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ABSTRACT Cloud computing provides online services to customers using pay as you go model. The
Cloud computing enables customers to outsource the large and complex tasks to the cloud data centers for
the execution and result generations. Cloud data centers host the incoming tasks by providing resources,
such as CPU, RAM, storage, and bandwidth. As the large data centers provide the basic resources to
hosted tasks, they also consume a huge amount of energy, which leads to higher operating cost and
CO2 traces. Therefore, research community felt the need to provide energy-efficient solutions that reduce
the impact of the aforementioned issues. Consequently, researchers proposed many solutions, and majority
of them are based upon the concept of consolidation. Consolidation techniques place the incoming tasks
on minimum possible servers, thus increasing the resource utilization and decreasing energy consumption.
In this paper, we use the same workload consolidation concept and present two techniques that reduce
energy consumption while ensuring the negotiated quality-of-service. Moreover, we enhanced two existing
techniques by improving the energy efficiency and introducing service level agreement (SLA) awareness
to minimize the overall SLA violations. Performance evaluation of the proposed techniques is done based
on fluctuating workloads, and results show that our techniques outperform existing techniques in terms of
energy efficiency, SLA compliance, and performance assurance at the network level. Moreover, correctness
of the proposed techniques is demonstrated by modeling and verifying them with the help of high-level Petri
Nets, SMT-Lib, and Z3 solver.

INDEX TERMS Cloud computing, energy efficiency, resource management, resource allocation,
SLA awareness.

I. INTRODUCTION
Cloud computing is emerging as one of the popular solu-
tions for on-demand and dynamic resource provisioning [1].
The provisioning and maintenance of cloud resources are
done with the help of resource management (RM) tech-
niques [2], [3]. RM techniques are responsible to keep the
track of free resources and assign the resources from the
free pool to incoming tasks. Along with certain advantages,
RM techniques introduce a set of research challenges that
need to be addressed. One of the key research challenges in
RM is the energy efficiency, and researchers are focusing on
this challenge [4]–[6]. Energy efficiency not only minimizes
the overall the expenditure of the cloud data centers (DCs),
but also have a positive effect on environment [7], [8].
CO2 and Green House Gases (GHG) play an important
role in environmental pollution [12]–[14], and reports pub-
lished in 2007 highlight the fact that Information and

Communication Technology (ICT) industry produced
about 2% of total CO2 emissions. Moreover, recent report
predicts that the CO2 emissions of ICT industry will increase
to 12% by 2020 [15]. On the other hand, big ICT compa-
nies like Google are already hosting hundred and thousands
of servers and in 2010 these companies consumed about
271.8 billion kWh electricity [9], [10]. Furthermore, recent
reports suggest that the energy consumption of ICT industry
will grow to about 1963 billion kWh in 2020 [11].

In computational DCs, servers are considered as key
energy consumers. Servers consume about 80% of the total
energy, whereas, the rest of 20% is consumed by networking
and storage devices [16]. The main reason for the aforemen-
tioned fact is the frequent use of servers for hosting and com-
puting of users’ tasks. Recently, researchers have proposed
various energy-efficient solutions that tend to reduce energy
consumption at the server level [17]. The proposed solutions
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can be broadly characterized into hardware level and software
level solutions. Hardware level solutions use dynamic voltage
and frequency scaling (DVFS) technique [18], [24]–[26].
Whereas, software level techniques provide energy efficiency
by using workload consolidation approach [19], [27]–[32].
DVFS technique, scales the energy based on the computa-
tional load that is placed on the server. Conversely, workload
consolidation technique places the workload on minimum
possible servers which increases the resource utilization and
VM density on the servers. Increased resource utilization
reduces the number of active servers that leads to reduction in
energy consumption. Though, workload consolidation mini-
mizes energy consumption, but such kind of technique may
lead to service level agreements (SLA) violations if desired
quantity of resources are not available [20], [21]. Moreover,
it is noticed that there is a scope to further enhance the energy
efficiency in workload consolidation techniques by selecting
the better servers.

In this paper, we present two workload consolidation tech-
niques that attempt to reduce energy consumption and resul-
tant SLA violations. Available Capacity and Power (ACP),
and Required Capacity and Power (RCP) are based on best
fit decreasing (BFD) algorithm [22] that is traditionally used
for online bin packing. BFD algorithm is considered a good
VM placement algorithm because it places the VMs with
higher resource requirements first. Remaining VMs with
lower resource requirements are placed on the servers with
left-over resources. Moreover, our proposed techniques focus
on available CPU capacity and energy that are still to be
consumed rather than overall CPU capacity and maximum
energy consumption. This provides a clear view that how
much energy will be consumed by a certain VM. Moreover,
our proposed techniques also ensure agreed QoS level by
using the threshold mechanisms [23]. Threshold mechanism
preserves a certain capacity of resources free so that those
resources can be assigned to a VM in case the resource
requirements of that particular VM are increased. Further-
more, two existing energy-efficient techniques are enhanced
to improve energy efficiency and SLA violations. Following
are the major contribution of this paper:
• The detailed analysis of the selected energy-efficient
resource management heuristics is provided using same
environments and assumptions.

• Two new SLA-aware energy-efficient resource man-
agement techniques, ACP and RCP, are proposed that
optimize energy, SLA violations and network load
simultaneously.

• Extensions to PCABFD and EPOBF heuristics are pro-
posed. The proposed heuristics aim to enhance perfor-
mance in terms of energy efficiency, SLA violations, and
performance degradation due to migrations.

• Time and space complexity analysis of proposed and
selected solution is presented.

• Proposed techniques are formally verified and modeled
by the help of High-level Petri Nets, SMT-Lib, and
Z3 Solver.

Algorithm 1 Pseudocode for Proposed ACP Algorithm
ACP Algorithm
Input: srvList(S), vmList(V), threshold;
Output: VM allocation
1) V ′s ← sort all v ∈ V in order of CPU requirement

from higher to lower
2) S ′i ← sort all s ∈ S in order of utilization from higher

to lower
3) for all the vs ∈ V ′s do
4) Max_ratio← 0
5) Allocated_host← Null
6) comp_reqs← computational requirements of VM

vs
7) for all pi ∈ S ′i where utilization of pi +

comp_req s < threshold do
8) Available_CPU_capi← Avialable CPU capacity

of pi
9) Max_CPU_cap i←Maximum CPU capacity

of pi
10) Peak_Energy i← Peak energy consumption

of pi
11) Current_Energy i← Current energy

consumption of pi
12) RACP← Available_CPU_cap i

/( Peak_Energyi− Current_Energy i)
13) if Available_CPU_capi == Max_CPU_cap i

and Allocated_host ! = Null
14) Break
15) end if
16) if RACP > Max_ratio
17) Allocated_host← pi
18) Max_ratio ← RACP
19) end if
20) end for
21) if Allocated_host 6= Null
22) place vs on Allocated_host
23) end if
24) end for
25) Allocation = get_allocation( )
26) return Allocation

The rest of the paper is organized as follows: In Section II,
the related work done in the area of resource provision-
ing is presented. Section III describes the system model.
In Section IV, energy efficient resource allocation algorithms
are discussed. Section V highlights the proposed strategies,
and Section VI represent the formal verification of the pro-
posed techniques. Performance evaluation is discussed in
Section VII. The paper concludes in Section VIII.

II. RELATED WORK
Energy efficiency is considered as one of the major research
challenges while performing resource management in cloud
environments [6]. Several solutions are provided by the
researchers to handle the aforesaid issue that are either based
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Algorithm 2 Pseudocode for Proposed RCP Algorithm
RCP Algorithm
Input: srvList(S), vmList(V), threshold;
Output: VM allocation
1) V ′s ← sort all v ∈ V in order of CPU requirement

from higher to lower
2) S ′i ← sort all s ∈ S in order of CPU capacity

from higher to lower
3) for all the vs ∈ V ′s do
4) Max_ratio← 0
5) Allocated_host← Null
6) comp_reqs← computational requirements of

VM vs
7) for all pi ∈ Si where utilization of pi +

comp_reqs < threshold do
8) Before_Alloc_Energyi← Energy consumption of

pi before allocation of vs
9) Available_CPU_cap i← Avilable CPU capacity

of pi
10) Max_CPU_cap i←Maximum CPU capacity of pi
11) After_Alloc_Energy i← Energy consumption of pi

after allocation of vs
12) RRCP←comp_reqs/( After_Alloc_Energyi−

Before_Alloc_Energyi)
13) if Available_CPU_cap i = Overall_CPU_capi and

Allocated_host ! = Null
14) Break
15) end if
16) if RRCP > Max_ratio
17) Allocated_host←pi
18) Max_ratio← RRCP
19) end if
20) end for
21) if Allocated_host 6= Null
22) add_allocation (vs, Allocated_host)
23) end if
24) end for
25) Allocation = get_allocation( )
26) return Allocation

on DVFS or workload consolidation techniques. A DVFS
based scheduling algorithm is proposed by Wu et al. in [18].
The proposed algorithm improves overall resource utiliza-
tion, leading to higher energy-efficiency. Alnowiser et al. [24]
offer a DVFS based solution that uses a weighted round
robin algorithm to monitor, consolidate, and migrate the
hosted VMs. The weighted round robin algorithm provides
a consolidation based solution, whereas, DVFS minimizes
the energy consumption by matching the processor frequency
and voltage. In [25], a DVFS based solution is presented for
CPU-intensive Bag-of-Task applications. Moreover, a sched-
uler is used along with the DVFS solution to reduce over-
all energy consumption and fulfill the completion deadline.
Ren et al. [26] provide a game theory based DVFS
multi-objective framework that intends to minimize energy

consumption. A game theory based module is used for
resource management, whereas, DVFS minimizes the energy
consumption at the server level.

AlongwithDVFS based solutions, researchers are also pre-
senting workload consolidation based techniques that reduce
the energy consumption by consolidating the workload on
the least possible servers. Mertzios et al. [27], minimize the
energy consumption by consolidating VMs that have over-
lapping processing times. The consolidation process applies
to servers who are hosting the VMs at that specific time.
Feller et al. [28] provide an energy-efficient ant colony opti-
mization (ACO) based solution that attempts to minimize
energy consumption along with basic resource management
operations, such as placement, consolidation, and migration.
Lee and Zomaya [29] propose two workload consolidation
based techniques that provide energy efficiency by increasing
processor utilization. The basic difference between both the
techniques is of cost function. One of the proposed techniques
selects a server based on resource utilization, whereas, the
second picks a server by calculating a difference between
its real energy consumption and least energy consumption.
Addis et al. [30] provide an energy-efficient solution based on
a hierarchical framework discussed in [31]. The technique is
based on two types of managers that are used to manage and
maintain the resources on the hand. Central manager (CM)
categorizes the available servers based on the class of services
and selects a suitable server for the task based on task’s
class. Alternatively, application managers (AM) perform VM
migration, capacity allocation, frequency scaling, and load
balancing. In [32], a multi-tier virtualized environment is
provided for resource management in cloud environments.
Along with the environment, the authors provide a workload
prediction mechanism that predicts changes in workload, and
based on that prediction; resources are assigned to each VM.

Researchers have also presented SLA-aware energy-
efficient solutions that intend to minimize SLA violations
along with energy consumption. Researchers in [33] recom-
mend an SLA-awareDVFS solution that provides energy effi-
ciency without violating SLA. Each server is equipped with
DVFS module, and hybrid optimization technique is used to
handle issues, such as load balancing, resource allocation, and
VM placement. A multi-resource energy efficient model is
proposed by Li et al. in [34]. Proposed model uses a modi-
fied particle swarm optimization (PSO) technique for work-
load consolidation. Moreover, threshold mechanisms are
used to handle SLA violations and VM migrations. In [23],
Beloglazov et al. offer four dynamic thresholdmechanisms to
detect server overloading. Aforesaidmechanisms aremedium
absolute deviation (MAD), local regression (LR), interquar-
tile range (IQR), and local regression robust (LRR). One of
these mechanisms is used along with workload consolidation
technique to avoid server overloading and SLA violations.

Kansal and Chana [35] propose a multi-objective fire-
fly optimization based algorithm that tries to mini-
mize VM migrations and energy consumption. Aforesaid
technique transfers the VM that with highest resource
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requirements to the server who has lowest resource uti-
lization. Ficco et al. [36] present a bio-inspired coral-
reefs optimization and game theory based techniques that
attempt to ensure SLA-aware cloud resource optimization.
Bio-inspired coral-reefs optimization is used to model the
elasticity of cloud resources, whereas, game theory is used
to optimize the cloud resources on the basis of the user’s
demand. Zhou et al. [37] present resource management
techniques that attempt to reduce energy consumption and
SLA violation simultaneously. The authors use three thresh-
olds to divide the servers into little loaded, lightly loaded,
moderately loaded, and highly loaded categories. VMs are
only migrated from highly loaded servers to the less loaded
server, whereas, other two categories are not disturbed to
prevent SLA violations. Moreover, the authors propose two
threshold and three VM selection policies for migrations.
Radhakrishnan and Kavitha [38] present a resource man-
agement technique that uses genetically weight optimized
artificial neural network to minimize energy consumption
and VM migrations. The proposed algorithm predicts the
available capacity of resources in the near future, and
resource management is done on the basis of that prediction.
Castro et al. [39] attempt to reduce the energy consumption
in clouds that is consumed by both CPU and RAM. Two
workload consolidation based approaches are proposed by
the authors that decide about the hosting server based on
its CPU and RAM usage. Along with consolidation tech-
niques, threshold mechanisms are used to reduce the resultant
SLA violations.

All the above-mentioned techniques are designed to pro-
vide energy efficiency, and minimize the overall expenditure
of cloud data centers. However, the performance of these
techniques can still be improved as most of the techniques
are based on overall CPU capacity, and energy consumption
of a server. Moreover, these techniques do not consider the
energy that will be consumed for the available CPU capac-
ity or against the resources required by the VM. Furthermore,
the majority of aforementioned energy-efficient techniques
ignores SLA violations that may be encountered due to
workload consolidation. Therefore, to handle these issues,
we are proposing new techniques that select a server based
on the aforesaid facts. We also present SLA-aware versions
of proposed solutions to minimize the SLA violations that are
resulted due to workload consolidation. Besides that, we have
also enhanced existing energy-efficient solution to reduce the
issue of SLA violations.

III. SYSTEM MODEL
The focus of this work is to manage resources in cloud
environments. Therefore, we are considering a large data
center that uses N heterogeneous servers. Each of the servers
is represented by the CPU capacity represented in Millions
of Instructions per Second (MIPS), random-access mem-
ory (RAM), and network bandwidth [23]. Multiple users
can submit requests for an M number of VMs. SLA is
agreed with a service provider and in case of SLA violation,

service providers pay a penalty. Moreover, network attached
storage (NAS) is used to enable live VM migration instead
of simple storage. Furthermore, global and local managers
are used to manage resources. The local manager is placed
on each server and is the part of the virtual machine man-
ager (VMM). Local manager is responsible to keep the
track of all the resources on a server, resizing of VM, and
VM migration. Whereas, global manager is placed on the
master node and keeps the record of overall system resources.

A. MULTI-CORE CPU ARCHITECTURES
In our model, we are using multi-core environment in which
each server has n cores with a capacity of mMIPS. Therefore,
the capacity of a server can be represented by n∗m MIPS.
Moreover, we are not using the concept of parallelization to
host parts of a VM on two different cores. Therefore, the size
of a single VM can be at most equal to the size of a single
core.

B. ENERGY MODEL
According to Beloglazov et al. [20], power in data centers
is mainly consumed by CPU, memory, network interfaces,
and disk storage of computing nodes. However, power con-
sumption by servers can be defined by a linear relationship
between CPU utilization and power consumption. But recent
studies show that introduction of multi-core CPUs and vir-
tualization of resources, force the manufacturers to equip
the servers with the large amount of memory. This large
amount of memory is dominating the power consumption in
servers [23]. Moreover, modeling a precise analytical model
for power consumption in aforementioned environment is
quite a difficult job. Therefore, as shown in the Table 1,
we are using a real power consumption data that is provided
by the results of SPECpower benchmark. SPECpower is a
benchmark provided by the Standard Performance Evalua-
tion Corporation (SPEC), that evaluates the performance and
power of the computers which are categorized as servers.
Furthermore, due to variability in workload, the utilization of
the CPUmay change with time, and is expressed as a function
of time u(t). Therefore, the total energy (E) consumed by
a server (S) can be expressed as an integral of the power
consumption function as shown in the equation below:

E =
∫ t1

t0
P (u (t)) dt (1)

where, P is power consumed by the server against the
CPU utilization (u) at a given time t .

IV. ENERGY EFFICIENT BFD TECHNIQUES
Studies have proven that BFD algorithms are good for
online bin packing compared to other similar solutions,
and researchers are using this strategy for VM placement.
BFD algorithm sorts all the received tasks in descending
order, and places one by one on the selected servers. All
the BFD based algorithms work in the same way; however,
the server selection criteria are different for each algorithm.
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TABLE 1. Power consumption of servers under consideration at various loads.

In this section, we discuss the basic working of all the existing
BFD algorithms that are used to provide energy-efficient
solutions. The algorithms considered in this study are:
• Modified Best-Fit Decreasing (MBFD)
• Power and Computing Capacity-Aware Best Fit
Decreasing (PCABFD)

• Energy-aware and Performance per watt Oriented Best
Fit (EPOBF)

A. MODIFIED BEST FIT DECREASING (MBFD)
MBFD [20] is one of the well-known energy-efficient ver-
sions of BFD algorithm. MBFD works in the same man-
ner as that of traditional BFD algorithms, however, server
selection criterion of both the algorithms is different. Instead
of selecting a server based on CPU capacity and power,
MBFD selects a server who displays a minimum energy
increase after the VM placement. The energy of the server
is calculated by using the following equation.

P = 0.7 ∗ Pmax + 0.3 ∗ Pmax ∗ U (2)

Where P is the energy of a server at a given time, Pmax is
maximum power that the server can consume, and U is the
utilization of the server. Moreover, to calculate the difference
between power consumption before and after VM placement
can be calculated by the help of following formula.

Pdiff = PAP − PBP (3)

Here, PAP is the power consumed by the server after
VM allocation, and PBP is the power before VM allocation.
A server with a minimum value of Pdiff is selected for
VM hosting.

B. POWER AND COMPUTING CAPACITY-AWARE BEST FIT
DECREASING (PCABFD)
PCABFD [40] is an energy-efficient variant of BFD algo-
rithm that keeps the check on both energy and capacity of the
server. A server is selected on the basis of the ratio between
power and CPU capacity of the server. A server with the
minimum ratio is selected to host a VM. Equation 4 is used
to calculate an aforementioned ratio.

R = Pmax/CPUmax (4)

here, Pmax is the maximum power, and CPUmax is the
maximum CPU capacity of the server.

C. ENERGY-AWARE AND PERFORMANCE PER WATT
ORIENTED BEST FIT (EPOBF)
Quang-Hung et al. [41] present energy-efficient algorithm
that selects a server based on CPU capacity and power. The
cost function of the algorithm selects a server based on the
ratio between total CPU capacity, and energy increase after
VM placement. Based on the value calculated with the help
of equation 5, the server with maximum ratio is selected to
host the VM.

RE2 = CPUmax/Pdiff (5)

where, CPUmax is the maximum CPU capacity of the
server and Pdiff is calculated using equation 3.

D. SELECTED TECHNIQUES
An extensive study is carried out to evaluate the performance
of selected techniques based upon various workloads. Results
show that PCABFD and EPOBF techniques perform better
in terms of energy compared to MBFD algorithm. How-
ever, energy efficiency of both the techniques can be further
improved by the offloading the servers that are underutilized.
Presently, both the techniques do not use any kind of mech-
anism to identify the underutilized servers. Moreover, both
techniques lack in terms of SLA-awareness as no mechanism
is used to avoid the SLA violations that are incurred due to
workload consolidation. Furthermore, network level perfor-
mance degradation due to excessive migrations is not con-
sidered by aforementioned two techniques. Both techniques
select a random VM for the migration without considering
its consequences on the performance at the network level.
Therefore, in this study we are focusing on aforesaid issues
and providing enhanced versions of both the techniques that
will improve energy efficiency, and reduce SLA performance
degradation at server and network levels.

E. ENHANCED TECHNIQUES
Proposed enhanced PCABFD and EPOBF use the lower
threshold (LT) mechanism to identify the underutilized
servers. Lower threshold mechanism keeps the check on the
utilization of the server. As shown in the Figure 1, if the
utilization of server is below the set threshold value, all the
hosted VMs are migrated to other servers, and offloaded
server is switched off. Conversely, an upper threshold (UT)
mechanism is used to keep the check on the over-utilized
server. UT mechanism avoids the SLA violations by keep-
ing the utilization below a given threshold value, as shown
in Figure 2. In case of upper threshold breach, VM or a set
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FIGURE 1. Working of lower threshold (LT) mechanism.

FIGURE 2. Working of upper threshold (UT) mechanism.

of VMs is migrated from the over-utilized server to other
servers, and SLA violation is avoided.

To avoid the performance degradation at the network level,
minimum migration technique (MMT) policy is used. MMT
picks a VM for migration, which needs least time for migra-
tion. The selection of such a VMminimizes the load incurred
at the network level that is experienced due to migrations.
Details of used threshold mechanisms and migration tech-
nique are given below.

1) DYNAMIC THRESHOLD MECHANISM
In this study, we are using a median absolute devia-
tion (MAD) based dynamic threshold mechanism to reduce
energy consumption and SLA violations. We selected MAD
because it is robust and resilient to outliners compared to the
standard deviation [23]. Moreover, MAD uses the previous
knowledge for the generation of new threshold value. Fol-
lowing mechanism is used to generate a MAD value from the
given set of univariate data set X1, X2,. . . .,Xn.

MAD = mediani(
∣∣Xi − medianj (Xj)∣∣) (6)

here, MAD is the median of absolute values of the devia-
tions of the data’s median. However, the threshold (Tu) on the
basis of MAD value can be generated by using the following
equation.

Tu = 1− s.MAD (7)

where s ε R+ is a safety parameter that is used to control
the behavior of the method. If the value of s is low, energy
consumption will be minimized, and SLA violations will
increase.

2) STATIC THRESHOLD MECHANISM
The static threshold mechanism is used to set static values for
the upper and lower threshold mechanism. Static thresholds
do not change during the course of the simulation and remain
fixed. We have set the lower threshold value to 30% and
upper threshold value to 80%. In case of threshold violation,
VM(s) will be migrated to other server(s). However, results
reveal that static threshold mechanism suffers when dynamic
and fluctuating workloads are used.

3) MIGRATION POLICY
We are using MMT to select a VM that consumes mini-
mum time for the migration. Following equation is used to
compare the migration time of two VMs. According to [23],
migration time depends on the RAM used by the VM, and
total bandwidth available for the hosting server. We can use
the following equation to compare the migration time of
two VMs.

v ε Vj | ∀aεVj,
RAMu (v)
BW j

≤
RAMu (a)
BW j

(8)

where, Vj is set of VMs hosted on server j, RAMu (v) is
the RAM currently used by VM v, RAMu (a) is the RAM
currently used by VM a, and BW j is the available bandwidth
for server j.

V. PROPOSED TECHNIQUES
In recent times, virtualization has become an integral part
of the cloud data center. It enables service providers to
share and assign resources on-demand. VMs can be logically
resized and consolidated if they are not using all the assigned
resources. This can help in minimizing energy consumption
by switching the idle server to sleep mode. Moreover, it also
enables cloud data centers to perform live migration of VMs
from one server to another. However, the majority of cur-
rent resource allocation techniques designed for cloud data
centers provide high performance by meeting SLAs and do
not consider energy efficiency. Therefore, there is a need to
devise techniques that consider both performance and energy
efficiency while performing resource management.

A. AVAILABLE CAPACITY AND POWER BASED
TECHNIQUE (ACP)
Our proposed ACP algorithm is SLA-aware energy-efficient
RM technique that minimizes both energy consumption
and resultant SLA violations. ACP algorithm is based on
PCABFD algorithm and uses the same steps to place a VM on
a selected server. However, the server selection criterion of
ACP is different as compared to previous BFD algorithms.
In the proposed technique, a server is selected on the basis of
available CPU capacity and the energy that will be consumed
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for that capacity. However, existing BFD techniques are based
on overall CPU capacity and maximum energy consump-
tion. Existing techniques are totally ignoring the current state
of the servers, yet resulting in more energy consumption.
Equations 9 and 10 are used to select the hosting server.

RACP = CPUAvailable/(Pmax − PBP) (9)

CPUAvailable = CPUMax − CPUUtilized (10)

here, CPUAvailable is the available CPU capacity of the
server, and it can be calculated by using equation 10.
Pmax is the maximum power that a server can consume, and
PBP is the power consumption of the server before hosting
the respective VM. Server with maximum RACP value will
be selected for VM hosting. We are also using the threshold
based mechanism to avoid SLA violations that are incurred
due to limited available resources. The pseudocode of ACP
is presented in Algorithm 1.

In the proposed algorithm, initially all VMs v ∈ V are
sorted in descending order based on CPU requirements and
stored in the sorted list Vs‘. Similarly, the list of servers is
sorted in descending order based upon the CPU capacity, and
are stored in Si‘. In the next step, for each VM vs ∈ Vs‘,
the following steps are repeated. A server is selected from
the list, and for each server, we check if the cumula-
tive value of pi’s CPU utilization and comp_reqs is below
the given threshold. If the cumulative value is below the
threshold, then the server can host the VM, and we check
server’s available CPU capacity, maximum CPU capacity,
peak energy consumption, and current energy consump-
tion of the server. Aforementioned details of the server are
saved in variables Available_CPU_capi, Max_CPU_capi,
Peak_Energyi and Current_Energyi so that they can be used
to calculate RACP by using equation 9.We also keep the check
that VM should be placed on a used server, and if no used
server is available, then an unused server should be used.
After calculating the RACP, we compare Max_ratio and if
RACP is higher than the Max_ratio, we assign the value of
RACP toMax_ratio, and set the server pi as a Allocated_host.
The aforementioned steps are repeated until all the VMs are
assigned.

B. REQUIRED CAPACITY AND POWER BASED
TECHNIQUE (RCP)
RCP is also similar to ACP and uses the same mechanism to
place VMs on servers. However, RCP selects a server that
uses minimum energy against the requested CPU capacity
by the VM, as shown in equation 11. None of the existing
algorithms consider the demand and resultant energy con-
sumption while selecting a server. Moreover, if the value
of the ratio for multiple servers is same, then a server with
minimum energy consumption is selected for the hosting
of VM. In previous algorithms, there was no such mechanism
and any server that meets the selection criteria can be selected
for the VM hosting.

RRCP = CPURequired/(PAP − PBP) (11)

here, CPURequired is the capacity of the CPU that
VM demands, PBP is the power consumed by the server
before the hosting of the VM, and PAP is the power that server
will consume after the hosting of VM. Algoithm 2 shows the
pseudocode of RCP.

In the proposed algorithm, initially all VMs v ∈ V are
sorted in descending order based on CPU requirements and
stored in the sorted list Vs‘. Similarly, the list of servers
is sorted in descending order based on the CPU capacity,
and are stored in Si‘. In the next step, for each VM vs ∈
Vs‘, the following steps are repeated. A server is selected
from the list, and for each server we check if the cumula-
tive value of pi’s CPU utilization and comp_reqs is below
the given threshold. If the cumulative value is below the
threshold, then the server can host the VM, and we check
server’s available CPU capacity, maximum CPU capacity,
peak energy consumption, and current energy consump-
tion of the server. Aforementioned details of the server are
saved to in variables Available_CPU_capi, Max_CPU_capi,
Before_Alloc_Energyi and After_Alloc_Energyi, so that they
can be used to calculate RRCP by using equation 11. We also
keep the check that VM should be placed on a used server, and
if no used server is available, then an unused server should be
used. After calculating the RRCP, we compareMax_ratio and
if RRCP is higher than the Max_ratio, we assign the value of
RRCP to Max_ratio and set the server pi as a Allocated_host.
The same steps are repeated for all the servers and a server
with maximum RRCP is selected to host the VM.

C. COMPLEXITY ANALYSIS OF PROPOSED ACP
AND RCP ALGORITHMS
1) TIME COMPLEXITY OF ACP AND RCP ALGORITHMS
The time complexity of proposed ACP and RCP algorithms
is calculated as follows. First of all, algorithms sort the
received VMs in descending order based on their respective
CPU requirement. If we have n number of VMs then the
time complexity will be O(n · log(n)). In the second step,
the servers are sorted in descending order based on their
CPU utilization. Therefore, the time complexity of sorting m
servers isO(m·log(m)). The outer loop will have n iteration to
place the VMs on the server. Moreover, in case of best-case
scenario, the inner loop will execute u times as each time a
used server will be available to host a server. However, in a
worst-case scenario, the inner loop will execute m number of
times due to non-availability of used servers. Therefore, best
and worst case time complexities of both the algorithm are
given in equation 12 and 13 respectively.

O(
[
n (log (n)+ u)

]
+ m× log(m)) (12)

O(
[
n (log (n)+ m)

]
+ m× log(m)) (13)

2) SPACE COMPLEXITY OF ACP AND RCP ALGORITHMS
Space complexity of ACP and RCP algorithms is calculated
using equation 14.

O(2n+ m) (14)
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TABLE 2. Time and space complexities of selected and proposed
techniques.

here, n is the number of VMs to be placed, and m is the
total number of servers. The space complexity of ACP and
RCP algorithms is very moderate as only require a list of size
n to store VMs in sorted order and a list of size m to store
sorted list of servers. Moreover, we use a list of size n to store
the VM to server mapping. Time and space complexities of
all the selected techniques are presented in Table 2.

VI. FORMAL VERIFICATION
The procedure of validating the accuracy of the system under
consideration is known as verification. Correctness of the
system can be determined on the basis of two parameters:
(i) properties and (ii) specifications [42]. To verify our pro-
posed techniques, we are using bounded model checking
technique [43] along with Z3 solver and SMT-Lib.

A. SMT-LIB AND Z3 SOLVER
Formal verification and automated reasoning about decision
problems can be well solved and coded by the help of Sat-
isfiability Modulo Theories (SMT) [44]. SMT makes the
logical formula of decidability problem and on the basis
of decidability background theory, decides its satisfiability.
However, Boolean Satisfiability Solvers (SAT) is also used
for the same purpose, but it is propositional satisfiability
solver. SMT solvers support several theories, such as, equality
and un-interpreted functions, linear arithmetic over ratio-
nals (LAQ), linear arithmetic over integers (LAZ), non-linear
arithmetic over reals (NLA), over arrays (AR), bit vectors,
and combinations. Moreover, for the verification of systems,
SMT-Lib provides an input platform for the various solvers
Satisfiability modulo theories: introduction [44]. An abstract
model is developed to represent the behavioral specifica-
tions of the system, and with the help of SMT solvers,
bounded model checking is applied to the aforesaid model
to check its bounded symbolic execution [44]. There are
some solvers that provide a support for SMT-Lib, namely,
Z3, CVC4, OpenSMT, Beaver, MathSAT5, and Boolector.
The basic difference between these solvers can be at the

FIGURE 3. HLPN model for the proposed resource management
algorithms.

interface level, logic level, theory level, or at the level of input
formulae [45].

B. HIGH-LEVEL PETRI NETS (HLPN)
HLPN are used for the graphical and mathematical modeling
of systems, such as stochastic and parallel [46]. HLPN help
with systems simulations, and analysis of system behav-
ior and structural properties through the mathematical rep-
resentation. HLPN are used to analyze the processing of
information, interconnection between various procedures and
components, and information flow between the procedures.
Therefore, in this study, we are using a HLPN for the formal
verification of our proposed techniques. HLPN is represented
by a set of seven tuples, such as N = (P, T, F, ∅, R, L, M0),
where:

1) A set of finite places is represented by P.
2) T represents set of finite transitions, such that

P ∩ T = ∅.
3) F shows the flow relation between a place and

transition or a transition and place. Represented as
F ⊆(P × T) ∪ (T × P).

4) ∅ highlights the mapping of places to data types, and
can be represented as ∅ : P→ data types.

5) R represents the rules that are used to map the transi-
tions to logical formulae, such as: R : T → formula.

6) L are the labels that are used along with flows, and are
represented as L : F → label.

7) M0 is the initial state from where the flow starts and is
shown as M : P→ tokens.

C. MODELING AND ANALYSIS OF PROPOSED ALGORITHM
The HLPN model of proposed RM algorithms is illustrated
in Figure 3. To begin with, the system modeling, we first
need to define the set of places P and the corresponding
data types. Figure 3 shows that there are seven places in
the model, whereas, Table 3 illustrates the places and the
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TABLE 3. Places and data types mappings.

corresponding data types’ mappings. Now, we will define
rules, pre-conditions, and post-conditions for the given
model.

R (Sort) = ∀ls ∈ LS,∀lm ∈ LM ,∀ss ∈ SS ∀svm ∈ SVM |

ss [1] := Sort (ls [1] , ls [2]) ∧ ss [2]

:= Sort (ls [1] , ls [2]) ∧

SS ′ = SS ∪ {(ss [1] , ss [2] , ss [3] , ss [4] , ss [5]) ∧

svm [1] := Sort (lm [1] , lm [2]) ∧ svm [2]

:= Sort (lm [1] , lm [2]) ∧

SVM ′ = SVM ∪ {(svm [1] , svm [2]) (15)

The rules (as in (15)) which are mapped on transition
R (Sort) explain the process when the servers, and the VM(s)
are sorted in descending order according to the utilization and
requirements, respectively. Once the serves and theVM(s) are
sorted, we compare the utilization of the servers and the com-
putational requirements of the VM with the selective thresh-
old (as depicted in (16)) of transitionR(Comp−RCAP)). If the
aforesaid result is less than the threshold, thenwe compute the
RACP value of the selected server.

R (Comp− RCAP) = ∀lss ∈ LSS,∀lvm ∈ LVM ,∀gv

∈ GV ,∀rc ∈ RC|

lss [2]+ lvm [2] < gv [3] H⇒ rc [1]

:=
lss [5]

lss [3]− lss [4]
∧ rc [2]

:= lss [1] ∧ rc [3] := lvm[1] ∧ RC ′

= RC ∪ {(rc [1] , rc [2] , rc [3])} (16)

In (17), the rules that are mapped on transition R (Alloc)
compare the RACP value generated in (16) with Max_ratio.
If the result of RACP value is less than theMax_ratio, then the
servers are selected, and the values are updated accordingly.
Finally, the VM(s) is allocated to the servers.

R (Alloc) = ∀rca ∈ Rcap,∀sv ∈ SetVar,∀gv

∈ GetVar,∀alc ∈ ALC|

rca [1] > gv [1] H⇒ sv [2]

:= rca [2] ∧ sv [1] := rca [1] ∧

SV
′

= SV ∪ {(sv [1] , sv [2] , sv [3])} ∧

ALC ′ = ALC ∪ {(rca [1] , rca [2] , rca [3])} (17)

FIGURE 4. Verification time taken by the Z3 solver to prove the properties.

D. MODEL VERIFICATION PROPERTY
In order to highlight the correctness of our HLPN models,
we first translated the HLPN models into Z3 Solver and
SMT-lib. Moreover, we identified two properties to identify
the correctness of our models. After that Z3 solver is used
to check whether the model satisfies the properties or not.
The Figure 4 shows the time required by the Z3 Solver to
verify the correctness of the properties. The first property
is VM Allocation, whether all the VMs are allocated or not.
The second property is Server Cap, which inspects that the
VM is only allocated to those servers that have the capacity.
The solver generates positive results, indicating that the prop-
erties are verified, which means the models of the algorithms
are working correctly.

VII. EXPERIMENTAL EVALUATION
In this section, we will discuss the performance evaluation
of our proposed techniques along with the selected tech-
niques. We have conducted a comparative study with existing
state of the art workload consolidation based energy efficient
techniques.

A. EXPERIMENTAL SETUP
We are considering a cloud data center for evaluation of our
techniques. Though, a large-scale data center would have
been a better choice but due to limited resources, we have
used a simulation based approach and conducted extensive
simulations on CloudSim [47]. CloudSim is a well-known
open source simulation tool that is used for the perfor-
mance evaluation of energy-efficient resource management
techniques. CloudSim provides numerous parameters that
evaluate the energy efficiency of technique along with
SLA-awareness and network performance. In this study,
evaluation of proposed techniques carried out on the basis
of parameters, such as, energy consumption, performance
degradation due to migration and SLA violations. These
parameters are discussed in detail in the next section.
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TABLE 4. Server configurations.

TABLE 5. VM configurations.

TABLE 6. Workload characteristics.

In this study, we are using a setup of total 800 heteroge-
neous servers belonging to four types of multi-core servers
as shown in Table 4. Each category of servers has different
CPU model, clock rate, cores, and RAM. We have taken
200 servers from each category of servers that host VMs
similar to Amazon EC2 instances [48]. All the VMs differ in
terms of CPU and RAM requirements. High-memory extra-
large VMs require the highest amount of CPU and RAM
capacity, whereas, micro instance demands minimum capac-
ity as shown in Table 5. In addition to that, we are using
real-world workloads for the better evaluation of our tech-
niques. Aforesaid workloads are the actual workloads that
were received by PlanetLab on 10 different days [49]. Table 6
represents the details of these workloads that are based on
the CPU utilization of 500 worldwide spread servers, hosting
more than 1000 VMs at a time.

B. PERFORMANCE METRICS
In order to assess the performance of selected and proposed
techniques, we are using following performance evaluation
metrics.

1) ENERGY CONSUMPTION
The first metric we consider in our study is the overall
energy consumed by data center’s servers. For the calcula-
tion of energy, an energy model discussed in Section III is

used, and total energy consumption is calculated by using
equation 1.

2) PERFORMANCE DEGRADATION DUE TO VIRTUAL
MACHINE MIGRATIONS (PDM)
We are using this metric to check the performance of our
techniques at the network level.PDM highlights the effects of
migrations on the performance of the network. PDM can help
us in selecting a migration technique that incurs less load on
the network. PDM can be calculated by using the following
equation.

PDM =
1
M

∑M

j=1

Cdj
Crj

(18)

where, M is the number of VMs, Cdj is the estimated per-
formance degradation of VM (j) and Crj is the total capacity
demanded by the VM (j) during its execution time.

3) SLA VIOLATION TIME PER ACTIVE HOST (SLATAH)
Another parameter considered in this study is SLA violation
time per active host. SLATAH is the cumulative during which
the server experienced the SLA violations. It can be calcu-
lated by using equations 19.

SLATAH =
1
N

∑N

i=1

Tsi
Tai

(19)

where, N is number of hosts, Tsi is the total SLA violation
time during which server’s (i) utilization was 100% and Tai
is the total active time of the server (i).

4) SLA VIOLATION (SLAV)
The fourth parameter we are considering in this study is the
SLA violation. SLA defines the characteristics of the QoS
that should be provided to the customer. We are using SLAV
metric defined in [20] to calculate the SLA violations that are
encountered during the given time. SLAV can be calculated by
using the equation 20 which depends on SLATAH and PDM .

SLAV = SLATAH ∗ PDM (20)

C. SIMULATION RESULTS
All the selected and proposed resource management
techniques are designed to minimize energy consumption.
However, PCABFD and EPOBF do not consider the SLA vio-
lations that result due to workload consolidation. Therefore,
as discussed in Section IV, we present the various variants
of aforesaid techniques that attempt to increase energy effi-
ciency, and reduce SLA violations and performance degra-
dation that is faced due to excessive migrations. In the
next section, performance evaluation of aforesaid variants is
carried out based on above-mentioned parameters.

D. PERFORMANCE EVALUATION OF PCABFD AND EPOBF
VARIANTS
In this section, we compare the PCABFD and EPOBF tech-
niques with the variants we have proposed in this study.
Details of all the techniques are presented in Table 7.

VOLUME 6, 2018 15013



S. Mustafa et al.: SLA-Aware Energy Efficient RM for Cloud Environments

TABLE 7. Variants of PCABFD and EPOBF.

FIGURE 5. Energy consumption of various variants of PCABFD and EPOBF.

1) ENERGY CONSUMPTION
Figure 5 presents the energy consumption comparison of
PCABFD, EPOBF and their variants. The results highlight
that proposed energy-efficient variants outperformed the
original techniques. It can be seen that EPCABFD is the
most energy efficient whereas SLA-aware version of EPOBF
(SEEPOBF) is the least energy-efficient variant among
the said techniques. EPCABFD consumes about 8% less
energy than original PCABFD and 16% less compared to its
SLA-aware version (SEPCABFD). Moreover, it consumes
almost 47% less energy compared to EPOBF and 41% less
than EEPOBF. On the other hand, EEPOBF consumes 10%
less energy than EPOBF and 14% less than SEEPOBF.
Furthermore, most energy-efficient technique (EPCABFD)
utilizes 49% less energy in comparison to the least energy-
efficient technique, i.e., SEEPOBF.

2) AVERAGE SLA VIOLATIONS
Average SLA violations of the variants under discussion are
shown in Figure 6. It can be clearly seen that SLA-aware
versions of the techniques perform better than their respec-
tive counterparts. SEEPOBF has the least SLA violations,
whereas EPCABFD has highest SLA violations. When we
compare both of them, SEEPOBF has at least 15% less viola-
tion compared to EPCABFD. Moreover, SLA-aware version
of EPOBF has 5.5% fewer violations than EEPOBF and
about 4% less compared to original EPOBF. In comparison to

FIGURE 6. Average SLA violations of various variants of PCABFD
and EPOBF.

FIGURE 7. Figure 7: Performance degradation due to migrations of
various variants of PCABFD and EPOBF.

SLA-aware version of SEPCABFD, SEEPOBF has 10%
fewer violations. It is evident from the discussed results
that techniques that use upper thresholds perform better in
terms of SLA violation due to the availability of some free
resources.

3) PERFORMANCE DEGRADATION DUE TO MIGRATION
Figure 7 shows the performance degradation due to migra-
tions. The results show that due to better VM selection crite-
ria, MMT helps in minimizing the performance degradation.
Moreover, the upper threshold mechanism also assists in the
reduction of performance degradation. The upper threshold
decreases the SLA violations which ultimately reduce the
need to migrate the VMs. It can be seen from the results
that SEEPOBF clearly outperforms other techniques in terms
of the said metric, whereas, its energy efficient counterpart
EEPOBF displays the worst results. SEEPOBF has 13%
less performance degradation compared to second best
SEPCABFD, and 52% less than original EPOBF. More-
over, if we compared the best and worst techniques, then
SEEPOBF has almost 62% less performance degradation
compared to EEPOBF.

4) SLA VIOLATION TIME PER ACTIVE HOST
Figure 8 shows the time during which active hosts faced
the SLA violations. The results highlight that SLA-aware
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FIGURE 8. SLA violation time per active host of various variants of
PCABFD and EPOBF.

variants perform well due to less SLA violations. SEEP-
OBF is best in terms of both SLA violations and SLATAH,
whereas, EPCABFD has the highest violation time. It can
be noticed from the Figure 8 that SEEPOBF has 15.5%
less violation time compared to SEPCABFD, whereas, it
has 36% and 38% less violation time compared to EEP-
OBF and EPOBF respectively. If we compare the other
SLA-aware technique, SEPCABFD has 34% less violation
time compared to EPCABFD and 32% fewer violations com-
pared to PCABFD. It is evident from the results that SLA-
aware versions perform better than their counterparts.

E. PERFORMANCE EVALUATION OF ACP AND
RCP ALGORITHMS
In this section, we will be discussing the results of selected
energy efficient and SLA-aware RM techniques, along with
our proposed ACP and RCP techniques. All the proposed
and selected techniques analyzed in this section use both
energy consumption and CPU capacity as selection criteria.
Selected techniques that are being used for this evaluation
are already discussed in the previous section. EPCA and
EEPOBF are the enhanced energy efficient versions of PCA
and EPOBF techniques.Whereas, SEPCA and SEEPOBF are
the SLA-aware enhanced versions of both the techniques.
On the hand, ACP and RCP are the energy efficient versions
of the proposed techniques, whereas, the SACP and SRCP
are the SLA-aware versions. Details of each technique are
presented in Table 8. Moreover, to analyze the impact of
static and dynamic thresholds on RM, aforesaid techniques
are evaluated on the basis of these thresholds. For static
thresholds, lower threshold is set to 30% and upper threshold
is set to 80%, whereas, dynamic threshold uses theMAD. The
results of aforesaid techniques based on selected performance
evaluation parameters are discussed below.

1) ENERGY CONSUMPTION
Figure 9 presents the energy consumption of selected tech-
niques based on static and dynamic thresholds. The results
show that our proposed ACP and RCP techniques outperform
other selected techniques in terms of energy consumption.

TABLE 8. Details of evaluated techniques.

Both techniques use LT mechanism to identify and offload
the underutilized nodes. Moreover, both the techniques select
a server based on its real-time energy and resource utilization,
which improves the decision making during VM placement.
On the other hand, existing techniques only consider the
maximum energy consumption and CPU capacity during
VM placement phase. Lack of updated resource information
results in poor VM placement that leads to higher-energy
consumption. Moreover, our SLA-aware versions of the pro-
posed techniques consume more energy compared to their
counterparts because of the use of UT mechanism that keeps
some of the resources free. Hence, forcing the system to use
more servers for VM hosting.

The results of the Figure 9 show that our proposed RCP
technique is best in terms of energy consumption, whereas,
ACP is second best and our proposed energy efficient variant
of PCA (EPCA) with slight difference is at third best. RCP
consumes about 54%, 46%, 9% and 5% less energy compared
to MBFD, EEPO, EPCA and ACP respectively. In compar-
ison to SLA-aware RCP, RCP consumes 14% less energy
than its SLA-aware counterpart. On the other hand, ACP
consumes 51%, 43%, 15%, and 4% less energy compared to
MBFD, EEPO, SACP and EPCA respectively. If we compare
the impact of the static and dynamic thresholdmechanisms on
the energy consumption, it can be noted that the difference
ranges between 3% to 6%. Therefore, it can be said that
dynamic thresholds also have a positive impact on energy
efficiency. Dynamic threshold performs better than the static
threshold because they are not fixed and keep on changing,
therefore, if the SLA violations remain low, upper threshold
can be increased. This allows the server to host more VMs
which leads to reduction in the number of active server and
energy consumption.

Figure 9 shows the maximum, average and minimum
energy consumption values of each techniques, whereas,
Figure 10 shows the standard devation of energy con-
sumption based on the workloads which are used to
evaluate the selected and proposed techniques. It is evi-
dent from the Figure 10 that energy efficient versions
have the slightly better results compared to SLA-aware
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FIGURE 9. Energy consumption (a) Max, average and min of all workloads with MAD based thresholds, (b) Max, average and min of all workloads with
static thresholds.

FIGURE 10. Standard deviation of energy consumption on (a) All workloads with MAD based thresholds, (b) All workloads with static thresholds.

FIGURE 11. Average SLA violations (a) Max, average and min of all workloads with MAD based thresholds, (b) Max, average and min of all workloads
with static thresholds.

counterparts. Moreover, the variation in the values of EPCA,
ACP, RCP, SEPCA, SACP and RCP, are less compared
to EEPOBF, SEEPOBF and MBFD algorithms. It shows
that in terms of energy, proposed and PCA based solu-
tions are more stable than the MBFD and EPOBF based
solutions.

2) AVERAGE SLA VIOLATIONS
Figure 11 shows the performance comparison of the proposed
and selected techniques based on SLA violations. Techniques
like SEEPOBF and MBFD that do not perform workload
consolidation properly, and use more servers have enough
resources to accommodate the fluctuating demands of VMs.
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FIGURE 12. Standard deviation of average SLA violations on (a) All workloads with MAD based thresholds, (b) All workloads with static thresholds.

FIGURE 13. Performance degradation due to migrations (a) Max, average and min of all workloads with MAD based thresholds, (b) Max, average and
min of all workloads with static thresholds.

FIGURE 14. Standard deviation of performance degradation due to migrations on (a) All workloads with MAD based thresholds, (b) All workloads with
static thresholds.

The fact that can be noticed from Figure 11 is the impact
of dynamic and static thresholds on selected and proposed
techniques. It can be clearly seen that dynamic threshold
mechanism performs well in terms of SLA violations due to
varying nature. If the higher SLA violations have occurred in
previous rounds, then the value of the threshold will be set
low, and SLA violations will be avoided. A static threshold
mechanism does not have such intelligence and remains static
throughout the course of the simulation.

It is evident from the Figure 11 that MBFD and SEPOBF
have approximately the same amount of SLA violations.
However, they outperform other techniques. MBFD has 17%,
14%, 11%, and 5.5% fewer SLA violations compared to
SRCP, ACP, SEPCA, and EEPOBF respectively. Moreover,
SLA-aware versions of the proposed and selected techniques
perform better than their energy-efficient counterparts in
terms of SLA violations. SACP reduces the SLA violations
by 5% compared to ACP, whereas, SRCP has 4%, fewer SLA
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FIGURE 15. SLA violation time per active host (a) Max, average and min of all workloads with MAD based thresholds, (b) Max, average and min of all
workloads with static thresholds.

FIGURE 16. Standard deviation of SLA violation time per active host on (a) All workloads with MAD based thresholds, (b) All workloads with static
thresholds.

violations compared to RCP. Similarly, SEPCA has 6% fewer
SLA violations compared to energy-efficient EPCA. Fur-
thermore, if we compare the SLA violations of SLA-aware
techniques based on static and dynamic UT, the difference of
SLA violations ranges between 0.5% to 1%.

The maximum, average and minimum percentages are
shown in Figure 11, whereas, Figure 12 shows the standard
deviation of average SLA violations based on different work-
loads. The results show that in terms of SLA violations,
EEPOBF, SEEPOBF andMBFD algorithms outperform their
counterparts. Other solutions perform well in terms of energy
consumption, but they suffer in terms of SLA violations due
to aggressive workload consolidation. Moreover, SLA-aware
versions of the techniques perform slightly better than their
energy efficient versions.

3) PERFORMANCE DEGRADATION DUE TO MIGRATION
Comparison of selected techniques on the basis of per-
formance degradation due to migrations is presented
in Figure 13. The results highlight that MBFD and SEEPOBF
have minimum performance degradation due to migrations.
MBFD has 27% less performance degradation compared
to SRCP, whereas, it has 20% and 13% less performance
degradation compared to the SACP and SEPCA respectively.
Moreover, SEEPOBF decreases the performance degradation
significantly compared to the energy-efficient counterparts

EEPOBF. SEEPOBF has 61% less performance degrada-
tion compared to EEPOBF, whereas, SEPCA has 26%,
the SACP has 24% and SRCP has 23% compared to their
respective energy-efficient versions. Furthermore, if we com-
pare the results of the techniques that are using static and
dynamic threshold mechanisms, the difference is between
5% to 6%.

Although the maximum, average and minimum values are
evident from the Figure 13, but the variation from the mean
value is shown in the Figure 14. It can be noticed from the
Figure 14 that EEPOBF, SEEPOBF and MBFD algorithms
have less variation compared to other counterparts due to
less aggressive workload consolidation and SLA violations.
Moreover, if we compare the SLA-aware and energy efficient
techniques, it can be seen that SLA-aware versions have less
variation than energy efficient versions.

4) SLA VIOLATION TIME PER ACTIVE HOST
Figure 15 shows the SLA violation time per active host
of the selected and proposed techniques. Results show that
SLA-aware versions of the techniques outperform the energy
efficient techniques due to less SLA violations. It is evi-
dent from the results that SEEPOBF and MBFD are best
in terms of SLA violation time. SEEPOBF is slightly better
than MBFD algorithm; however, it has 15%, 18% and 23%
less violation time compared to SEPCA, SACP, and SRCP,
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respectively. Moreover, compared to its energy efficient ver-
sion, it has 38% less SLA violation time. Compared to worst
in term of violation time, SEEPOBF has about 46% less
violation time compared to RCP. Results further highlight that
the SLA-aware versions of all the techniques perform better
than their respective energy efficient versions in terms of
SLA violations time. If we compare the results of techniques
on the basis of dynamic and static thresholds, it is noticed
that dynamic threshold based SLA-aware techniques perform
better than a static threshold based techniques. The reason
behind the better performance is dynamically changing val-
ues of CPU utilization thresholds.

The standard deviation of the SLA violation time is pre-
sented in Figure 16. The results show that SLA-aware ver-
sions are more stable than energy efficient versions due to
better violation avoidance. Moreover, EEPOBF, SEEPOBF
and MBFD algorithms have less variations compared to
their respective counterparts. Results indicate that the upper
thresholdmechanism and free resources efficiently handle the
issue of SLA violations.

VIII. CONCLUSIONS
In this paper, we jointly handle the issue of energy consump-
tion and SLAviolation that a service provider faceswhile pro-
viding resources in a cloud environment. Our work provides
an in-depth overview of existing BFD based energy-efficient
algorithms and evaluates their performance. In addition to
that, we enhanced the existing energy-efficient techniques
to further improve the energy efficiency. Moreover, SLA-
awareness is also introduced in the selected techniques, and
results show that SLA violations are reduced significantly.
Furthermore, new resourcemanagement techniques proposed
in this paper reduce energy consumption and SLA violations
by considering the real time states of energy and CPU capac-
ity of servers. Real time states assist in better selection of
server which led to reduction in energy consumption and SLA
violations.

We have also concluded that the dynamic threshold
mechanisms play a key role in enhancing the performance
of resource management techniques. MAD based dynamic
threshold mechanism performs better than the static thresh-
old mechanism in terms of all the parameters, such as,
energy consumption, performance degradation due to migra-
tion, and SLA violations. The reason behind the better
performance of the dynamic threshold mechanism is the
use of previous data, and intelligently changing the val-
ues based on the changing behavior of workloads. We
have also concluded that migration technique helps in
improving the performance by selecting a VM that has the
minimum effect on the network performance.We noticed that
MMT selects a VMwith minimummigration time; therefore,
it performs better than RC.

In the future, we intend to improve the performance of the
proposed techniques by considering another resource man-
agement metrics, such as, network load, fault tolerance, profit
maximization and load balancing. Network load minimiza-

tion while performing VM placement can further improve the
performance at the network level. Moreover, fault tolerant
energy efficient resource management can be the new and
interesting research challenge that we are considering at the
moment.
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