classification accuracy
of 81.64 %. Artificial neural networks (ANNs) are based
on the structure and functions of biological neural networks.
Further detail can be found in [123]. The study [116] utilized
an ANN to classify a 4-class problem (normal state, mild
fatigue, mood swing, excessive fatigue) based on extracted
features including the EEG & EOG wavelet entropy, EEG
sample entropy, and EMG approximate entropy. The result
showed accuracy of 99.50-96.50%. In another study [91],
Larue and Pettitt used statistical EEG features and an
algorithmic BL with pre-selected thresholds for classifica-
tion. The results showed that the percentage error of the
algorithm for detecting alert, transitional, transitional to post-
transitional and post-transitional states was 1.00%, 9.20%,
11.50% and 2.70%, respectively.

In other study [81], several features obtained from a sta-
tistical, interval and frequency analysis of EEG (Fpz-Cz
and Pz-Oz) and respiratory signals were extracted and the
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top features were selected using mutual information (MI).
Mutual information (MI) can be used for feature selec-
tion [124]. The top feature extracted through MI having
highest value of MI between the given input features X
extracted from the EEG or respiration signals and out-
put class Y of sleepiness level were selected as the most
descriptive feature. The significant features are passed to
the SVM classifier and yielded an average accuracy rate
of 98.00% for the classification of 4 alertness level classes
(awake, slightly drowsy, moderately drowsy, and extremely
drowsy) [81].

In two studies [56], [117], Khushaba et al. proposed
two novel features selection techniques to select five-level
drowsiness-related features (alert, slightly drowsy, moder-
ately drowsy, significantly drowsy, and extremely drowsy)
from EEG, EOG and ECG signals. In one study [117],
Khushaba et al.proposed a fuzzy MI to evaluate the depen-
dency between the wavelet packet energy and the five-class
label. For dimensionality reduction point of view, spectral
regression (SR)-based linear discriminant analysis (LDA)
and kernel SR-LDA, and four different classifiers, a LDA
classifier, linear-SVM, k-nearest neighbors, and kernel-SVM
were tested for comparison.

K-nearest neighbor’s algorithm (K-NN) is a non-
parametric approach used for the classification purposes and
considered as simplest algorithm among all the machine
learning algorithms [125]. Linear Discriminant analy-
sis (LDA) classifier can be used to find a linear combination
of features that separates two or more classes [126].

The LDA classifiers with kernel SR-LDA (97.00%)
achieved a higher success rate than the other combinations.
In the other study, Khushaba er al. [56] maximized the
drowsiness-related features from EEG, EOG and ECG sig-
nals, including the zero crossing, Hjorth parameters, root
mean square autoregressive model, model coefficient, spec-
tral moment, waveform length, and Barlow parameters,
resulting in 115 features. The newly proposed uncorrelated
fuzzy neighborhood preserving analysis was used to reduce
the feature dimension. KNN and linear-SVM were com-
pared and both obtained an averaged recognition rate of
82.30% - 97.50% for the 5-class problem. However, the state
discrimination at the intermediate levels (i.e., slightly drowsy,
moderately drowsy, and significantly drowsy) was lower
than that of the alert and extremely drowsy states in both
these studies. It is worth to note that the author in stud-
ies [56], [81], [117] did not report whether the classifi-
cation of SVM is either a type of One-Against-One or
One-Against-All.

C. INTEGRATION OF A CIRCADIAN FACTOR

Although the effect of the circadian phase is apparent,
very few studies take this factor into account [31]-[33].
In addition, sleep pressure is accumulating over time, due
to the homeostasis process [33]. For instance, the driver’s
sleepiness level in the beginning may be lower and subse-
quently elevated with the time spent during driving task [127].
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Therefore, several studies had proposed ESDS to dynamically
monitor alert-drowsy states based on the combination of cir-
cadian factor with physiological factors based on Dynamic
Bayesian Network (DBN) [31]-[33]. DBN is a probabilistic
graphical model used to solve a problem with time depen-
dent stochastic processes [128], [129]. In one study [33],
Yang et al. implemented a DBN as a classifier for the dis-
crimination of the 2-state (alert and drowsy) problem utilizing
contextual and observable physiological information. The
algorithm integrated observable features such as the alpha
amplitude of eye movement, EEG and ECG activity with con-
textual information including sleep quality, working environ-
ment and P_Circ. The results showed that the decision maker
can perform better when physiological (eye movement, EEG
and ECG) and contextual information (sleep quality, working
environment and circadian rhythm) were incorporated. They
also showed the absence of EEG & ECG data (considering
only the eye movement + contextual information) reduced
the sleepiness estimation accuracy. Another [32] He et al.
proposed a fusion of EEG and head-based indicators (HB) as
the observable feature, the contextual information was repre-
sented by P_Circ and P_Hom, and classified the data using
a DBN. Compared with the EEG features alone, the fusion
of all variables improved the drowsiness state discrimination
in that the classification result as (EEG + HB + P_Circ +
P_Hom) was better than (EEG + HB), which was better than
EEG, and the combination of (EEG + HB + CR + TOT)
was better than (EEG + CR + TOT), which was better than
EEG data alone. In another study [31], Fu et al. imputed
both physiological observations (EEG, EMG and respiration)
and contextual knowledge (sleep quality, P_Circ and driving
conditions) into the Hidden Markov Model to assess the prob-
ability of driver sleepiness. Combining all variables achieved
alarger Area-Under-Curve than other single features (contex-
tual information 4 physiological observation (RESP, EMG,
EEG) > RESP > EMG or EEG).

IV. DISCUSSION

Developing a single-channel or few-channel ESDS is aca-
demically and practically important. The source of elec-
trode localization can be grouped into three area includ-
ing frontal, occipital and parietal. However, most of the
studies utilized the occipital electrodes particularly the Ol,
02 or Oz [25], [27], (28], [55], [80], [98], [114], [116].
Occipital component are located within the occipital cor-
tex (Broadmann area 18-20) and mainly involve with visual
reception [130]. The selection of occipital cortex with the
objective of having limited number of EEG electrodes in most
of the reviewed studies is consistent with previous studies
on neurophysiological of drowsy driving [130]-[136]. In
addition, the signal from forehead is susceptible to the eye
movement artifact which make the source from occipital
preferable [25]. This thus support the feasibility of using
electrical activity from the occipital electrode/s as sole input
to predict lapses in driving task. Beside looking for electrode
localization, selection of the EEG features is essential to
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complement different angle of the objective. The frequency
domain features, such as PSD spectra of the theta, alpha
and beta, seem to be effective for classifying the differ-
ent sleepiness stages. In terms of the classifiers, SVM was
commonly used for the two-class problem and in most of
the recent publication [26], [28], [55], [80], [113]. This is
due to the strength of SVM in overcoming the problem
when the ratio of number of features to number of train-
ing data is high [137]. In other word, the SVM is non-
sensitive to the small sample size data with a relatively high
dimensionality [130], [138]. Nevertheless, in all the review
studies related to the minimization of the number of EEG
electrodes is limited to the binary class (i.e., sleepy and
alert) SDS.

Capturing the intermediate states during the wake-to-sleep
onset transition is valuable for activating a warning signal at
the optimal time. However, the average performance accuracy
decreased when classifying the EEG-derivative features into
more than two groups (alert or sleepy). In two of the stud-
ies [56], [117], Khushaba ef al. reported that the computed
features could not able to produce desirable discriminative
power, especially between the intermediate states of the alert-
sleepiness continuum. Another probable reason for the poor
performance when classifying the multilevel sleepiness prob-
lem is the selection of driving performance measurers as an
alertness indicator. In these studies, [56], [117], the system
was developed using a driving task in a driving simulator.
Therefore, the subject might have assumed that navigation
mistakes would not cause any harm, which may compromise
the objective assessment [100]. In other cases, some subjects
do not exhibit high level of drowsiness. For example, in one
study [56], only 6 of 31 subjects whom exhibited all five
drowsiness levels.

Introducing various sources of contextual information
based on information extracted from sleep quality, working
environment and circadian rhythm, inevitably improves the
EEG based sleepiness detection system. However, informa-
tion relating to the hours of wakefulness, work hours, and
sleep-wake history is not always available [44]. Even though,
the addition of multiple feature from different modalities and
contextual features can improve the binary class problem,
the construction of Bayesian-based probabilistic methods
becomes complicated as more contextual and observational
features are introduced, particularly during constructing the
appropriate probabilities for the prior, conditional and transi-
tional states of the equation [28].

V. FUTURE DIRECTIONS

There are two issues can be considered in the development
of ESDS. Although several techniques have been proposed
for achieving the maximum theoretical performance accuracy
for alertness fluctuation classification, there are several areas
that require attention. With respect to all studies reviewed
in this paper, the association between observable features
of the EEG signal and driving performance was assessed
in the midafternoon (13:00-16:00) after lunch. At this time,

VOLUME 6, 2018

there is decrease in performance associated with post-lunch
dip phenomenon [4], [139]. However, no studies that being
reviewed in this paper have validated their proposed algo-
rithms at different circadian phases. Such validation is needed
because neurobehavioral performance and awake EEG are
phase locked to the circadian rhythm and are also modu-
lated by the elapsed time awake [97], [102]. It is worth to
note that there are numerous neuroscientific studies that only
showing this relationship but not covering the development of
ESDS [19], [94], [99]. Secondly, as discussed in Section II,
a combination of measures can enhance the performance of
the SDS. Fusing sleepiness forecasting by the BMM and other
sleepiness detection technologies holds a promising future for
the research in developing sleepiness detection system [21].
Although mathematical modeling has been used extensively
in the industry for shift scheduling [44], [69], there are
limited studies investigating their potential when combined
with other sleep measures. To date, there are only two stud-
ies investigating the fusion between the sleep/wake predic-
tor model [140], which is one of many phenomenological
BMM types, integrated with either the vehicle-based perfor-
mance [68] or eyelid movement [67]. However, the changes
in driving behavior are not exclusively due to sleepiness but
are also influenced by the subject’s motivation or personality.
Whereas the accuracy of the eyelid closure performance can
be affected by the glare reflection from a subject’s glasses
or departure of the subject’s face from the detection angle of
the recorder during image acquisition [28], [66]. In addition,
the moving average window for eyelid activity and driving
behavior compared to EEG is in minutes and seconds, respec-
tively [141]. From the information transmission point of view,
the EEG-based method is superior in updating the subject’s
state of arousal. Thus, there are open possibilities to investi-
gate the performance of combinations of BMM and EEG.

VI. CONCLUSION

The quest to provide safer environments in land transporta-
tion, has been intensively explored in field and laboratory
studies. Performance deterioration can be avoided by early
detection of sleepiness symptoms. The findings show that
brain activity as quantified from scalp EEG can be utilized for
measuring sleepiness levels. Continuous improvement to find
the best combination between scalp areas, EEG-based fea-
tures and classifiers are used to improve ESDS classification
performance and usability in the field. It is evident that ESDS
that utilize features from a limited number of EEG electrodes
is feasible. It appears that multilevel sleepiness classification
can achieve the best result as a binary class problem and that
the performance decreases when classifying the intermediate
states. Further, the fusion of EEG features with other physi-
ological features and contextual information would improve
the classification performance. Although several techniques
have been proposed for ESDSs, several improvements must
still be considered for such techniques to be acceptable in
practice. We briefly highlight the needs to validate ESDS
algorithm for data sets conducted at different circadian phases
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and the potential hybrids of EEG and BMM that can be

investigated in the future.

ABBREVIATIONS AND ACRONYMS

ANN Artificial neural network
ApEn Approximate entropy
BL Boolean Logic
DWT Discrete wavelet transform
ECG Electrocardiogram
EEG Electroencephalography
ELM Extreme learning machine
EMG Electromyography
EOG Electrooculograph
ESDS EEG-based sleepiness detection system
FFT Fast Fourier transform
FWNN Fuzzy wavelet neural network
KSS Karolinska sleepiness scale
KSVD K-singular value decomposition
LDA Linear discriminant analysis
MD Mahalanobis distance
MI Mutual information
MMSW Mathematical model of sleep-wake
P_Circ Circadian process
P_Hom Homeostasis process
PERCLOS Percentage of eye close
PSD Power spectral density
RBP Resilient-back propagation
RFN Recurrent fuzzy network
RMSE Root mean square error
RQA Recurrence quantification analysis
RSEFNN Recurrent self-evolving fuzzy
neural network
RWENN Recurrent wavelet-based
Elman neural network
SampEn Sample entropy
SBP Standard back-propagation
SDS Sleepiness detection system
SONFIN Self-organizing neural fuzzy
inference network
SSS Standford sleepiness scale
SVM Support vector machine
SVMPPM  SVM-based posterior probabilistic model
SVR Support vector regression
TPM Two-process model
TSK Takagi—Sugeno—Kang
WPD Wavelet packet decomposition
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